(a) \(V_A = \frac{5}{3} + \frac{5}{3} + \frac{5}{3} \) \(V_1 = \frac{5}{5} + \frac{5}{3} + \frac{5}{3} = \frac{5}{5} \) \(V_1 = \frac{5}{5} \) \\
(b) \(V_A = \frac{5}{5} + \frac{5}{3} + \frac{5}{3} \) \(V_1 = \frac{5}{5} + \frac{5}{3} + \frac{5}{3} \) \\
(c) \(V_A = \frac{5}{5} + \frac{5}{3} + \frac{5}{3} \) \(V_1 = \frac{5}{5} + \frac{5}{3} + \frac{5}{3} \)

By KCL at inverting input,
\[\frac{1}{2} \]

By KCL at node \(Y \),
\[\frac{1}{2} \]

By KCL at node \(Y \),
\[\frac{1}{2} \]

By KCL at node \(Y \),
\[\frac{1}{2} \]

By KCL at node \(Y \),
\[\frac{1}{2} \]

By KCL at node \(Y \),
\[\frac{1}{2} \]

By KCL at node \(Y \),
\[\frac{1}{2} \]