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ABSTRACT OF THE DISSERTATION

Quantization Over Noisy Channels and Bit Allocation

by

Benjamin Farber

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California, San Diego, 2005

Professor Kenneth Zeger, Chair

In this dissertation we study two problems related to scalarquantization, namely

quantization over a noisy channel and bit allocation. Scalar quantizers have been exten-

sively studied for the case of a noiseless channel. However,their structure and perfor-

mance is not well understood when operating over a noisy channel. The bit allocation

problem is how to allocate a limited number of bits to a set of scalar quantizers so as to

minimize the sum of their mean squared errors.

We first examine scalar quantizers with uniform encoders andchannel optimized

decoders for uniform sources and binary symmetric channels. We calculate the point

density functions and the mean squared errors for several different index assignments.

We also show that the Natural Binary Code is mean squared optimal among all possi-

ble index assignments, for all bit error rates, and all quantizer transmission rates. In

contrast, we find that almost all index assignments perform poorly and have degenerate

xi



codebooks.

Next, we study scalar quantizers with uniform decoders and channel optimized

encoders for uniform sources and binary symmetric channels. We compute the number

of empty cells in the quantizer encoder, the asymptotic celldistribution, and the effective

channel code rates for two families of index assignments. Also, we demonstrate that the

Natural Binary Code is sub-optimal for a large range of transmission rates and bit error

probabilities. This contrasts with its known optimality when either both the encoder and

decoder are not channel optimized, or when only the decoder is channel optimized.

Lastly, we consider bit allocation. The problem of asymptotically optimal bit

allocation among a set of quantizers for a finite collection of sources was analytically

solved in 1963 by Huang and Schultheiss. Their solution gives a real-valued bit al-

location, however in practice, integer-valued bit allocations are needed. In 1966, Fox

gave an algorithm for finding optimal nonnegative integer bit allocations. We prove that

Fox’s solution is equivalent to finding a nonnegative integer-valued vector closest in the

Euclidean sense to the Huang-Schultheiss solution. Additionally, we derive upper and

lower bounds on the deviation of the mean squared error usinginteger bit allocation

from the mean squared error using optimal real-valued bit allocation.
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Chapter 1

Introduction

To motivate this dissertation, consider the following toy problem. By transmit-

ting only two bits, how can one most accurately convey an observation of a random

variableX uniformly distributed on the interval[0, 1] to a remote receiver? That is, the

receiver forms an estimateY of the observationX based on the received two bits from

the transmitter. This is the problem of scalar quantizationover a communications chan-

nel where performance is measured by the distortion betweenthe original sample from

the random variable and its reconstruction. Typically the distortion is measured by the

mean squared error,E[(X − Y )2].

One approach to solving this example is the following. Evenly partition the

interval [0, 1] into four encoding cells:[0, 1/4), [1/4, 1/2), [1/2, 3/4), and[3/4, 1] and

assign them indices00, 01, 10, and11, respectively. If the random variableX falls

in a particular cell, then transmit its corresponding 2-bitindex. This is an example of

a quantizer encoder. At the receiver, take the two bits from the encoder and pick the

corresponding encoding cell midpoint as the estimateY of the original source random

variable. Suppose, for example, the encoder transmitted10 and these bits are observed

error free by the receiver. Then the receiver picks the point5/8 as its estimateY . This

is an example of a quantizer decoder; its estimateY is called a codepoint.

1
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The combination of a quantizer encoder and a quantizer decoder works well

when the communication between the encoder and the decoder is error free. It is easy to

show that in this example the encoder and decoder described minimize the mean squared

error for an error free channel.

What if the channel between the encoder and decoder is not perfect? For exam-

ple, suppose the encoder transmits one bit at a time to the decoder, and each transmission

has a fixed probabilityε of being in error, independent of the previous transmissions.

This is the problem of scalar quantization over a discrete noisy channel. For example, if

ε = 0.1, then a known numerical quantizer design algorithm yields the following encod-

ing cells: [0, 0.37), [0.37, 0.5), [0.5, 0.63), and[0.63, 1] with indices00, 01, 10, and11,

respectively, and corresponding (non-midpoint) codepoints equal to:0.21, 0.46, 0.54,

and0.79, respectively.

In general, it is not known how to algorithmically find optimal quantizer en-

coders and quantizer decoders for transmission over a noisychannel. Also, almost noth-

ing is known analytically about optimal quantizer encodersor quantizer decoders for

noisy channels except certain necessary (but not sufficient) conditions they must satisfy

(e.g. [4]).

As an approach to understanding quantization in the presence of channel noise,

one can fix the quantizer encoder and study the resulting quantizer decoder or fix the

quantizer decoder and study the resulting quantizer encoder. While this approach is

sub-optimal, it can yield valuable insight into the problemof quantization over a noisy

channel.

In the toy example we have been considering, if we fix the quantizer encoder to

be uniform, i.e. encoding cells[0, 1/4), [1/4, 1/2), [1/2, 3/4), and[3/4, 1] with indices

00, 01, 10, and11, respectively, it can be shown that the optimal decoder forε = 0.1

has corresponding codepoints of1/5, 2/5, 3/5, and4/5, respectively. Similarly, if we

fix the quantizer decoder to be uniform, i.e. codepoints of1/8, 3/8, 5/8, and7/8, it can
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be shown that the optimal encoder forε = 0.1 has encoding cells of[0, 0.3), [0.3, 0.5),

[0.5, 0.7), [0.7, 1] with indices00, 01, 10, and11, respectively.

This toy example illustrates some of the main ideas considered in the first part of

this thesis (Chapters 2 and 3). The mean squared error (E[(X − Y )2]) in the toy exam-

ple illustrates the idea of “loss.” The receiver cannot perfectly determine the observed

quantity at the source.

In general, there are two types of data compression, lossy and lossless. Each

strives to reduces the number of bits required to describe a random source. An observa-

tion from a random source can be perfectly reconstructed from the output of a lossless

data compression scheme, where as it cannot from a lossy datacompression scheme.

Lossy data compression is used to represent analog signals digitally (commonly known

as analog-to-digital conversion). In this dissertation, we study only lossy data compres-

sion.

There are two main approaches to studying lossy data compression. One is to fix

the transmission rate (i.e. the number of bits transmitted by the encoder to the decoder)

and let the dimension or block length grow without bound. This approach was started by

Shannon [5,6] who laid the information theoretic foundation for the study of both lossy

and lossless data compression with his ground breaking works in the 1948 and 1959.

By considering asymptotically large block lengths, i.e. the number of samples from

a random source described by one use of a quantizer encoder, he was able to derive

bounds on the achievable performance of lossless and lossy compression schemes. He

also showed that with infinite time and computing resources,there was nothing to be lost

by separating the two problems of source coding, i.e. for a given random source and a

perfect channel finding the best quantizer encoder and decoder, and channel coding, i.e.

for a given random channel, finding the best quantizer encoder and decoder to combat

channel noise.

Another approach to studying lossy data compression was started by Bennett [1]
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in 1948. This approach is to consider the performance and structure of quantizers as

their rate becomes asymptotically large. The assumption oflarge rate is often called

high resolution. We use this approach since the structure and performance ofhigh reso-

lution quantizers can be a good guide for the design, analysis, and expected performance

of more practical quantizers, i.e. quantizers with relatively small rate which are easy to

implement. In particular, Chapters 2 and 3 examine the high resolution structure of fam-

ilies of quantizers under different assumptions on their quantizer encoders and decoders

and in Chapter 4 we assume the performance of a scalar quantizer is given by a formula

for the mean squared error of a generic high resolution quantizer.

In Chapters 2 and 3 we attempt to gain a better understanding of high resolution

quantization theory over noisy channels. In both Chapters 2and 3 we assume the source

random variable to be quantized is uniformly distributed onthe interval[0, 1] and the

quantizer encoder and quantizer decoder must communicate over a binary symmetric

channel using index assignments. In Chapter 2, as the title suggests, we examine quan-

tizers with uniform encoders and channel optimized decoders. This means we consider

quantizer decoders whose choice of codepoint location has been optimized to the statis-

tics of the channel. For such quantizers we determine the high resolution structure of

the quantizer decoder and the mean squared error achieved byseveral different families

of index assignments. Chapter 2 is a copy of a paper publishedin the IEEE Transactions

on Information Theory. In Chapter 3, as the title suggests, we examine quantizers with

uniform decoders and channel optimized encoders. This means we consider quantizer

encoders whose choice of encoding cell boundaries has been optimized to the statistics

of the channel. For such quantizers we determine the high resolution structure of the

quantizer encoder and the mean squared error achieved by twodifferent families of in-

dex assignments. Chapter 3 is a copy of a paper in revision forthe IEEE Transactions

on Information Theory.

In Chapter 4 we consider the bit allocation problem. This problem concerns how
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to allocate a constrained number of bits among a set of quantizers to as to minimize the

sum of their distortions.

Huang and Schultheiss [3] provided an optimal real-valued solution to this prob-

lem. However, applications generally impose integer-value constraints on the rates used.

Unfortunately, it has been shown that finding optimal integer bit allocations is NP-hard

(as the number of sources grows), via reduction to the multiple choice knapsack prob-

lem. In practice, authors have suggested using using combinatorial optimization meth-

ods such as integer linear programming or dynamic programming [2] or optimizing with

respect to the convex hull of the quantizers’ rate-versus-distortion curves to find bit al-

locations. There are also many algorithmic techniques in the literature for obtaining

integer-valued bit allocations.

Despite the wealth of knowledge about finding integer bit allocations, there has

been no published theoretical analysis comparing the performance of optimal bit allo-

cations with integer constraints to the performance obtained using the real-valued allo-

cations due to Huang and Schultheiss. In this thesis, we characterize optimal integer bit

allocations as those that minimize the Euclidean distance to the solution proposed by

Huang and Schulthiess. Also, we derive upper and lower bounds on the deviation of the

sum of the component mean squared error’s using integer bit allocation from the sum of

the component mean squared error’s using optimal real-valued bit allocation. Chapter 4

has been submitted for publication to the IEEE Transactionson Information Theory.
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Chapter 2

Quantizers with Uniform Encoders and
Channel Optimized Decoders

Abstract

Scalar quantizers with uniform encoders and channel optimized decoders

are studied for uniform sources and binary symmetric channels. It is shown

that the Natural Binary Code and Folded Binary Code induce point den-

sity functions that are uniform on proper subintervals of the source support,

whereas the Gray Code does not induce a point density function. The mean

squared errors for the Natural Binary Code, Folded Binary Code, Gray

Code, and for randomly chosen index assignments are calculated and the

Natural Binary Code is shown to be mean squared optimal amongall possi-

ble index assignments, for all bit error rates and all quantizer transmission

rates. In contrast, it is shown that almost all index assignments perform

poorly and have degenerate codebooks.

2.1 Introduction

The most basic source and quantizer are the uniform scalar source and the uni-

form scalar quantizer. If the source is uniform on[0, 1], for example, then ann-bit

7
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uniform quantizer has equally spaced encoding cells of size2−n and has equally spaced

output points which are the centers of the encoding cells. For this source, the mean

squared distortion of this quantizer is known exactly when there is no channel noise,

and is known to be minimal among all quantizers.

In the presence of channel noise, one approach to improving system performance

is to add explicit error control coding, so that some of the transmission rate is devoted

towards source coding and some towards channel coding. Drawbacks of this include the

added complexity and delay of channel decoding.

An alternative low-complexity approach in the presence of channel noise is to

add to the quantizer an index assignment, which permutes thebinary words associated

with each encoding cell prior to transmission over the channel, and then unpermutes

the binary words at the receiver prior to assigning a reproduction point at the output.

The cells are assumed to be labeled in increasing order from left to right, before the

index assignment. Examples of index assignments include the Natural Binary Code, the

Folded Binary Code, and the Gray Code. The benefit of an index assignment is derived

from the fact that reproduction codepoints that are relatively close on the real line can

be assigned binary words which are close in the Hamming sense(i.e. in the number of

same bits) on average. Thus when channel errors occur, the mean squared error impact

on the quantizer is reduced.

Yamaguchi and Huang [8] and Huang [9] derived formulas for the mean squared

error of uniform scalar quantizers and uniform sources for the Natural Binary Code,

the Gray Code, and for a randomly chosen index assignment on abinary symmetric

channel. They also asserted (without a published proof) theoptimality of the Natural

Binary Code for the binary symmetric channel. Crimmins et al. [1] studied the uniform

scalar quantizer for the uniform source and proved the Yamaguchi-Huang assertion, that

the Natural Binary Code is the best possible index assignment in the mean squared sense

for the binary symmetric channel, for all bit error probabilities and all quantizer rates.
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McLaughlin, Neuhoff, and Ashley [3] generalized this result for certain uniform vector

quantizers and uniform vector sources. Other than these papers, there are no others

presently known in the literature giving index assignment optimality results.

There have been some analytic studies on the performance of various index as-

signments. Hagen and Hedelin [7] used Hadamard transforms to study certain lattice-

type quantizers with index assignments on noisy channels. Knagenhjelm and Agrell [10]

introduced an analytic method of approximating the qualityof an index assignment us-

ing Hadamard transforms. Skoglund [12] provided index assignment analysis for more

general channels and sources. In [4] explicit mean squared error formulas were com-

puted for uniform sources on binary asymmetric channels with various structured classes

of index assignments. In [5] it was shown that for the uniformsource and uniform quan-

tizer the mean squared error resulting from a randomly chosen index assignment was, on

average, equal in the limit of largen to that of the worst possible index assignment. In

this sense the result showed that randomly chosen index assignments are asymptotically

bad. A number of papers have also studied algorithmic techniques for designing good

index assignments for particular sources and channels (seethe citations in [6, p. 2372]).

While index assignments can improve the robustness of quantizers designed for

noiseless channels to the degradation caused by channel noise, another low-complexity

approach is to use quantizers whose encoders and/or decoders are designed for the chan-

nel’s statistical behavior. It is known that an optimal quantizer for a noiseless channel

must satisfy what are known as “nearest neighbor” and “centroid” conditions on its

encoder and decoder, respectively [2]. For discrete memoryless channels it is known

that an optimal quantizer must satisfy what we call “weighted nearest neighbor” and

“weighted centroid” conditions on its encoder and decoder,respectively (see [11] for

example). Even for uniform scalar sources, the resulting quantizers in general do not

have uniform encoding cells nor equally spaced reproduction codepoints. In fact very

little is presently understood analytically about quantizers for noisy channels beyond the
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Natural Binary Code optimality results previously mentioned for uniform quantizers.

In the present paper, we attempt to move a step closer towardsunderstanding

optimal quantization for noisy channels by examining the structure of quantizers with

uniform encoders and channel optimized decoders (i.e. thatsatisfy the weighted centroid

condition), for uniform sources on[0, 1] and for certain previously studied index assign-

ments. In particular, we study the high resolution distribution of codepoints for such

quantizers and the resulting distortions. Slightly more general, but notationally cumber-

some results could also be easily obtained from our results by allowing the source to be

confined to any bounded interval instead of just[0, 1].

An important tool in analyzing the performance of quantizers is the concept of

point density functions. Point density functions characterize the high resolution distrib-

ution of scalar quantizer codepoints. As a result, they provide insight about the asymp-

totic behavior of scalar quantizer codebooks and encoding cells. Point density functions

also are useful in analyzing the distortion of quantizers. For example, Bennett’s inte-

gral [2, p.163] gives the average distortion in the high resolution case for a nonuniform

quantizer in terms of a point density function, source distribution, and size of the quan-

tizer codebook (see [6] for more details). For uniform quantizers, the computation of

a point density function is trivial. For nonuniform quantizers however, point density

functions are not always guaranteed to exist, and when they do, their computation can

be difficult.

Point density functions depend on the quantizer decoders. Channel optimized

quantizer decoders, in turn, depend on the source, the quantizer encoder, the channel,

and the index assignment. For this paper, we assume a uniformsource on [0,1], a uni-

form quantizer encoder, a channel optimized quantizer decoder, and a binary symmetric

channel with bit error probabilityε. An index assignment maps source codewords to

channel codewords. The quantizer has2n encoding cells, and index assignments are

one-to-one maps from the index of an encoding cell to a binaryword of lengthn. These
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words are transmitted across the channel and decoded according to the weighted cen-

troid condition.

Certain results we obtain are somewhat counter-intuitive.For example, we show

that for a binary symmetric channel with bit error probability ε, quantizers using the Nat-

ural Binary Code index assignment andn bits of resolution have codepoints uniformly

distributed on the interval[ε + δ, 1 − ε − δ] whereδ = (1 − 2ε)/2n+1. This is peculiar

in light of the fact that the source is uniformly distributedon the interval[0, 1], and yet

asymptotically asn → ∞ no codepoints are located within a distance ofε from 0 or

1. The lack of codepoints in regions of positive source probability is due to the reduc-

tion in average distortion that results from moving codepoints closer to the source mean

(by the weighted centroid condition), to avoid large jumps in Euclidean distance from

channel errors. The weighted centroid condition dictates this movement of codepoints

to minimize average distortion for a given quantizer encoder. A similar result occurs for

the Folded Binary Code.

For the Gray Code index assignment, we show that in fact no point density func-

tion exists. In other words, the location of codepoints cannot be described according to

a point density function asn → ∞. The structure of the Gray Code simply does not

allow the histogram of codepoint locations to converge to a smooth function in the limit

of high resolution.

We also show that asymptotically, almost all index assignments give rise to quan-

tizers which have almost all of their codepoints clustered very close to the source’s mean

value (i.e.1/2). Thus almost all index assignments are bad. Asn grows, the clustering

of codepoints becomes tighter and tighter. This contrasts with the Natural Binary Code

and the Folded Binary Code cases where the codepoints remainuniformly distributed

on proper subsets of[0, 1] no matter how largen becomes. An additional curiosity we

show is that among all possible index assignments, the Natural Binary Code is optimal

despite its lack of codepoints withinε of 0 or 1.
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Our main results for quantizers with uniform encoders and channel optimized

decoders are the following. First, we show that the Natural Binary Code index assign-

ment yields a uniform point density function on the interval(ε, 1 − ε) (Theorem 2.4),

the Folded Binary Code index assignment yields a uniform point density function on a

union of two proper subintervals of[0, 1] (Theorem 2.6), the Gray Code index assign-

ment does not yield a point density function (Theorem 2.16),and an arbitrarily large

fraction of all index assignments have an arbitrarily largefraction of codepoints arbi-

trarily close to the source mean asn → ∞ (Theorem 2.20). Then we extend a result

in [5] by showing that most index assignments are asymptotically bad (Theorem 2.22),

and we extend results in [4], [8], and [9] by computing the mean squared error result-

ing from the Natural Binary Code (Theorem 2.24), the Folded Binary Code (Theorem

2.26), the Gray Code (Theorem 2.28), and a randomly chosen index assignment (Theo-

rem 2.30). As comparisons, we state previously known mean squared error formulas for

channel unoptimized decoders (i.e. that satisfy the centroid condition), for the Natural

Binary Code (Theorem 2.23), the Folded Binary Code (Theorem2.25), the Gray Code

(Theorem 2.27), and for a randomly chosen index assignment (Theorem 2.29). Finally

we extend the (uniform scalar quantizer) proof in [3] by showing that the Natural Binary

Code is an optimal index assignment (Theorem 2.32).

The paper is organized as follows. Section 2.2 gives definitions and notation.

Section 2.3 gives Natural Binary Code results, Section 2.4 gives Folded Binary Code

results, Section 2.5 gives Gray Code results, Section 2.6 considers arbitrarily selected

index assignments, and Section 2.7 gives distortion analysis.
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2.2 Preliminaries

A raten quantizeron [0, 1] is a mapping

Q : [0, 1] −→ {yn(0), yn(1), . . . , yn(2
n − 1)}.

The real-valued quantitiesyn(i) are calledcodepointsand the set{yn(0), . . . , yn(2n−1)}

is called acodebook. For a noiseless channel, the quantizerQ is the composition of a

quantizer encoderand aquantizer decoder. These are respectively mappings

Qe : [0, 1] −→ {0, 1, . . . , 2n − 1}

Qd : {0, 1, . . . , 2n − 1} −→ {yn(0), yn(1), . . . , yn(2n − 1)}

such thatQd(i) = yn(i) for all i. For eachi the setQ−1(yn(i)) = Q−1
e (Q−1

d (yn(i))) is

called theith encodingcell. The quantizer encoder is said to beuniformif for eachi,

Q−1(yn(i)) ⊇ (i2−n, (i + 1)2−n).

Thenearest neighborcells of a raten quantizer are the sets

Rn(i) = {x : |yn(i) − x| < |yn(j) − x|, ∀j 6= i}

for 0 ≤ i ≤ 2n − 1. Let m denote Lebesgue measure and for eachi let

µn(i) = m(Rn(i)).

A quantizer’s encoder is said to satisfy thenearest neighbor conditionif for eachi,

Q−1(yn(i)) ⊇ Rn(i).
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That is, its encoding cells are essentially nearest neighbor cells (boundary points can be

assigned arbitrarily).

For a givenn, i, and source random variableX, thecentroidof theith cell of the

quantizerQ is the conditional mean

cn(i) = E[X|Q(X) = yn(i)].

The quantizer decoder is said to satisfy thecentroid conditionif the codepoints satisfy

yn(i) = cn(i)

for all i. A quantizer isuniform if the encoder is uniform and for eachi the decoder

codepointyn(i) is the midpoint of the cellQ−1(yn(i)). It is known that if a quantizer

minimizes the mean squared error for a given source and a noiseless channel, then it

satisfies the nearest neighbor and centroid conditions [2].In particular, if the source is

uniform, then a uniform quantizer satisfies the nearest neighbor and centroid conditions.

For a raten quantizer, anindex assignmentπn is a permutation of the set

{0, 1, . . . , 2n−1}. LetS2n denote the set of all2n! such permutations. For a noisy chan-

nel, a random variableX ∈ [0, 1] is quantized by transmitting the indexI = πn(Qe(X))

across the channel, receiving indexJ from the channel, and then decoding the codepoint

yn(π−1
n (J)) = Qd(π

−1
n (J)). We impose the following monotonicity constraint on quan-

tizer encoders in order to be able to unambiguously refer to certain index assignments:

For all s, t ∈ [0, 1], if s < t, thenQe(s) ≤ Qe(t). Themean squared error(MSE) is

defined as

D = E
[
(X −Qd(π

−1
n (J)))2

]
.

The random indexJ is a function of the source random variableX, the randomness in

the channel, and the deterministic functionsQe andπn.
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An alternative approach would be to view the quantizer encoder as the compo-

sition πn · Qe and the quantizer decoder as the compositionQd · π−1
n , by relaxing the

monotonicity assumption made above. This would remove the role of index assignments

from the study of quantizers for noisy channels. However, weretain these encoder and

decoder decompositions, as a convenient way to isolate the effects of index assignments,

given known quantizer encoders and decoders.

Assume a binary symmetric channel with bit error probability ε. Denote the

probability that indexj was received, given that indexi was sent byp(j|i) = εHn(i,j)(1−
ε)n−Hn(i,j) for 0 ≤ ε ≤ 1/2, whereHn(i, j) is the Hamming distance betweenn-bit

binary wordsi andj. Let q(i|j) denote the probability that indexi was sent, given that

indexj was received.

For a given sourceX, channelp(·|·), index assignmentπn, and quantizer en-

coder, the quantizer decoder is said to satisfy theweighted centroid conditionif the

codepoints satisfy

yn(j) =

2n−1∑

i=0

cn(i)q(πn(i)|πn(j)).

Throughout this paper we assume a uniform quantizer encoder, so the centroids of the

encoder cells are given by

cn(i) = (i + (1/2))2−n

for 0 ≤ i ≤ 2n − 1. Since the source is uniform and the encoder cells are each oflength

2−n, we know thatp(j|i) = q(i|j) for all i andj. Hence the weighted centroid condition

implies that

yn(j) =
2n−1∑

i=0

cn(i)p(πn(j)|πn(i))
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=
2n−1∑

i=0

i + (1/2)

2n
εHn(πn(i),πn(j))(1 − ε)n−Hn(πn(i),πn(j)).

For a given quantizer encoder and index assignment, we say the quantizer decoder is

channel optimizedif it satisfies the weighted centroid condition.

Notice that if the centroid condition is assumed, then the quantizer decoderQd

does not depend on the index assignment, even though the meansquared error does.

In contrast, if the weighted centroid condition is assumed,then the quantizer decoder

Qd does depend on the index assignment, as does the mean squarederror. Thus, un-

der the centroid condition, minimizing the mean squared error over all possible index

assignments is carried out for a fixed quantizer decoder. However, under the weighted

centroid condition, minimizing the mean squared error overall possible index assign-

ments involves altering the quantizer decoder for each new index assignment.

For any setA, let the indicator functionIA(x) of A be

IA(x) =







1 if x ∈ A

0 if x /∈ A
.

For eachn and each index assignmentπn ∈ S2n , define the functionλ(n)
πn : [0, 1] →

[0,∞) by

λ(n)
πn

(x) =

2n−1∑

i=0

1

2nµn(i)
IRn(i)(x).

For a sequenceπn ∈ S2n (for n = 1, 2, . . .) of index assignments, if there exists a

functionλ such that

λ(x) = lim
n→∞

λ(n)
πn

(x)

for almost allx ∈ [0, 1] and
∫ 1

0
λ(x) dx = 1, thenλ is said to be apoint density function

with respect to{πn}.
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The following lemma is a result of the fact that index assignments are permuta-

tions.

Lemma 2.1. For anyn and any index assignmentπn ∈ S2n ,

2n−1∑

j=0

(1 − ε)n−Hn(πn(i),πn(j))εHn(πn(i),πn(j)) = 1

for 0 ≤ j ≤ 2n − 1.

Let adecoder optimized uniform quantizerdenote a raten quantizer with a uni-

form encoder on[0, 1] and a channel optimized decoder, along with a uniform source

on [0, 1], and a binary symmetric channel with bit error probabilityε. Let a channel

unoptimized uniform quantizerdenote a raten uniform quantizer on[0, 1], along with a

uniform source on[0, 1], and a binary symmetric channel with bit error probabilityε.

2.3 Natural Binary Code Index Assignment

For eachn, theNatural Binary Code(NBC) is the index assignment defined by

π(NBC)
n (i) = i for 0 ≤ i ≤ 2n − 1.

The following lemma is easy to prove and is used in the proof ofProposition 2.3.

Lemma 2.2.

Hn+1(i, j) = Hn(i, j) if 0 ≤ i, j ≤ 2n − 1 (2.1)

Hn+1(i + 2n, j) = Hn(i, j) + 1 if 0 ≤ i, j ≤ 2n − 1 (2.2)

Hn+1(i, j) = Hn(i, j − 2n) + 1 if 0 ≤ i ≤ 2n − 1, 2n ≤ j ≤ 2n+1 − 1 (2.3)

Hn+1(i, j) = Hn(i − 2n, j − 2n) if 2n ≤ i, j ≤ 2n+1 − 1. (2.4)
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Proposition 2.3. The codepoints of a decoder optimized uniform quantizer with the

Natural Binary Code index assignment are, for0 ≤ j ≤ 2n − 1

yn(j) = ε + (1 − 2ε)cn(j). (2.5)

Proof. We use induction onn. The weighted centroid condition implies that

yn(j) = 2−n−1
2n−1∑

j=0

(1 − ε)n−Hn(i,j)εHn(i,j)(2i + 1). (2.6)

In particular, (2.6) gives

y0(0) = 1/2

which satisfies (2.5). Now assume (2.5) is true forn and consider two cases forn + 1.

If 0 ≤ j ≤ 2n − 1, then

yn+1(j)

= 2−n−2

2n+1−1∑

j=0

(1 − ε)n+1−Hn+1(i,j)εHn+1(i,j)(2i + 1)

= (1 − ε)2−n−2
2n−1∑

j=0

(1 − ε)n−Hn(i,j)εHn(i,j)(2i + 1)

+ 2−n−2

2n+1−1∑

j=2n

(1 − ε)n+1−Hn+1(i,j)εHn+1(i,j)(2i + 1) (2.7)

=
(1 − ε)yn(j)

2
+ 2−n−2

2n−1∑

j=0

(1 − ε)n−Hn(i,j)εHn(i,j)+1(2i + 1 + 2n+1) (2.8)

=
(1 − ε)yn(j)

2
+

εyn(j)

2
+

ε

2
(2.9)

= ε + (1 − 2ε)cn+1(j) (2.10)
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where the first sum in (2.7) and the second sum in (2.8) follow from (2.1) and (2.2),

respectively, (2.9) follows from Lemma 2.1, and (2.10) follows from the induction hy-

pothesis.

If 2n ≤ j ≤ 2n+1 − 1, then

yn+1(j) = 2−n−2
2n+1−1∑

j=0

(1 − ε)n+1−Hn+1(i,j)εHn+1(i,j)(2i + 1)

= ε 2−n−2

2n−1∑

j=0

(1 − ε)n−Hn(i,j−2n)εHn(i,j−2n)(2i + 1)

+ 2−n−2
2n+1−1∑

j=2n

(1 − ε)n+1−Hn(i−2n,j−2n)εHn(i−2n,j−2n)(2i + 1) (2.11)

=
yn(j − 2n)ε

2
+ 2−n−2

2n−1∑

j=0

(1 − ε)n+1−Hn(i,j−2n)εHn(i,j−2n)(2i + 1 + 2n+1)

=
yn(j − 2n)ε

2
+

yn(j − 2n)(1 − ε)

2
+

(1 − ε)

2
(2.12)

= ε + (1 − 2ε)cn+1(j) (2.13)

where the sums in (2.11) follow from (2.3) and (2.4), respectively, (2.12) follows from

Lemma 2.1, and (2.13) follows from the induction hypothesis. 2

The following theorem shows that with the Natural Binary Code, the quantizer

codepoints are uniformly distributed on a proper subinterval in the source’s support

region, in the limit of high resolution. As the channel improves (i.e. asε → 0), the point

density function approaches a uniform distribution on[0, 1].

Theorem 2.4. A sequence of decoder optimized uniform quantizers with theNatural

Binary Code index assignment has a point density function given by

λ(x) =







1
1−2ε

if ε < x < 1 − ε

0 otherwise
.
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Proof. Let

λ(x) =







1
1−2ε

if ε < x < 1 − ε

0 if 0 ≤ x ≤ ε or (1 − ε) ≤ x ≤ 1.

From (2.5), the codepoints satisfyyn(j +1)− yn(j) = (1− 2ε)2−n and thus are equally

spaced apart. Also,

yn(0) = ε + (1 − 2ε) 2−n−1

yn(2n − 1) = ε + (1 − 2ε)
(
1 − 2−n−1

)
.

Thus,

µn(i) =







(1 − 2ε) 2−n if 1 ≤ i ≤ 2n − 2

ε + (1 − 2ε) 2−n if i = 0 or i = 2n − 1

and therefore

λ
(n)

π
(NBC)
n

(x) =







1
1−2ε

if ε + (1 − 2ε)2−n ≤ x < (1 − ε) − (1 − 2ε)2−n

1
2nε+(1−2ε)

if 0 ≤ x < ε + (1 − 2ε)2−n

or (1 − ε) − (1 − 2ε)2−n ≤ x ≤ 1

−→ λ(x) asn → ∞.

2
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2.4 Folded Binary Code Index Assignment

For eachn, theFolded Binary Code(FBC) is the index assignment defined by

π(FBC)
n (i) =







2n−1 − 1 − i if 0 ≤ i ≤ 2n−1 − 1

i if 2n−1 ≤ i ≤ 2n − 1.

The FBC is closely related to the NBC and has somewhat similarproperties for decoder

optimized uniform quantizers, as shown by Proposition 2.5 and Theorem 2.6. The proofs

of Proposition 2.5 and Theorem 2.6 are similar to those of Proposition 2.3 and Theorem

2.4, respectively, and are therefore omitted for brevity.

Proposition 2.5. The codepoints of a decoder optimized uniform quantizer with the

Folded Binary Code index assignment are

yn(j) =







3ε−2ε2

2
+ (1 − 2ε)2cn(j) if 0 ≤ j ≤ 2n−1 − 1

5ε−6ε2

2
+ (1 − 2ε)2cn(j) if 2n−1 ≤ j ≤ 2n − 1.

The following theorem shows that with the Folded Binary Code, the quantizer

codepoints are uniformly distributed on two proper subintervals of the source’s support

region, in the limit of high resolution. As the channel improves (i.e. asε → 0), the point

density function approaches a uniform distribution on[0, 1].

Theorem 2.6. A sequence of decoder optimized uniform quantizers with theFolded

Binary Code index assignment has a point density function given by

λ(x) =







1
(1−2ε)2

if 3ε−2ε2

2
< x < 1−ε+2ε2

2
or 1+ε−2ε2

2
< x < 1 −

(
3ε−2ε2

2

)

0 otherwise
.
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2.5 Gray Code Index Assignment

For eachn, let π(GC)
n denote the Gray Code (GC) index assignment, recursively

defined by

π
(GC)
1 (0) = 0

π
(GC)
1 (1) = 1

π
(GC)
n+1 (i) =







π
(GC)
n (i) if 0 ≤ i ≤ 2n − 1

π
(GC)
n (2n+1 − 1 − i) + 2n if 2n ≤ i ≤ 2n+1 − 1.

Define the quantity

Ĥn(i, j) = H(π(GC)
n (i), π(GC)

n (j)).

The definition of the Gray Code directly implies the following lemma.

Lemma 2.7.

Ĥn+1(i, j) = Ĥn(i, j) if 0 ≤ i, j ≤ 2n − 1 (2.14)

Ĥn+1(i + 2n, j) = Ĥn(2
n − 1 − i, j) + 1 if 0 ≤ i, j ≤ 2n − 1 (2.15)

Ĥn(i, j) = Ĥn(2n − 1 − i, 2n − 1 − j) if







2n−1 ≤ j ≤ 2n − 1

0 ≤ i ≤ 2n − 1.
(2.16)

Lemma 2.8. The codepoints of a decoder optimized uniform quantizer with the Gray

Code index assignment satisfy

yn(j) = 1 − 2−n−1

2n−1∑

j=0

(1 − ε)n−Ĥn(2n−1−i,j)εĤn(2n−1−i,j)(2i + 1)

for 0 ≤ j ≤ 2n − 1.
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Proof.

2−n−1

2n−1∑

j=0

(1 − ε)n−Ĥn(2n−1−i,j)εĤn(2n−1−i,j)(2i + 1)

=
1

2
+ 2−n−1

2n−1∑

j=0

(1 − ε)n−Ĥn(2n−1−i,j)εĤn(2n−1−i,j)(2i − (2n − 1)) (2.17)

= 1 −
[

1

2
− 2−n−1

2n−1∑

i=0

(1 − ε)n−Ĥn(i,j)εĤn(i,j) (2(2n − 1 − i) − (2n − 1))

]

= 1 −
[

2−n−1
2n−1∑

i=0

(1 − ε)n−Ĥn(i,j)εĤn(i,j)(2i + 1)

]

(2.18)

= 1 − yn(j) (2.19)

where (2.17) and (2.18) follow from Lemma 2.1. 2

Corollary 2.9. The codepoints of a decoder optimized uniform quantizer with the Gray

Code index assignment satisfy

yn(j) = 1 − yn(2
n − 1 − j)

for 2n−1 ≤ j ≤ 2n − 1.

Proof.

yn(j) = 2−n−1
2n−1∑

j=0

(1 − ε)n−Ĥn(i,j)εĤn(i,j)(2i + 1)

= 2−n−1

2n−1∑

j=0

(1 − ε)n−Ĥn(2n−1−i,2n−1−j)εĤn(2n−1−i,2n−1−j)(2i + 1)(2.20)

= 1 − yn(2n − 1 − j) (2.21)

where (2.20) follows from (2.16), and (2.21) follows from Lemma 2.8. 2
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For 0 ≤ j ≤ 2n − 1 and1 ≤ i ≤ n, let bn(j, i) be theith most significant bit of

then-bit binary representation ofj. Then

j =

n∑

i=1

bn(j, i)2n−i

and it follows that for0 ≤ j ≤ 2n − 1,

bn(j, i) = bn+1(j, i + 1) = 1 − bn(2n − 1 − j, i). (2.22)

Proposition 2.10. The codepoints of a decoder optimized uniform quantizer with the

Gray Code index assignment are

yn(j) =
1

2
+

1

2

n∑

i=1

(−1)bn(j,i)+1

(
1

2
− ε

)i

(2.23)

for 0 ≤ j ≤ 2n − 1.

Proof. We use induction onn. The weighted centroid condition implies that for allj,

yn(j) = 2−n−1
2n−1∑

j=0

(1 − ε)n−Ĥn(i,j)εĤn(i,j)(2i + 1).

Forn = 0 this reduces to

y0(0) = 1/2

which satisfies (2.23). Now assume Proposition 2.10 is true for n and consider two cases

for n + 1.

If 0 ≤ j ≤ 2n − 1, then

yn+1(j)
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= 2−n−2

2n+1−1∑

j=0

(1 − ε)n+1−Ĥn+1(i,j)εĤn+1(i,j)(2i + 1)

= (1 − ε)2−n−2
2n−1∑

j=0

(1 − ε)n−Ĥn(i,j)εĤn(i,j)(2i + 1)

+ 2−n−2
2n−1∑

j=0

(1 − ε)n−Ĥn(2n−1−i,j)εĤn(2n−1−i,j)+1(2i + 1 + 2n+1) (2.24)

=
(1 − ε)yn(j)

2
+

ε[2n+1 + 2n+1(1 − yn(j))]

2n+2
(2.25)

=
1

2

(
1

2
+ ε

)

+

(
1

2
− ε

)

yn(j) − 1

2

(
1

2
− ε

)

=
1

2

(
1

2
+ ε

)

+

(
1

2
− ε

)[

1

2
+

1

2

n∑

i=1

(−1)bn(j,i)+1

(
1

2
− ε

)i
]

− 1

2

(
1

2
− ε

)

(2.26)

=
1

2
+

1

2

[

−
(

1

2
− ε

)

+
n+1∑

i=2

(−1)bn+1(j,i)+1

(
1

2
− ε

)i
]

(2.27)

=
1

2
+

1

2

n+1∑

i=1

(−1)bn+1(j,i)+1

(
1

2
− ε

)i

(2.28)

where the sums in (2.24) follow from (2.14) and (2.15) respectively, (2.25) follows from

Lemmas 2.1 and 2.8, (2.26) follows from the induction hypothesis, (2.27) follows from

(2.22), and (2.28) follows from the fact thatbn+1(j, 1) = 0 whenever0 ≤ j ≤ 2n − 1.

If 2n ≤ j ≤ 2n+1 − 1, then

yn+1(j) = 1 −
(

1

2
+

1

2

n+1∑

i=1

(−1)bn+1(2n+1−1−j,i)+1

(
1

2
− ε

)i
)

(2.29)

=
1

2
+

1

2

n+1∑

i=1

(−1)bn+1(j,i)+1

(
1

2
− ε

)i

(2.30)

where (2.29) follows from Corollary 2.9 and (2.28), and (2.30) follows from (2.22). 2

To show that no point density function arises from the Gray Code index assign-
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ment, we will show thatλ(x) = limn→∞ λ
(n)

π
(GC)
n

(x) = 0 almost everywhere on[0, 1],

and hence
∫ 1

0
λ(x)dx 6= 1. To simplify notation, letλ(n)

π
(GC)
n

be denoted byλn.

First, several preliminary results are necessary. In orderto determine the asymp-

totic behavior ofλn we examine the values ofµn(i) and the relationship ofRn(i) to

Rn−1(bi/2c). For any fixed value ofn there are groups of nearest neighbor cells with

the same length. These groups and the properties of the cellsin them are key to the

subsequent results.

Lemma 2.12 describes each of these groups by the number of cells in the group

and their common length. This is done by identifying a cell ineach group whose index

is of the formi = 2n−k − 1 and considering its length. Lemma 2.11 shows that the

codepoints are indexed in increasing order, and is used in the proof of Lemma 2.12.

Lemma 2.11. The codepoints of a decoder optimized uniform quantizer with the Gray

Code index assignment satisfyyn(j + 1) > yn(j) whenever0 ≤ j ≤ 2n − 2.

Proof. Let k = min{k′ : bn(j, i) = 1, ∀i ≥ k′}. Then the binary representation ofj

ends in exactlyn − k + 1 ones, and therefore

bn(j, k − 1) = 0

bn(j, i) = 1 for i ≥ k

bn(j + 1, i) = bn(j, i) for 1 ≤ i ≤ k − 2

bn(j + 1, k − 1) = 1

bn(j + 1, i) = 0 for i ≥ k.

Thus, from (2.23), we have

yn(j + 1) − yn(j)

=
1

2

n∑

i=1

[
(−1)bn(j,i) − (−1)bn(j+1,i)

]
(

1

2
− ε

)i
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=
1

2

n∑

i=k

[
(−1)1 − (−1)0

]
(

1

2
− ε

)i

+
1

2

[
(−1)0 − (−1)1

]
(

1

2
− ε

)k−1

=

(
1

2
− ε

)k−1

−
n∑

i=k

(
1

2
− ε

)i

> 0.

2

Lemma 2.12.For 1 ≤ k ≤ n−1, a decoder optimized uniform quantizer with the Gray

Code index assignment has2k nearest neighbor cells whose lengths equalµn(2n−k−1).

Proof. By Lemma 2.11, the codepointsyn(j) are increasing inj. Thus, for1 ≤ i ≤
2n − 2,

µn(i) =
1

2
(yn(i + 1) − yn(i − 1)) .

Note that for1 ≤ k ≤ n − 1, the binary representation of2n−k is 00 . . . 01
︸ ︷︷ ︸

k

00 . . . 00
︸ ︷︷ ︸

n−k

and the binary representation of2n−k − 2 is 00 . . . 00
︸ ︷︷ ︸

k

11 . . . 10
︸ ︷︷ ︸

n−k

, which agree on the first

k − 1 digits and on the last digit. By (2.23), the difference between theith andjth

codepoints depends only on the locations in the binary representations ofi andj where

they differ. For allw ∈ {0, . . . , 2k−1 − 1} andb ∈ {0, 1}, the binary representations of

2n−k + w2n−k+1 + b and2n−k − 2 + w2n−k+1 + b agree in exactly the same locations

that2n−k and2n−k − 2 agree in, and hence

µn(2n−k − 1) =
1

2

(
yn(2n−k) − yn(2n−k − 2)

)

=
1

2

(
yn(2n−k + w2n−k+1 + b) − yn(2n−k − 2 + w2n−k+1 + b)

)
.

The claimed2k nearest neighbor cells are thusR(2n−k − 1 + w2n−k+1 + b). 2
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The next lemma computesµn(i) for 0 ≤ i ≤ 2n − 1. By Lemma 2.12, it suffices

to consider the lengths ofRn(0), Rn(2n − 1), andRn(2n−k − 1) for 1 ≤ k ≤ n − 1.

Lemma 2.13. For a decoder optimized uniform quantizer with the Gray Codeindex

assignment,

µn(0) = µn(2n − 1) =
ε + 1

2
(1

2
− ε)n

1
2

+ ε
(2.31)

and for1 ≤ k ≤ n − 1,

µn(2n−k − 1) =
ε(1

2
− ε)k + 1

2
(1

2
− ε)n

1
2

+ ε
.

Proof. By Corollary 2.9, Lemma 2.11, and the definitions ofRn(0) andRn(2n − 1),

µn(2
n − 1) = 1 − 1

2
(yn(2

n − 2) + yn(2
n − 1))

= 1 − 1

2
(1 − yn(1) + 1 − yn(0))

= µn(0).

Since then-bit binary representations of0 and1 differ only in the least significant bit,

µn(0) =
1

2
(yn(0) + yn(1))

=
1

2
+

1

2

n−1∑

i=1

(−1)bn(0,i)+1

(
1

2
− ε

)i

(2.32)

=
1

2
− 1

2

(
1 − (1

2
− ε)n

1
2

+ ε
− 1

)

=
ε + 1

2
(1

2
− ε)n

1
2

+ ε

where (2.32) follows from (2.23).

Recall from the proof of Lemma 2.12 thatµn(2n−k − 1) = 1
2
(yn(2n−k) −

yn(2n−k − 2)) and that the binary representations of2n−k and 2n−k − 2 are
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00 . . . 01
︸ ︷︷ ︸

k

00 . . . 00
︸ ︷︷ ︸

n−k

and00 . . . 00
︸ ︷︷ ︸

k

11 . . . 10
︸ ︷︷ ︸

n−k

respectively. Combining this information with

(2.23) gives

µn(2n−k − 1)

=
1

2
(yn(2

n−k) − yn(2
n−k − 2))

=
1

4

n∑

i=1

(−1)bn(2n−k ,i)+1

(
1

2
− ε

)i

− 1

4

n∑

i=1

(−1)bn(2n−k−2,i)+1

(
1

2
− ε

)i

=
1

2

(
1

2
− ε

)k

− 1

2

n−1∑

i=k+1

(
1

2
− ε

)i

=
ε(1

2
− ε)k + 1

2
(1

2
− ε)n

1
2

+ ε
.

2

The next result follows directly from Lemma 2.13 and will be important in de-

termining the behavior ofλn asn → ∞.

Corollary 2.14. For a decoder optimized uniform quantizer with the Gray Codeindex

assignment,

lim
n→∞

1

2nµn(0)
= lim

n→∞

1

2nµn(2n − 1)
= 0

and for each fixedk ≥ 1,

lim
n→∞

1

2nµn(2n−k − 1)
= 0. (2.33)

Define the sets

En,k =
⋃

i:µn(i)=µn(2n−k−1)

Rn(i) for 1 ≤ k ≤ n − 1

Fn = Rn(0) ∪ Rn(2n − 1) for n ≥ 1

and note thatEn,k andFn are disjoint for allk andn.
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Lemma 2.15. For a decoder optimized uniform quantizer with the Gray Codeindex

assignment,

(i) R1(0) ⊃ R2(0) ⊃ R3(0) ⊃ · · ·

(ii) R1(2
1 − 1) ⊃ R2(2

2 − 1) ⊃ R3(2
3 − 1) ⊃ · · ·

(iii) F1 ⊃ F2 ⊃ F3 ⊃ · · ·

(iv) ∀ k ≥ 1 , Ek+1,k ⊃ Ek+2,k ⊃ Ek+3,k ⊃ · · ·

(v) m

(
∞⋂

n=k+1

En,k

)

=
ε(1 − 2ε)k

1
2

+ ε
.

Proof. By Lemma 2.13,

yn(0) + yn(1)

2
=

ε + 1
2
(1

2
− ε)n

1
2

+ ε

which is decreasing inn. This proves part (i) and also shows that (using Corollary 2.9)

yn(2
n − 2) + yn(2

n − 1)

2
=

1 − yn(1) + 1 − yn(0)

2

is increasing inn, thus proving part (ii). Part (iii) follows directly from parts (i) and (ii).

To prove part (iv), first note that (2.23) implies that for0 ≤ i ≤ 2n−1 − 1,

yn(2i) = yn−1(i) −
1

2

(
1

2
− ε

)n

yn(2i + 1) = yn−1(i) +
1

2

(
1

2
− ε

)n

.

Also assume without loss of generality that

{x : |yn(i) − x| = |yn(i + 1) − x|} ⊆ Rn(i + 1).
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Suppose1 ≤ i ≤ 2n − 2 andn ≥ 2.

If i is even (sayi = 2j), then

Rn(i) = Rn(2j) =

[
yn(2(j − 1) + 1) + yn(2j)

2
,
yn(2j) + yn(2j + 1)

2

)

=

[
yn−1(j − 1) + yn−1(j)

2
, yn−1(j)

)

⊂ Rn−1(j) = Rn−1(i/2) (2.34)

where (2.34) follows from the definition ofRn−1(i).

If i is odd (sayi = 2j + 1), then

Rn(i) = Rn(2j + 1) =

[
yn(2j) + yn(2j + 1)

2
,
yn(2j + 1) + yn(2j + 2)

2

)

=

[

yn−1(j),
yn−1(j) + yn−1(j + 1)

2

)

⊂ Rn−1(j) = Rn−1((i − 1)/2) (2.35)

where (2.35) follows from the definition ofRn−1(i).

For each cellRn(i) in En,k with 1 ≤ k ≤ n−1, the proof of Lemma 2.12 shows

that i is of the formi = 2n−k − 1 + w2n−k+1 + b wherew ∈ {0, . . . , 2k−1 − 1} and

b ∈ {0, 1}. If Rn(i) ⊂ En,k andi is even, thenb = 1 and

i = 2n−k + w2n−k+1

or equivalently
i

2
= 2(n−1)−k + w2(n−1)−k+1

which impliesRn−1(i/2) ⊂ En−1,k. (2.34) shows thatRn(i) ⊂ Rn−1(i/2), and hence

Rn(i) ⊂ En−1,k.
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Likewise if Rn(i) ⊂ En,k andi is odd, thenb = 0 and

i = 2n−k − 1 + w2n−k+1

or equivalently
(i − 1)

2
= 2(n−1)−k − 1 + w2(n−1)−k+1

which impliesRn−1((i − 1)/2) ⊂ En−1,k. (2.35) shows thatRn(i) ⊂ Rn−1((i − 1)/2),

and henceRn(i) ⊂ En−1,k. Therefore,

En,k =
⋃

i:µn(i)=µn(2n−k−1)

Rn(i) ⊂ En−1,k

proving part (iv).

Since{En,k}∞n=k+1 is a decreasing sequence of bounded sets (for each fixedk)

by part (iv),

m

(
∞⋂

n=k+1

En,k

)

= lim
n→∞

m(En,k)

= lim
n→∞

m




⋃

i:µn(i)=µn(2n−k−1)

Rn(i)





= lim
n→∞

∑

i:µn(i)=µn(2n−k−1)

m(Rn(i))

= lim
n→∞

2k

(
ε(1

2
− ε)k + 1

2
(1

2
− ε)n

1
2

+ ε

)

(2.36)

=
ε(1 − 2ε)k

1
2

+ ε
,

where (2.36) follows from Lemmas 2.12 and 2.13. This proves part (v). 2

The following theorem shows that the sequence of functionsλ
(n)

π
(GC)
n

does not

converge to a point density function asn → ∞.
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Theorem 2.16.A sequence of decoder optimized uniform quantizers with theGray Code

index assignment does not have a point density function.

Proof. We construct disjoint setsEk ⊂ [0, 1] whose union has measure1 and for which

limn→∞ λn(x) = 0 for all x ∈ Ek and for allk.

Let E0 =

∞⋂

n=1

Fn. Then for anyn and anyx ∈ E0, eitherx ∈ Rn(0) or x ∈

Rn(2n − 1), and thereforeλn(x) = 1/(2nµn(0)) = 1/(2nµn(2n − 1)) by Lemma 2.13.

Hence for anyx ∈ E0, limn→∞ λn(x) = limn→∞ 1/(2nµn(0)) = 0, by Corollary 2.14.

Let Ek =

∞⋂

n=k+1

En,k for k ≥ 1. Then for anyn andk such thatn ≥ k + 1

and for anyx ∈ Ek, there exists ani such thatx ∈ Rn(i) andµn(i) = µn(2n−k − 1),

which impliesλn(x) = 1/(2nµn(2n−k − 1)). Hence for anyx ∈ Ek, limn→∞ λn(x) =

limn→∞ 1/(2nµn(2n−k − 1)) = 0, by Corollary 2.14.

Lemma 2.15(v) shows thatEk is nonempty for allk ≥ 1. It will be shown below

thatE0 is nonempty.

E0 andEk are disjoint for allk ≥ 1, sinceEn,k andFn are disjoint for allk and

n. The setsEk are disjoint fork ≥ 1, for otherwiseEn,i andEn,j would intersect for

somen and somei 6= j. Therefore,

m

(
∞⋃

k=0

Ek

)

=
∞∑

k=0

m(Ek)

= m

(
∞⋂

n=1

Fn

)

+
∞∑

k=1

m

(
∞⋂

n=k+1

En,k

)

= lim
n→∞

m(Fn) +

∞∑

k=1

ε(1 − 2ε)k

1
2

+ ε
(2.37)

=
2ε

1
2

+ ε
+

ε
1
2

+ ε

(
1

2ε
− 1

)

(2.38)

= 1

where the first term in (2.37) follows from Lemma 2.15(iii) and the boundedness of
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Rn(0) andRn(2n − 1), the second term in (2.37) follows from Lemma 2.15(v), and the

first term in (2.38) follows from (2.31). Thus the set{x ∈ [0, 1] : limn→∞ λn(x) 6= 0}

has measure0 since it is a subset of(∪∞
k=0Ek)

c ∩ [0, 1]. 2

2.6 Randomly Chosen Index Assignments

Suppose for eachn ≥ 1 an index assignmentΠn is chosen uniformly at random

from the set of all2n! index assignments. Thenλ does not exist in a deterministic sense

as the limit ofλ(n)
Πn

. However, the distribution of codepoints can still be characterized

probabilistically.

Proposition 2.17. Suppose an index assignment is chosen uniformly at random for a

decoder optimized uniform quantizer. Then for allj, the expected value of thejth

codepoint is

E[yn(j)] =
1

2
+

(

cn(j) − 1

2

)(
1

1 − 2−n

)
(
(1 − ε)n − 2−n

)
.

Proof. Let δ = ε/(1 − ε) and note that(1 − ε)(1 + δ) = 1. Then,

E[yn(j)]

=

2n−1∑

i=0

cn(i)E[p(Πn(j)|Πn(i))]

=

2n−1∑

i=0

cn(i) · 1

2n!

∑

πn∈S2n

εHn(πn(i),πn(j))(1 − ε)n−Hn(πn(i),πn(j))

=
(1 − ε)n

2n!

2n−1∑

i=0

cn(i)
∑

πn∈S2n

δHn(πn(i),πn(j))

=
(1 − ε)n

2n!

(

2n!cn(j) +
∑

i6=j

cn(i)
∑

πn∈S2n

δHn(πn(i),πn(j))

)
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= (1 − ε)n

(

cn(j) +

(
2n−1∑

i=0

cn(i) − cn(j)

)(

2n(2n − 2)!

2n!

n∑

k=1

(
n

k

)

δk

))

(2.39)

= (1 − ε)n

(

cn(j) +
(
2n−1 − cn(j)

) (1 + δ)n − 1

(2n − 1)

)

(2.40)

=
1

2
+

(

cn(j) − 1

2

)(
1

1 − 2−n

)
(
(1 − ε)n − 2−n

)
.

To justify (2.39), consider the following observations. Supposei 6= j. There are2n pos-

sible valuesπn(j) can have, and for each one there are2n−1 valuesπn(i) can take,
(

n
k

)
of

which must have Hamming distancek from πn(j). Given any of the2n(2n −1) possible

choices ofπn(j) andπn(i), there are(2n−2)! ways to assign the remaining index assign-

ment words. (2.40) follows from the fact that
∑2n−1

i=0 cn(i) = 2−n
∑2n−1

i=0 (i + (1/2)) =

2n−1. 2

With Proposition 2.17 the variance of thejth codepoint is

Var(yn(j))

= Var

(

yn(j) −
1

2

)

= E

[(

yn(j) −
1

2

)2
]

−
[(

cn(j) − 1

2

)(
1

1 − 2−n

)
(
(1 − ε)n − 2−n

)
]2

. (2.41)

The motivation for the form of (2.41) will become clear in theproof of Theorem 2.20.

Evaluation of the expectation in (2.41) yields Proposition2.19 below.

Lemma 2.18.

2n−1∑

i=0

(

cn(i) − 1

2

)2

=
1

12

(
2n − 2−n

)
.
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Proof.

2n−1∑

i=0

(

cn(i) − 1

2

)2

=

2n−1∑

i=0

(

2−n

(

i +
1

2

)

− 1

2

)2

= 2−2n

[
2n−1∑

i=0

i2 − (2n − 1)

2n−1∑

i=0

i + 2n

(
2n − 1

2

)2
]

= 2−2n

[

2n(2n − 1)(2n+1 − 1)

6
− (2n − 1)

2n(2n − 1)

2
+ 2n

(
2n − 1

2

)2
]

=
1

12

(
2n − 2−n

)
.

2

Proposition 2.19.Suppose for eachn, an index assignment is chosen uniformly at ran-

dom for thenth quantizer (of raten) in a sequence of decoder optimized uniform quan-

tizers. Then for allj, the variance of thejth codepoint decays to zero at the rate

Var(yn(j)) = O(2−βn) asn → ∞, whereβ = − log2(1 − 2ε + 2ε2).

Proof. Recall from (2.41) that the variance ofyn(j) is

Var(yn(j))

= Var

(

yn(j) −
1

2

)

= E

[(

yn(j) − 1

2

)2
]

−
[(

cn(j) − 1

2

)(
1

1 − 2−n

)
(
(1 − ε)n − 2−n

)
]2

(2.42)

whose second term goes to zero asO((1− ε)2n) whenn → ∞. Expanding the first term

of (2.42) yields

E

[(

yn(j) − 1

2

)2
]
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= E





(
2n−1∑

i=0

(

cn(i) − 1

2

)

p(Πn(j)|Πn(i))

)2




=

2n−1∑

i=0

2n−1∑

l=0

(

cn(i) − 1

2

)(

cn(l) − 1

2

)

E[p(Πn(j)|Πn(i))p(Πn(j)|Πn(l))]

= (1 − ε)2n ·
2n−1∑

i=0

2n−1∑

l=0

(

cn(i) − 1

2

)(

cn(l) − 1

2

)

E
[
δHn(Πn(i),Πn(j))+Hn(Πn(l),Πn(j))

]
. (2.43)

We consider four cases. The computation in the last three cases is justified by an argu-

ment similar to the one used to justify (2.39).

(1) If i = l = j, then

E
[
δHn(Πn(i),Πn(j))+Hn(Πn(l),Πn(j))

]
= 1.

(2) If i = l 6= j, then

E
[
δHn(Πn(i),Πn(j))+Hn(Πn(l),Πn(j))

]
=

1

2n!

∑

πn∈S2n

δ2Hn(πn(i),πn(j))

=
2n(2n − 2)!

2n!

n∑

r=1

δ2r

(
n

r

)

=
(1 + δ2)n − 1

2n − 1
.

(3) If i 6= l, i 6= j, andl 6= j, then

E
[
δHn(Πn(i),Πn(j))+Hn(Πn(l),Πn(j))

]

=
1

2n!

∑

πn∈S2n

δHn(πn(i),πn(j))+Hn(πn(l),πn(j))

=
2n(2n − 3)!

2n!

n∑

k=1

n∑

m=1

δk+m

(
n

k

)

·







(
n
m

)
if m 6= k

(
n
m

)
− 1 if m = k
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=
1

(2n − 1)(2n − 2)







[
n∑

k=1

(
n

k

)

δk

]2

−
n∑

k=1

(
n

k

)

δ2k







=
((1 + δ)n − 1)2 − ((1 + δ2)n − 1)

(2n − 1)(2n − 2)

=
2 + (1 + δ)2n − 2(1 + δ)n − (1 + δ2)n

(2n − 1)(2n − 2)
.

(4) If j = i 6= l (or j = l 6= i), then

E
[
δHn(Πn(i),Πn(j))+Hn(Πn(l),Πn(j))

]
=

1

2n!

∑

πn∈S2n

δHn(πn(l),πn(j))

=
2n(2n − 2)

2n!

n∑

r=1

δr

(
n

r

)

=
(1 + δ)n − 1

2n − 1
.

Thus (2.43) can be written in terms of the four cases as

E

[(

yn(j) − 1

2

)2
]

= (1 − ε)2n

(

cn(j) − 1

2

)2

+ (1 − ε)2n

(
(1 + δ2)n − 1

2n − 1

)[(2n−1∑

i=0

(

cn(i) − 1

2

)2
)

−
(

cn(j) − 1

2

)2
]

+ (1 − ε)2n

(
2 + (1 + δ)2n − 2(1 + δ)n − (1 + δ2)n

(2n − 1)(2n − 2)

)

·
∑

i6=j

∑

l 6=i,l 6=j

(

cn(i) − 1

2

)(

cn(l) − 1

2

)

+ (1 − ε)2n · 2
(

(1 + δ)n − 1

2n − 1

)
∑

l 6=j

(

cn(j) − 1

2

)(

cn(l) −
1

2

)

. (2.44)

The first term in (2.44) decays to0 asO((1 − ε)2n) asn → ∞. The second term in
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(2.44) is

(1 − ε)2n

(
(1 + δ2)n − 1

2n − 1

)n
[(

2n−1∑

i=0

(

cn(i) − 1

2

)2
)

−
(

cn(j) − 1

2

)2
]

= (1 − ε)2n

(
(1 + δ2)n − 1

2n − 1

)[

22n − 1

12 · 2n
−
(

cn(j) − 1

2

)2
]

=
[
(1 − 2ε + 2ε2)n − (1 − ε)2n

]
·
[
2n + 1

12 · 2n
+

j2

22n(2n − 1)
+

2n − 1 − 4j

22n+2

]

= O
(
(1 − 2ε + 2ε2)n

)

asn → ∞, since0 < ε < 1. To evaluate the third term in (2.44) note that

∑

i6=j

∑

l 6=i,l 6=j

(

cn(i) − 1

2

)(

cn(l) − 1

2

)

=

[
2n−1∑

i=0

(

cn(i) − 1

2

)]2

−
[

2n−1∑

i=0

(

cn(i) − 1

2

)2
]

− 2

(

cn(j) − 1

2

)[

−
(

cn(j) − 1

2

)

+

2n−1∑

i=0

(

cn(i) − 1

2

)]

= 0 − 1

12

(
2n − 2−n

)
+ 2

(

cn(j) − 1

2

)2

.

Thus, since(1 − ε)(1 + δ) = 1, the third term in (2.44) is

(
2(1 − ε)2n + 1 − 2(1 − ε)n − (1 − 2ε + 2ε2)n

(2n − 1)(2n − 2)

)(

2

(

cn(j) − 1

2

)2

− 2n

12
+

1

12 · 2n

)

which tends to0 asO(2−n) asn → ∞. To evaluate the forth term in (2.44) note that

∑

l 6=j

(

cn(j) − 1

2

)(

cn(l) − 1

2

)

=

(

cn(j) − 1

2

)
∑

l 6=j

(

cn(l) − 1

2

)

= −
(

cn(j) − 1

2

)2

.
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Thus the forth term in (2.44) is

(1 − ε)2n · 2
(

(1 + δ)n − 1

2n − 1

)
∑

l 6=j

(

cn(j) − 1

2

)(

cn(l) − 1

2

)

= −2

(
(1 − ε)n − (1 − ε)2n

2n − 1

)(

cn(j) − 1

2

)2

= O
(
2−n
)

asn → ∞. ThusVar(yn(j)) = O ((1 − 2ε + 2ε2)n) = O(2−βn) asn → ∞, where

β = − log2(1 − 2ε + 2ε2) > 0. 2

Proposition 2.19 is key to the proof of the next result. The theorem below shows

that asymptotically, an arbitrarily large fraction of index assignments induce an arbitrar-

ily large fraction of codepoints to be arbitrarily close to1/2. This result is in contrast to

the fact that the Natural Binary Code index assignment has anarbitrarily small fraction

of codepoints arbitrarily close to1/2.

Theorem 2.20.For a decoder optimized uniform quantizer, arbitrarily small r, s, t > 0,

andn sufficiently large, at least(1−r)2n! index assignments each have at least(1−s)2n

codepoints within a distance oft from1/2.

Proof. AssumeΠn is chosen uniformly at random from the setS2n of all 2n! index

assignments. Letδ = ε/(1 − ε) and note that(1 − ε)(1 + δ) = 1. Also, let

an =

(

cn(j) − 1

2

)(
1

1 − 2−n

)
(
(1 − ε)n − 2−n

)
.

By the Chebychev inequality, for anyt > 0,

P

[∣
∣
∣
∣
yn(j) − 1

2

∣
∣
∣
∣
> t

]

= P

[∣
∣
∣
∣
yn(j) −

1

2
− an + an

∣
∣
∣
∣
> t

]

≤ P

[∣
∣
∣
∣
yn(j) −

1

2
− an

∣
∣
∣
∣
> t − |an|

]
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= P [|yn(j) − E[yn(j)]| > t − |an|]

<
Var(yn(j))

(t − |an|)2

which means that

1

2n!

∣
∣
∣
∣

{

πn ∈ S2n :

∣
∣
∣
∣
yn(j) − 1

2

∣
∣
∣
∣
> t

}∣
∣
∣
∣
<

Var(yn(j))

(t − |an|)2
.

Thus, for anyA > 0 there are at most2
n!2n

A
· Var(yn(j))

(t−|an|)2
index assignmentsπn ∈ S2n , such

that for each suchπn, there exist at leastA codepointsyn(j) satisfying
∣
∣yn(j) − 1

2

∣
∣ > t.

TakingA = α2n we get the following equivalent conclusion. For anyα ∈ (0, 1), there

are at most2
n!
α

· Var(yn(j))
(t−|an|)2

index assignmentsπn ∈ S2n , such that for each suchπn, there

exist at leastα2n codepointsyn(j) satisfying
∣
∣yn(j) − 1

2

∣
∣ > t. This implies that for any

α ∈ (0, 1), there are at least2n!
(

1 − Var(yn(j))
α(t−|an|)2

)

index assignmentsπn ∈ S2n such that

for each suchπn, there exist at mostα2n codepointsyn(j) satisfying
∣
∣yn(j) − 1

2

∣
∣ > t.

A careful look at the variance shows a dependency onj but we can easily make

a uniform upper bound on the variance which goes to zero at thespeedO(2−βn), where

β = − log2(1 − 2ε + 2ε2) > 0. We chooset = α = 2−βn/4. This implies that for

anyn, a fraction of at least1 − O(2−βn/4) of all index assignments have the property

that the fraction of codepointsyn(j) farther from1/2 than2−βn/4, is at most2−βn/4. In

other words, asn → ∞, an arbitrarily large fraction of all index assignments give rise

to codebooks with an arbitrarily large fraction of codepoints arbitrarily close to1/2. 2

Note that the proof of Theorem 2.20 demonstrates that the random mappingλ(n)
Πn

converges to zero in probability.
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2.7 Distortion Analysis

Let πn be the index assignment for a raten quantizer with a uniform encoder

on [0, 1] for a uniform source on[0, 1] and a binary symmetric channel with bit error

probabilityε. Then the end-to-end MSE can be written as

D(πn) =

2n−1∑

i=0

2n−1∑

j=0

p(πn(j)|πn(i))

∫ (i+1)/2n

i/2n

(x − yn(j))
2 dx

=
1

3
+ 2−n

2n−1∑

i=0

2n−1∑

j=0

p(πn(j)|πn(i))
[
y2

n(j) − 2cn(i)yn(j)
]
.

For any index assignmentπn ∈ S2n , let D(πn)
CU

denote the MSE of a channel

unoptimized uniform quantizer and letD(πn)
CO

denote the MSE of a decoder optimized

uniform quantizer. For givenε andn, an index assignmentπn ∈ S2n is said to beoptimal

for a channel unoptimized uniform quantizerif for all π′
n ∈ S2n ,

D(πn)
CU

≤ D(π′
n)

CU

andπn is said to beoptimal for a decoder optimized uniform quantizerif for all π′
n ∈

S2n ,

D(πn)
CO

≤ D(π′
n)

CO
.

Lemma 2.21. The mean squared error of a decoder optimized uniform quantizer with

index assignmentπn ∈ S2n is

D(πn)
CO

=
1

3
− 2−n

2n−1∑

j=0

y2
n(j).
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Proof.

D(πn)
CO

=
1

3
+ 2−n

2n−1∑

j=0

2n−1∑

i=0

p(πn(j)|πn(i))
[
y2

n(j) − 2cn(i)yn(j)
]

=
1

3
+ 2−n

2n−1∑

j=0

[

y2
n(j) − 2yn(j)

2n−1∑

i=0

p(πn(j)|πn(i))cn(i)

]

=
1

3
− 2−n

2n−1∑

j=0

y2
n(j) (2.45)

where (2.45) follows from the weighted centroid condition. 2

In [5] it was shown that randomly chosen index assignments for a channel unop-

timized uniform quantizer are asymptotically bad in the sense that their MSE approaches

that of the worst possible index assignment in the limit asn → ∞. The proof involved

an explicit construction of a worst index assignment. The following theorem extends

the result to a decoder optimized uniform quantizer and its proof does not require the

construction of a worst case index assignment. In Theorem 2.22 the term1/12 is in fact

the variance of the source.

Theorem 2.22.The mean squared error of a decoder optimized uniform quantizer is at

most1/12, and forn sufficiently large, an arbitrarily large fraction of index assignments

achieve a mean squared error arbitrarily close to1/12.

Proof. For any index assignmentπn, the average of the codepoints is

2−n
2n−1∑

j=0

yn(j) = 2−n
2n−1∑

j=0

2n−1∑

i=0

cn(i)p(πn(j)|πn(i))

= 2−n

2n−1∑

i=0

cn(i)

=
1

2
.
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Thus,

D(πn)
CO

=
1

3
− 2−n

2n−1∑

j=0

y2
n(j)

≤ 1

3
−
(

2−n

2n−1∑

j=0

yn(j)

)2

(2.46)

=
1

3
− 1

4
=

1

12

where (2.46) follows from Jensen’s inequality. The second assertion follows from The-

orem 2.20 and Lemma 2.21. 2

Although Theorem 2.22 indicates that asymptotically most index assignments

yield mean squared errors close to1/12, in the following it will be shown that the Natural

Binary Code, the Folded Binary Code, and the Gray Code perform substantially better

asymptotically.

The next two theorems give the mean squared errors for the Natural Binary Code

with a channel unoptimized decoder and with a channel optimized decoder. Theorem

2.23 was stated in [8] (see, e.g. [4] for a proof). The resultsare given as a function of the

quantizer raten and the channel bit error probabilityε. Analogous results are then given

for the Folded Binary Code, the Gray Code, and the average foran index assignment

chosen uniformly at random.

Theorem 2.23.The mean squared error of a channel unoptimized uniform quantizer

with the Natural Binary Code index assignment is

D(NBC)
CU

=
2−2n

12
+

ε

3

(
1 − 2−2n

)
.

Theorem 2.24.The mean squared error of a decoder optimized uniform quantizer with
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the Natural Binary Code index assignment is

D(NBC)
CO

=
2−2n

12
+

ε(1 − ε)

3

(
1 − 2−2n

)
.

Proof. Combining Proposition 2.3 and Lemma 2.21 gives

D(NBC)
CO

=
1

3
− 2−n

2n−1∑

j=0

[

ε2 + 2ε2−n(1 − 2ε)

(

j +
1

2

)

+ 2−2n(1 − 2ε)2

(

j2 + j +
1

4

)]

=
1

3
−
[

ε2 + 2−nε(1 − 2ε) + 2−nε(1 − 2ε)(2n − 1)

+2−2n(1 − 2ε)2

(
(2n − 1)(2n+1 − 1)

6
+

2n − 1

2
+

1

4

)]

=
2−2n

12
+

ε(1 − ε)

3

(
1 − 2−2n

)
.

2

The next two theorems give the mean squared errors for the Folded Binary Code

with a channel unoptimized decoder and with a channel optimized decoder. Theorem

2.25 was given in [4]. The proof of Theorem 2.26 is similar to that of Theorem 2.24 and

is omitted for brevity.

Theorem 2.25.The mean squared error of a channel unoptimized uniform quantizer

with the Folded Binary Code index assignment is

D(FBC)
CU

=
1

12

(
5ε − 2ε2 + 2−2n(1 − 8ε + 8ε2)

)
.

Theorem 2.26.The mean squared error of a decoder optimized uniform quantizer with
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the Folded Binary Code index assignment is

D(FBC)
CO

=
1

12

(
5ε − 9ε2 + 8ε3 − 4ε4 − 2−2n(1 − 2ε)4

)
.

The next two theorems give the mean squared errors for the Gray Code with a

channel unoptimized decoder and with a channel optimized decoder. Theorem 2.27 was

stated in [9] (see, e.g. [4] for a proof).

Theorem 2.27.The mean squared error of a channel unoptimized uniform quantizer

with the Gray Code index assignment is

D(GC)
CU

=
1

6
− 2−2n

12
−
(

1
4
− ε

2

) (
1 −

(
1
4
− ε

2

)n)

3
2

+ ε
.

Theorem 2.28.The mean squared error of a decoder optimized uniform quantizer with

the Gray Code index assignment is

D(GC)
CO

=
1

12
− 1

4
· 1 −

(
1
2
− ε
)2n

(
1
2
− ε
)−2 − 1

.

Proof. Combining Proposition 2.10 and Lemma 2.21 gives

D(GC)
CO

=
1

3
− 2−n

2n−1∑

j=0

[

1

4
+

1

2

n∑

i=1

(−1)bn(j,i)+1

(
1

2
− ε

)i

+
1

4

n∑

i=1

n∑

k=1

(−1)bn(j,i)+bn(j,k)+2

(
1

2
− ε

)i+k
]

=
1

12
− 2−n

n∑

j=0

(

yn(j) − 1

2

)

− 2−n−2
n∑

i=1

n∑

k=1

2n−1∑

j=0

(−1)bn(j,i)+bn(j,k)+2

(
1

2
− ε

)i+k
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=
1

12
− 2−n−2

n∑

i=1

2n

(
1

2
− ε

)2i

(2.47)

=
1

12
−
(

1
2
− ε
)2
(

1 −
(

1
2
− ε
)2n
)

4 − (1 − 2ε)2

where (2.47) follows from the fact that the average of the codepoints for any index

assignment is1/2 (see the proof of Theorem 2.22) and that fori 6= k, the sumbn(j, i) +

bn(j, k) is even2n−1 times and odd2n−1 times asj ranges between0 and2n − 1. 2

It can be seen from Theorem 2.23 and Theorem 2.24 that for the NBC, the re-

duction in MSE obtained by using a channel optimized quantizer decoder instead of one

obeying the centroid condition, isε2(1 − 2−2n)/3. For smallε, the MSE reduction is

thus small. For a randomly chosen index assignment however,Theorem 2.29 and Theo-

rem 2.30 show that channel optimized decoders reduce the average distortion by a factor

of two over decoders obeying the centroid condition, independent ofε, in the limit as

n → ∞. Theorem 2.29 was stated in [8], and [5] contains a concise proof. LetD(RAN)
CU

be a random variable denoting the MSE of a channel unoptimized uniform quantizer

with a randomly chosen index assignment.

Theorem 2.29. The average mean squared error of a channel unoptimized uniform

quantizer with an index assignment chosen uniformly at random is

E[D(RAN)
CU

] =
2−2n

12
+

1

6
+

1 − (2n + 1)(1 − ε)n

6 · 2n
.

Since most index assignments are asymptotically bad, theiraverage is bad as

well. More precisely, the next theorem shows that the asymptotic average MSE of a

decoder optimized uniform quantizer with an arbitrary index assignment converges to

1/12, consistent with Theorem 2.22. LetD(RAN)
CO

be a random variable denoting the

MSE of a decoder optimized uniform quantizer with a randomlychosen index assign-
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ment.

Theorem 2.30.The average mean squared error of a decoder optimized uniform quan-

tizer with an index assignment chosen uniformly at random is

E[D(RAN)
CO

] =
2−2n

12
+

1

12
+

1 − (2n + 1)(1 − 2ε + 2ε2)n

12 · 2n
.

Proof. Let

an =

(

cn(j) − 1

2

)(
1

1 − 2−n

)
(
(1 − ε)n − 2−n

)
.

By Lemma 2.21, the expected value ofD(RAN)
CO

(over all index assignments) is

E[D(RAN)
CO

]

=
1

3
− 2−n

2n−1∑

j=0

E[y2
n(j)]

=
1

3
− 2−n

2n−1∑

j=0

(Var(yn(j)) + E[yn(j)]2)

=
1

3
− 2−n

2n−1∑

j=0

(

E

[(

yn(j) − 1

2

)2
]

+ an +
1

4

)

(2.48)

=
1

12
− 2−n

2n−1∑

j=0

E

[(

yn(j) − 1

2

)2
]

(2.49)

=
1

12
− 2−n

2n−1∑

j=0

[

(1 − ε)2n

(

cn(j) − 1

2

)2

+ (1 − ε)2n

(
(1 + δ2)n − 1

2n − 1

)[(2n−1∑

i=0

(

cn(i) − 1

2

)2
)

−
(

cn(j) − 1

2

)2
]

+ (1 − ε)2n

(
2 + (1 + δ)2n − 2(1 + δ)n − (1 + δ2)n

(2n − 1)(2n − 2)

)

·
∑

i6=j

∑

l 6=i,l 6=j

(

cn(i) − 1

2

)(

cn(l) − 1

2

)

+ (1 − ε)2n · 2
(

(1 + δ)n − 1

2n − 1

)
∑

l 6=j

(

cn(j) − 1

2

)(

cn(l) − 1

2

)]

(2.50)
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=
1

12
− 2−n

2n−1∑

j=0

[

(1 − ε)2n

(

cn(j) − 1

2

)2

+ (1 − ε)2n

(
(1 + δ2)n − 1

2n − 1

)[(
22n − 1

12 · 2n

)

−
(

cn(j) − 1

2

)2
]

+ (1 − ε)2n

(
2 + (1 + δ)2n − 2(1 + δ)n − (1 + δ2)n

(2n − 1)(2n − 2)

)

·
(

2

(

cn(j) − 1

2

)2

− 2n

12
+

2−n

12

)

− (1 − ε)2n · 2
(

(1 + δ)n − 1

2n − 1

)(

cn(j) − 1

2

)2
]

(2.51)

where (2.48) follows from Proposition 2.17 and (2.41), (2.49) follows from the fact that
∑2n−1

j=0

(
cn(j) − 1

2

)
= 0, (2.50) follows from (2.44), and (2.51) results from the com-

putations following (2.44). Passing the sum overj inside, distributing the factor of2−n

over all terms, applying Lemma 2.18, and multiplying the(1 − ε)2n term through gives

E[D(RAN)
CO

]

=
1

12
−
{

(22n − 1)(1 − ε)2n

12 · 22n

+
(1 − 2ε + 2ε2)n − (1 − ε)2n

2n − 1
·
(

22n − 1

12 · 2n
− 22n − 1

12 · 22n

)

+

[
2(1 − ε)2n + 1 − 2(1 − ε)n − (1 − 2ε + 2ε2)n

(2n − 1)(2n − 2)

]

·
[

2

(
22n − 1

12 · 22n

)

−
(

22n − 1

12 · 2n

)]

−2

(
(1 − ε)n − (1 − ε)2n

2n − 1

)

·
(

22n − 1

12 · 22n

)}

(2.52)

=
1

12
−
[
22n − 1

12 · 22n

]

·
[
2n(1 − 2ε + 2ε2)n − 1

2n − 1

]

=
2−2n

12
+

1

12
+

1 − (2n + 1)(1 − 2ε + 2ε2)n

12 · 2n

where (2.52) makes use of the computations following (2.44). 2
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Crimmins et al. [1] and McLaughlin, Neuhoff, and Ashley [3] showed that for

everyε and everyn the Natural Binary Code is optimal for a channel unoptimizeduni-

form quantizer. We next extend the proof in [3] to show that for everyε and everyn the

Natural Binary Code is also optimal for a decoder optimized uniform quantizer.

Lemma 2.31. Let Qπn denote the2n × 2n matrix whose(i, j)th elements are

q(πn(i)|πn(j)). For any index assignmentπn, there exists a2n × 2n permutation matrix

P such thatQ2
πn

= PQ2

π
(NBC)
n

P t.

Proof. Let P be the permutation matrix whose elements are

pi,j =







1 if πn(i) = j

0 otherwise

for 0 ≤ i, j ≤ 2n − 1. Let ai,j and bi,j respectively denote the(i, j)th elements of

Q
π

(NBC)
n

andPQ
π

(NBC)
n

P t. Then

q(i|j) = ai,j = bπ−1
n (i),π−1

n (j)

or equivalently

q(πn(i)|πn(j)) = aπn(i),πn(j) = bi,j

which impliesQπn = PQ
π

(NBC)
n

P t. ThusQ2
πn

= PQ2

π
(NBC)
n

P t sinceP is orthogonal.2

Theorem 2.32.The Natural Binary Code index assignment is optimal for a decoder

optimized uniform quantizer, for every bit error probability ε ≥ 0 and every quantizer

raten ≥ 1.

Proof. Let c = [cn(0), cn(1), . . . , cn(2n − 1)]t andy = [yn(0), yn(1), . . . , yn(2
n − 1)]t

denote the column vectors of cell centroids and codepoints,respectively. Then Lemma



51

2.21, Lemma 2.31, and the weighted centroid condition implythat

D(πn)
CO

=
1

3
− 2−n‖y‖2

=
1

3
− 2−nctQ2

πn
c

=
1

3
− 2−nctPQ2

π
(NBC)
n

P tc

=
1

3
− 2−nztQ2

π
(NBC)
n

z

=
1

3
− 2−nztQ̂

π
(NBC)
n

z (2.53)

wherez = P tc, and whereQ̂
π

(NBC)
n

is the same asQ
π

(NBC)
n

but with ε replaced by

2ε(1 − ε) ∈ (0, 1/2). McLaughlin, Neuhoff, and Ashley [3] showed that for every

ε ∈ (0, 1/2), the quadratic formztQ
π

(NBC)
n

z (and thus in particularztQ̂
π

(NBC)
n

z) is max-

imized for uniform sources and uniform quantizers satisfying
∑

i cn(i) = 0, when

πn = π
(NBC)
n . Shifting the support of a uniform source from[0, 1] to [−1/2, 1/2]

changes each term in (2.53) by a constant term, independent of the index assignment.

ThusD(πn)
CO

is minimized whenπn = π
(NBC)
n , and therefore the Natural Binary Code is

optimal for decoder optimized uniform quantizers for allε andn. 2

This chapter, in full, is a reprint of the material as it appears in: Benjamin Farber

and Kenneth Zeger, “Quantizers with Uniform Encoders and Channel Optimized De-

coders,”IEEE Transactions on Information Theory, vol. 50, no. 1, pp. 62–77, January

2004. The dissertation author was the primary investigatorof this paper.
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Chapter 3

Quantizers with Uniform Decoders and
Channel Optimized Encoders

Abstract

Scalar quantizers with uniform decoders and channel-optimized encoders

are studied for a uniform source on[0, 1] and binary symmetric channels.

Two families of affine index assignments are considered: thecomplemented

natural code (CNC), introduced here, and the natural binarycode (NBC). It

is shown that the NBC never induces empty cells in the quantizer encoder,

whereas the CNC can. Nevertheless, we show that the asymptotic distribu-

tions of quantizer encoder cells for the NBC and the CNC are equal and are

uniform over a proper subset of the source’s support region.Empty cells act

as a form of implicit channel coding. An effective channel code rate associ-

ated with a quantizer designed for a noisy channel is defined and computed

for the codes studied. By explicitly showing that the mean squared error

of the CNC can be strictly smaller than that of the NBC, we alsodemon-

strate that the NBC is sub-optimal for a large range of transmission rates

and bit error probabilities. This contrasts with the known optimality of the

NBC when either both the encoder and decoder are not channel optimized,

or when only the decoder is channel optimized.

53
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3.1 Introduction

One approach to improving the performance of a quantizer that transmits across

a noisy channel is to design the quantizer’s encoder and/or decoder to specifically take

into account the statistics of the transmission channel. Necessary optimality conditions

for such channel-optimized encoders and decoders were given, for example, in [2, 11,

12]. Alternatively, an explicit error control code can be cascaded with the quantizer, at

the expense of added transmission rate. Additionally, the choice of index assignment in

mapping source code words to channel code words can increasethe performance of a

quantization system with a noisy channel. Examples of indexassignments include the

natural binary code (NBC), the folded binary code, and the Gray code.

Ideally, one seeks a complete theoretical understanding ofthe structure and per-

formance of a quantizer that transmits across a noisy channel, and whose encoder and

decoder are channel optimized. Unfortunately, other than the optimality conditions

given in [11], virtually no other analytical results are known regarding such quantiz-

ers. Quantizer design and performance with index assignments for general encoders

and decoders (i.e. not necessarily channel optimized) was considered in [7, 16]. Exper-

imentally, it was observed in [4] and [5] that quantizers with both channel-optimized

encoders and decoders can have empty cells, which serve as a form of implicit channel

coding. Some theoretical results are known, however, when the quantizer has no channel

optimization, or when only the quantizer decoder is channeloptimized.

For uniform scalar quantizers with neither channel-optimized encoders nor de-

coders and with no explicit error control coding, formulas for the mean squared error

with uniform sources were given in [8,9] for the NBC, the Graycode, and for randomly

chosen index assignments on a binary symmetric channel. They also asserted (without

a published proof) the optimality of the NBC for the binary symmetric channel. Crim-

mins et al. [1] proved the optimality of the NBC as asserted in[8, 9], and McLaughlin,
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Neuhoff, and Ashley [15] generalized this result to uniformvector quantizers. Various

other analytical results on index assignments without channel-optimized encoders or

decoders have been given in [10,13,14].

Quantizers with uniform encoders and channel-optimized decoders on binary

symmetric channels were studied in [3]. For such quantizers, exact descriptions of

the decoders were computed, and the asymptotic distributions of codepoints were de-

termined for various index assignments. Distortions were calculated and compared to

those of quantizers without channel optimization. The proof in [15] of the optimality of

the NBC for quantizers with no channel optimization was extended in [3] to show that

the NBC is also optimal for quantizers with uniform encodersand channel-optimized

decoders.

In the present paper, we examine quantizers with uniform decoders and channel-

optimized encoders operating over binary symmetric channels. In particular, we investi-

gate a previously studied index assignment, namely the NBC.In addition, we introduce

a new affine index assignment which we call the complemented natural code (CNC) and

which turns out to have a number of interesting properties. We specifically analyze the

entropy of the encoder output in such quantizers, the high resolution distribution of their

encoding cells (i.e. the cell density function), and the mean squared errors the quantiz-

ers achieve. We calculate a quantity we call the “effective channel code rate”, which

describes implicit channel coding, viewed in terms of the entropy of the encoder output.

We also show that the NBC optimality results of [1, 3, 15] do not extend to quantizers

with uniform decoders and channel-optimized encoders. In fact, the CNC is shown to

perform better than the NBC.

Our main results for quantizers with uniform decoders and channel-optimized

encoders are the following. For a uniform source on[0, 1] and a binary symmetric chan-

nel with bit error probabilityε ∈ [0, 1/2), we compute the effective channel code rates

and cell densities for the NBC and CNC. It is shown that the NBCindex assignment
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never induces empty cells (Corollary 3.3), and the cell density function generated by

the NBC is the same as the point density function for quantizers with uniform encoders

and channel-optimized decoders with the NBC (Theorem 3.5).In contrast it is shown

that the CNC can induce many empty cells (Corollary 3.8). However, the cell density

functions generated by the CNC and the NBC are both uniform over the same interval

(Theorem 3.10). We also show that the cell density function generated by the CNC is the

same as the point density function for quantizers with uniform encoders and channel-

optimized decoders with both the CNC and the NBC (Theorem 3.11). Then we extend

a result in [8] by computing the mean squared error resultingfrom the NBC (Theo-

rem 3.14). As a comparison, we state the previously known mean squared error formula

for channel unoptimized encoders with the NBC (Theorem 3.13). Finally we show that

the NBC is sub-optimal for quantizers with uniform decodersand channel-optimized

encoders for many bit error probabilities (Theorem 3.17).

We restrict attention in this paper to a uniform source on[0, 1]. However, it will

be apparent that the results can be generalized to any bounded interval on the real line.

The paper is organized as follows. Section 3.2 gives definitions and notation.

Sections 3.3 and 3.4, respectively, give results for the NBCand CNC. Section 3.5 gives

distortion analysis. Appendices 3.7-3.10 contain the proofs of all lemmas, and selected

theorems as well as various lemma statements.

3.2 Preliminaries

For any setS of reals, letS denote its closure. IfS is an interval, letl(S) denote

its length. Let∅ denote the empty set. Throughout this paper “log” will mean logarithm

base two.
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A raten quantizeron [0, 1] is a mapping

Q : [0, 1] −→ {yn(0), yn(1), . . . , yn(2
n − 1)}.

Throughout this paper, all quantizers will be on the interval [0, 1] and we will assume

n ≥ 2. The real-valued quantitiesyn(i) are called codepointsand the set

{yn(0), . . . , yn(2
n − 1)} is called acodebook. For a noiseless channel, the quantizer

Q is the composition of aquantizer encoderand aquantizer decoder. These are respec-

tively mappings

Qe : [0, 1] −→ {0, 1, . . . , 2n − 1}

Qd : {0, 1, . . . , 2n − 1} −→ {yn(0), yn(1), . . . , yn(2n − 1)}

such thatQd(i) = yn(i) for all i. On a discrete, memoryless, noisy channel a quantizer

is a composition of the quantizer encoder, the channel, and the quantizer decoder.

Without channel noise it is known that for an optimal quantizer, the encoderQe

is a surjective mapping. However, in the presence of channelnoise, it is possible that in

an optimal quantizer the range ofQe may contain fewer than2n points.

For eachi theith encodingcell is the set

Rn(i) = Q−1
e (i).

If Rn(i) = ∅ we sayRn(i) is anempty cell.

A quantizer with empty cells can be thought of as implicitly using channel cod-

ing to protect against channel noise. For example, if one half of the cells of a quantizer

were empty, and the other half were equal size, this could be thought of as effectively

using one bit of error protection. More generally, the cascade of a ratek quantizer hav-

ing 2k equal size cells with a(n, k) block channel code can equivalently be viewed as a
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raten quantizer with2n cells,2k of which are nonempty. That is, for any input lying in

one of the2k nonempty cells, thek-bit index produced by the original quantizer encoder

is expanded ton bits, which is then used for transmission. A quantizer can also intro-

duce redundancy by making some encoding cells smaller than others. This reduces the

entropy of the encoder output while maintaining the same transmission rate. To quan-

tify the amount of natural error protection embedded in quantizers designed for noisy

channels, we define theeffective channel code rateof a quantizer as

rc =
H(Qe(X))

n

whereX is a real-valued source random variable andH denotes the Shannon entropy.

Then

0 ≤ rc ≤
log
∣
∣{i : Rn(i) 6= ∅}

∣
∣

n
≤ 1.

In particular, the effective channel code rate of a ratek quantizer, having no empty cells,

cascaded with an(n, k) block channel code (viewed as a raten quantizer) is at most

k/n, i.e., the rate of the channel code. For such a cascaded system, if rb denotes the rate

of the block channel code and if cell sizes are equal, then

rc = rb.

In this paper, we compute the effective channel code rates ofcertain quantizers that

cannot be decomposed as cascades of (lower transmission rate) quantizers with block

channel codes.

A quantizer encoder is said to beuniformif for eachi, theith cell satisfies

Rn(i) ⊇ (i2−n, (i + 1)2−n).



59

We say the quantizer decoder is uniform, if for eachi, theith codepoint satisfies

yn(i) =

(

i +
1

2

)

2−n.

Thenearest neighborcells of a raten quantizer are the sets

Tn(i) = {x : |yn(i) − x| < |yn(j) − x|, ∀j 6= i}

for 0 ≤ i ≤ 2n − 1. A quantizer’s encoder is said to satisfy thenearest neighbor

conditionif for eachi,

Tn(i) ⊂ Rn(i) ⊂ Tn(i).

That is, its encoding cells are the nearest neighbor cells together with some boundary

points (which can be assigned arbitrarily).

For givenn, i, and real-valued source random variableX, thecentroidof theith

cell of the quantizerQ is the conditional mean

cn(i) = E[X|X ∈ Rn(i)].

The quantizer decoder is said to satisfy thecentroid conditionif the codepoints satisfy

yn(i) = cn(i)

for all i. A quantizer isuniformif both the encoder and decoder are uniform. It is known

that if a quantizer minimizes the mean squared error for a given source and a noiseless

channel, then it satisfies the nearest neighbor and centroidconditions [6]. In particular,

if the source is uniform, then a uniform quantizer satisfies the nearest neighbor and

centroid conditions.

For a raten quantizer, anindex assignmentπn is a permutation of the set
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{0, 1, . . . , 2n − 1}. LetSn denote the set of all2n! such permutations. For a noisy chan-

nel, a random variableX ∈ [0, 1] is quantized by transmitting the indexI = πn(Qe(X))

across the channel, receiving indexJ from the channel, and then decoding the codepoint

yn(π−1
n (J)) = Qd(π

−1
n (J)). Themean squared error(MSE) is defined as

D = E
[
(X −Qd(π

−1
n (J)))2

]
. (3.1)

The random indexJ is a function of the source random variableX, the randomness in

the channel, and the deterministic functionsQe andπn.

Assume a binary symmetric channel with bit error probability ε. Throughout this

paper we use the notation:

δ = 1 − 2ε

ω =
ε

1 − ε
.

Denote the probability that indexj was received, given that indexi was sent, by

pn(j|i) = εHn(i,j)(1 − ε)n−Hn(i,j) for 0 ≤ ε ≤ 1/2, whereHn(i, j) is the Hamming

distance betweenn-bit binary wordsi and j. Let qn(i|j) denote the probability that

indexi was sent, given that indexj was received.

For a given sourceX, channelpn(·|·), index assignmentπn, and quantizer en-

coder, the quantizer decoder is said to satisfy theweighted centroid conditionif the

codepoints satisfy

yn(j) =

2n−1∑

i=0

cn(i)qn(πn(i)|πn(j)).

For a given sourceX, channelpn(·|·), index assignmentπn, and quantizer decoder,

the quantizer encoder is said to satisfy theweighted nearest neighbor conditionif the



61

encoding cells satisfy

Wi ⊂ Rn(i) ⊂ W i (3.2)

where

Wi =

{

x :
2n−1∑

j=0

(x − yn(j))
2pn(πn(j)|πn(i))

<

2n−1∑

j=0

(x − yn(j))2pn(πn(j)|πn(k)), ∀k 6= i

}

.

For a given quantizer encoder and index assignment, we say the quantizer has a

channel-optimized decoderif it satisfies the weighted centroid condition. Similarly,for

a given quantizer decoder and index assignment, we say the quantizer has achannel-

optimized encoderif it satisfies the weighted nearest neighbor condition. It is known

that a minimum mean-squared error quantizer for a noisy channel must have both a

channel-optimized encoder and decoder [11].

Lemma 3.1. A quantizer with a uniform decoder and channel-optimized encoder satis-

fies, for alli,

Rn(i) = {x ∈ [0, 1] : αn(i, k) x ≥ βn(i, k), ∀ k 6= i} (3.3)

where

αn(i, k) =
2n−1∑

j=0

j[pn(πn(j)|πn(i)) − pn(πn(j)|πn(k))] (3.4)

βn(i, k) = 2−n−1

(

αn(i, k) +

2n−1∑

j=0

j2[pn(πn(j)|πn(i)) − pn(πn(j)|πn(k))]

)

.(3.5)

Lemma 3.1 implies that eachRn(i) is a (possibly empty) interval. Therefore, in this
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paper, when we describe quantizer encoding cells it sufficesto describe their closures.

For any setA, denote the indicator function ofA by

χA(x) =







1 for x ∈ A

0 for x /∈ A.

For a given quantizer encoder, let

Λ = {i : Rn(i) 6= ∅}.

These are the indices of non-empty cells.

For eachn and each index assignmentπn ∈ Sn, define the functionγ(n)
πn :

[0, 1] → [0,∞) by

γ(n)
πn

(x) =
∑

i∈Λ

1

|Λ| · l(Rn(i))
χRn(i)(x).

For a sequenceπn ∈ Sn (for n = 1, 2, . . .) of index assignments, if there exists a

measurable functionγ such that

γ(x) = lim
n→∞

γ(n)
πn

(x)

for almost allx ∈ [0, 1] and
∫ 1

0
γ(x) dx = 1, then we sayγ is a cell density function

with respect to{πn}.

For eachn and each index assignmentπn ∈ Sn, define the functionλ(n)
πn :

[0, 1] → [0,∞) by

λ(n)
πn

(x) =

2n−1∑

i=0

1

2n · l(Tn(i))
χTn(i)(x).

For a sequenceπn ∈ Sn (for n = 1, 2, . . .) of index assignments, if there exists a
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measurable functionλ such that

λ(x) = lim
n→∞

λ(n)
πn

(x)

for almost allx ∈ [0, 1] and
∫ 1

0
λ(x) dx = 1, then we sayλ is apoint density function

with respect to{πn}.

The integrals
∫ b

a
γ and

∫ b

a
λ give the asymptotic fraction of encoding cells and

decoder codepoints, respectively, that appear in the interval [a, b] asn → ∞.

Let a decoder-optimized uniform quantizer(DOUQ) denote a raten quantizer

with a uniform encoder on[0, 1] and a channel-optimized decoder, along with a uniform

source on[0, 1], and a binary symmetric channel with bit error probabilityε. When

considering DOUQs, we impose the following monotonicity constraint on the quantizer

encoder in order to be able to unambiguously refer to particular index assignments: For

all s, t ∈ [0, 1], if s < t, thenQe(s) ≤ Qe(t). In other words, the encoding cells are

labeled from left to right.

Let anencoder-optimized uniform quantizer(EOUQ) denote a raten quantizer

with a uniform decoder and a channel-optimized encoder, along with a uniform source

on [0, 1], and a binary symmetric channel with bit error probabilityε. When considering

EOUQs, we impose the following monotonicity constraint on the quantizer decoder

in order to be able to unambiguously refer to particular index assignments: For any

yn(i) andyn(j), if yn(i) < yn(j), thenQ−1
d (yn(i)) < Q−1

d (yn(j)). In other words, the

codepoints are labeled in increasing order.

An alternative approach would be to view the quantizer encoder as the compo-

sition πn · Qe and the quantizer decoder as the compositionQd · π−1
n , by relaxing the

monotonicity assumption made above. This would remove the role of index assignments

from the study of quantizers for noisy channels. However, weretain these encoder and

decoder decompositions, as a convenient way to isolate the effects of index assignments,
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given known quantizer encoders and decoders.

Let achannel unoptimized uniform quantizerdenote a raten uniform quantizer

on [0, 1], along with a uniform source on[0, 1], and a binary symmetric channel with bit

error probabilityε.

3.3 Natural Binary Code Index Assignment

For eachn, the natural binary code (NBC) is the index assignment defined by

π(NBC)
n (i) = i for 0 ≤ i ≤ 2n − 1.

Theorem 3.2.An EOUQ with the NBC index assignment has encoding cells given by

Rn(i) =







[
0, ε + δ2−n

]
for i = 0

[
ε + iδ2−n, ε + δ(i + 1)2−n

]
for 1 ≤ i ≤ 2n − 2

[
1 − ε − δ2−n, 1

]
for i = 2n − 1.

Proof. The encoding cells satisfy (3.3) in Lemma 3.1, with

αn(i, k)

=

2n−1∑

j=0

j
[
pn(π(NBC)

n (j)|π(NBC)
n (i)) − pn(π(NBC)

n (j)|π(NBC)
n (k))

]

= (i − k)δ (3.6)

βn(i, k)

= 2−n−1

(

αn(i, k)

+

2n−1∑

j=0

j2
[
pn(π(NBC)

n (j)|π(NBC)
n (i)) − pn(π(NBC)

n (j)|π(NBC)
n (k))

]

)

= 2−n−1
[

(i − k)δ[1 + 2ε(2n − 1)] + (i2 − k2)δ2
]

(3.7)



65

where (3.6) follows from Lemma 3.20; and (3.7) follows from (3.6) and Lemma 3.21.

Thus,
βn(i, k)

αn(i, k)
= ε + δ(i + k + 1)2−n−1 0 ≤ i, k ≤ 2n − 1. (3.8)

From (3.6), we have thatαn(i, k) > 0 if and only if i > k, andαn(i, k) < 0 if and only

if i < k. Therefore, (3.3) can be rewritten as

Rn(i) =

{

x ∈ [0, 1] : x ≥ βn(i, k)

αn(i, k)
, ∀ k < i and x ≤ βn(i, k)

αn(i, k)
, ∀ k > i

}

. (3.9)

By (3.8), the quantityβn(i,k)
αn(i,k)

is increasing in bothi andk. Hence, if1 ≤ i ≤ 2n − 1,

then (takingk = i − 1 in (3.9))x ∈ Rn(i) if and only if

x ≥ ε + δ(i + (i − 1) + 1)2−n−1

= ε + iδ2−n.

Similarly, if 0 ≤ i ≤ 2n − 2, then (takingk = i + 1 in (3.9))x ∈ Rn(i) if and only if

x ≤ ε + δ(i + (i + 1) + 1)2−n−1

= ε + δ(i + 1)2−n. (3.10)

2

A consequence of the preceding theorem is that the NBC produces no empty

cells when the weighted nearest neighbor condition is used together with uniformly

spaced codepoints. This fact is stated as the following result.

Corollary 3.3. For all n and for all ε ∈ [0, 1/2), an EOUQ with the NBC index assign-

ment has no empty cells.

Figures 3.1 and 3.2 illustrate the encoding cells of a rate3 EOUQ with the NBC
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index assignment for bit error rates0.05 and 0.25 respectively. Figure 3.3 plots the

encoding cell boundaries of a rate3 EOUQ with the NBC index assignment as a function

of bit error rate.

0

0 1

1

NBC

CNC

011

110111100010000

π3(i):

π3(i):

y3(010) y3(011) y3(110) y3(111)y3(101)y3(100)y3(001)y3(000)

y3(010) y3(011) y3(110) y3(111)y3(101)y3(100)y3(001)y3(000)

001 010 100 101 111110

011 101001

000

Figure 3.1: Plot of the encoding cells of rate 3 EOUQs with theCNC and NBC index
assignments and a bit error rate 0.05.

0

0 1

1

CNC

NBC

011
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001000 100 101 110 111

001 101 111

010 011

Figure 3.2: Plot of the encoding cells of rate 3 EOUQs with theCNC and NBC index
assignments and a bit error rate 0.25.

Theorem 3.4.An EOUQ with the NBC index assignment has an effective channel code

rate given by

rc = (1−21−n)(1−2ε)

(

1 − log(1 − 2ε)

n

)

+
2ε + (1 − 2ε)21−n

n
log

(
1

ε + (1 − 2ε)2−n

)

.
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Figure 3.3: Plot of the encoding cells boundaries of a rate 3 EOUQ with the NBC index
assignment as a function of bit error rate.

Proof. The definition ofrc implies

rc =
1

n

∑

i∈Λ

l(Rn(i)) log
1

l(Rn(i))
.

From Theorem 3.2,

l(Rn(i)) =







ε + δ2−n for i = 0

δ2−n for 1 ≤ i ≤ 2n − 2

ε + δ2−n for i = 2n − 1.

Therefore,

rc = (2n − 2)
δ2−n

n
log

(
1

δ2−n

)

+ 2
(ε + δ2−n)

n
log

(
1

ε + δ2−n

)
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= (1 − 21−n)δ

(

1 − log δ

n

)

+
2ε + δ21−n

n
log

(
1

ε + δ2−n

)

.

2

As n → ∞, the effective channel code rate given by Theorem 3.4 converges to

1 − 2ε. Figure 3.5 plots the quantityrc from Theorem 3.4 for raten = 4.

The following theorem shows that the cell density function for a sequence of

EOUQs with the NBC is the same as the point density function found in [3] for a se-

quence of DOUQs with the NBC.

Theorem 3.5.A sequence of EOUQs with the NBC index assignment has a cell density

function given by

γ(x) =







1
1−2ε

for ε < x < 1 − ε

0 else.

Proof. From Theorem 3.2,

l(Rn(i)) =







ε + δ2−n for i = 0

δ2−n for 1 ≤ i ≤ 2n − 2

ε + δ2−n for i = 2n − 1.

Therefore, since|Λ| = 2n by Corollary 3.3,

γ
(n)

π
(NBC)
n

(x) =







1
δ

for ε + δ2−n ≤ x < 1 − ε − δ2−n

1
ε2n+δ

for 0 ≤ x < ε + δ2−n or

1 − ε − δ2−n ≤ x ≤ 1

−→







1
δ

for ε < x < 1 − ε

0 for 0 ≤ x ≤ ε or 1 − ε ≤ x ≤ 1

as n → ∞.
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2

3.4 Complemented Natural Code Index Assignment

Let the complemented natural code (CNC) be the index assignment defined by

π(CNC)
n (i) =







i for 0 ≤ i ≤ 2n−1 − 1

i + 1 for 2n−1 ≤ i ≤ 2n − 2 and i even

i − 1 for 2n−1 + 1 ≤ i ≤ 2n − 1 and i odd .

Note that the CNC is a linear index assignment1, since

π(CNC)
n (i) = iGn

wherei is ann-bit binary word,Gn is then × n identity matrix with an additional1 in

the upper right hand corner, and arithmetic is performed modulo 2 in the productiGn.

The CNC is closely related to the NBC. However, it induces very different encoding cell

boundaries for EOUQs, as shown by Theorem 3.7.

Lemma 3.6. For eachn, the polynomialφn(ε) = −8ε3 +(4−2n+1)ε2 +(2+2n+1)ε−1

restricted toε ∈ (0, 1/2) has a unique rootε∗n. The polynomial is negative if and only if

ε < ε∗n. Furthermore,ε∗n is monotonic decreasing andε∗n < (2n/2 + 2)−1.

The quantityε∗n defined in Lemma 3.6 will be frequently referenced throughout

the remainder of the paper.ε∗n plays an important role as a threshold value for the bit

error probability of a binary symmetric channel, beyond which the encoding regions and

empty cells of an EOUQ with the CNC index assignment change inbehavior. It can be

1Affine index assignments were studied in [13]. The NBC and Gray code are linear, and the folded
binary code is affine.
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shown, using the general solution to a cubic, that

ε∗n =
2n + 4

12
·
[√

3 sin

(
arctan(τ/σ) + π

3

)

− cos

(
arctan(τ/σ) + π

3

)

− 1

]

+
1

2

where

σ = 2n−5 − 1

27

(
2n−2 + 1

)3
and τ =

√

2n−4(2n−6 − σ).

Theorem 3.7.The encoding cells of an EOUQ with the CNC index assignment are given

as follows.

If n = 2 andε ∈ [0, 1/4), or if n ≥ 3 andε ∈ [0, ε∗n), then

Rn(i) =
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





[

0,

(

δ − 2nε2

δ

)

2−n

]

for i = 0

[(

iδ − 2nε2

δ

)

2−n,

(

(i + 1)δ +
2nε(2 + ε)

1 + 2ε

)

2−n

]

for 1 ≤ i ≤ 2n−1 − 3, i odd
[(

iδ +
2nε(2 + ε)

1 + 2ε

)

2−n,

(

(i + 1)δ − 2nε2

δ

)

2−n

]

for 2 ≤ i ≤ 2n−1 − 2, i even
[(

(2n−1 − 1)δ − 2nε2

δ

)

2−n, 1/2

]

for i = 2n−1 − 1

[

1/2,

(

(2n−1 + 1)δ +
2nε(2 − 3ε)

δ

)

2−n

]

for i = 2n−1

[(

iδ +
2nε(2 − 3ε)

δ

)

2−n,

(

(i + 1)δ +
3 · 2nε2

1 + 2ε

)

2−n

]

for 2n−1 + 1 ≤ i ≤ 2n − 3, i odd
[(

iδ +
3 · 2nε2

1 + 2ε

)

2−n,

(

(i + 1)δ +
2nε(2 − 3ε)

δ

)

2−n

]

for 2n−1 + 2 ≤ i ≤ 2n − 2, i even
[(

(2n − 1)δ +
2nε(2 − 3ε)

δ

)

2−n, 1

]

for i = 2n − 1.

If n = 2 andε ∈ [1/4, 1/2), then

Rn(i) =







∅ for i = 0

[0, 1/2] for i = 1

[1/2, 1] for i = 2

∅ for i = 3.
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If n ≥ 3 andε ∈ [ε∗n, 1/2), then

Rn(i) =






[

0,

(

δ − 2nε2

δ

)

2−n

]

for i = 0 and ε < 1/(2n/2 + 2)
[(

δ − 2nε2

δ

)

2−n,
(
4δ + δ2 + 2n+1ε

)
2−n−1

]

∩ [0, 1] for i = 1

[(
(2i − 2)δ + δ2 + 2n+1ε

)
2−n−1,

(
(2i + 2)δ + δ2 + 2n+1ε

)
2−n−1

]

for 3 ≤ i ≤ 2n−1 − 3, i odd

[(
(2n − 4)δ + δ2 + 2n+1ε

)
2−n−1, 1/2

]

for i = 2n−1 − 1

[

1/2,
(
(2n + 2)δ + 1 − 4ε2 + 2n+1ε

)
2−n−1

]

for i = 2n−1

[(
(2i − 2)δ + 1 − 4ε2 + 2n+1ε

)
2−n−1,

(
(2i + 2)δ + 1 − 4ε2 + 2n+1ε

)
2−n−1

]

for 2n−1 + 2 ≤ i ≤ 2n − 4, i even
[
(
(2n+1 − 6)δ + 1 − 4ε2 + 2n+1ε

)
2−n−1,

(

(2n − 1)δ +
2nε(2 − 3ε)

δ

)

2−n

]

∩ [0, 1]

for i = 2n − 2
[(

(2n − 1)δ +
2nε(2 − 3ε)

δ

)

2−n, 1

]

for i = 2n − 1 and ε < 1/(2n/2 + 2)

∅ else.

Corollary 3.8. For an EOUQ with the CNC index assignment, the number of nonempty

cells is

|Λ| =







2n for ε ∈ [0, ε∗n)

2n−1 + 2 for ε ∈ [ε∗n, 1/(2n/2 + 2))

2n−1 for ε ∈ [1/(2n/2 + 2), 1/2) .
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If ε ∈ [ε∗n, 1/(2n/2 + 2)), then the indices of the empty cells are

{i : 2 ≤ i ≤ 2n−1 − 2, i even} ∪ {i : 2n−1 + 1 ≤ i ≤ 2n − 3, i odd}.

If ε ∈ [1/(2n/2 + 2), 1/2), then the indices of the empty cells are

{i : 0 ≤ i ≤ 2n−1 − 2, i even} ∪ {i : 2n−1 + 1 ≤ i ≤ 2n − 1, i odd}.
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Figure 3.4: Plot of the encoding cells boundaries of a rate 3 EOUQ with the CNC index
assignment as a function of bit error rate.

Figures 3.1 and 3.2 illustrate the encoding cells of a rate3 EOUQ with the CNC

index assignment for bit error rates0.05 and 0.25 respectively. Figure 3.4 plots the

encoding cell boundaries of a rate3 EOUQ with the CNC index assignment as a function

of bit error rate.
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Theorem 3.9.An EOUQ with the CNC index assignment has an effective channel code

rate given as follows. Leth be the binary entropy function and let

p1 = (1 − 2ε)2−n − ε2

1 − 2ε

p2 = (1 − 2ε)2−n +
ε2

1 − 2ε
+ ε

p3 = (1 − 2ε)2−n +
2ε(1 − ε)

1 − 4ε2

p4 = (1 − 2ε)2−n − 2ε(1 − ε)

1 − 4ε2

p5 = (1 − 2ε)2−n + 2−n−1(1 − 2ε)2 +
ε2

1 − 2ε

p6 = (1 − 2ε)21−n − 2−n−1(1 − 2ε)2

p7 = (1 − 2ε)21−n + 2−n−1(1 − 2ε)2 + ε

p8 =
1

2
(1 − 23−n)(1 − 2ε) (n − 1 − log (1 − 2ε)) .

If n = 2 andε ∈ [0, 1/4), then

rc =
1

2

(

1 + h

(
1 − 2ε

2n−1
− 2ε2

1 − 2ε

))

.

If n = 2 andε ∈ [1/4, 1/2), thenrc = 1/2.

If n ≥ 3 andε ∈ [0, ε∗n), then

rc = −2

n

(
p1 log p1 + p2 log p2 + (2n−2 − 1)(p3 log p3 + p4 log p4)

)
.

If n ≥ 3 andε ∈ [ε∗n, 1/(2n/2 + 2)), then

rc = −2

n
(p1 log p1 + p5 log p5 + p6 log p6 − p8) .
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If n ≥ 3 andε ∈ [1/(2n/2 + 2), 1/2), then

rc = −2

n
(p7 log p7 − p8 + p6 log p6) .

As n → ∞ the effective channel code rate given by Theorem 3.9 converges to

1 − 2ε, for all ε ∈ [0, 1/2). Figure 3.5 plots the quantityrc from Theorem 3.9 for rate

n = 4.
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Figure 3.5: Plot of the effective channel code raterc of EOUQs with the NBC and the
CNC index assignments for raten = 4. The horizontal axis is the bit error probability
ε of a binary symmetric channel. Also shown for comparison is the channel’s capacity
1 − H(ε).

Corollary 3.8 shows that given a bit error probabilityε > 0, for n sufficiently

large an EOUQ with the CNC has half the number of nonempty encoding cells as one

with the NBC. The following theorem shows that despite this fact, for a sequence of

EOUQs, the CNC and the NBC induce the same cell density function (via Theorem 3.5).
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Theorem 3.10.A sequence of EOUQs with the CNC index assignment has a cell density

function given by

γ(x) =







1
1−2ε

for ε < x < 1 − ε

0 else.

Proof. For eachε > 0 andn sufficiently large,

1

2n/2 + 2
< ε

and therefore, by Corollary 3.8, the indices of the nonemptycells are

{i : 1 ≤ i ≤ 2n−1 − 1, i odd} ∪ {i : 2n−1 ≤ i ≤ 2n − 2, i even}.

Asn grows, the encoding cellsRn(i) in Theorem 3.7 corresponding toi = 2n−1−1, 2n−1

do not affect the cell density function. At the same time, theright endpoint of the

encoding cell in Theorem 3.7 corresponding toi = 1 converges toε and the left endpoint

of the encoding cell in Theorem 3.7 corresponding toi = 2n − 2 converges to1− ε. All

other encoding cells have lengthδ21−n. Hence, in the limit asn → ∞ they uniformly

partition the interval[ε, 1 − ε]. 2

For completeness we derive the point density function of a DOUQ with the CNC.

Analogous to the NBC, the cell density function in Theorem 3.10 is equal to the point

density function for a sequence of DOUQs with the CNC.

Theorem 3.11. A sequence of DOUQs with the CNC index assignment has a point

density function given by

λ(x) =







1
1−2ε

for ε < x < 1 − ε

0 else.
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Proof. From [3], the codepoints of a DOUQ with the CNC index assignment satisfy

yn(i) =

2n−1∑

j=0

(
j + 1/2

2n

)

pn

(
π(CNC)

n (j)|π(CNC)
n (i)

)

= 2−n ·







(2n − 1)ε + δ(i + ε) + 1
2

for i even

(2n − 1)ε + δ(i − ε) + 1
2

for i odd

(3.11)

where (3.11) follows from Lemma 3.24. Thus,

yn(i + 1) − yn(i) =







2−n(1 − 4ε2) for i odd

2−n(1 − 2ε)2 for i even

which implies the codepoints are uniformly distributed in the limit asn → ∞. Since

yn(0) = ε+2−(n+1)(1−4ε2) → ε asn → ∞, andyn(2
n−1) = 1−ε−2−(n+1)(1−4ε2) →

1 − ε asn → ∞, the point density function is uniform on(ε, 1 − ε). 2

3.5 Distortion Analysis

Let D(πn)
EO

denote the end-to-end MSE of an EOUQ with index assignmentπn.

Recall thatΛ = {i : Rn(i) 6= ∅}. For i ∈ Λ, define the quantities

Ir(i) = argmin
j∈Λ

cn(j)>cn(i)

cn(j)

Il(i) = argmax
j∈Λ

cn(j)<cn(i)

cn(j)

zn(i) = sup Rn(i)

(Ir andIl are defined when the argmin and argmax, respectively, exist). Also, define

V = {i : 1 6∈ Rn(i)} ∩ Λ
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I1 = V c ∩ Λ.

Ir(i) andIl(i) are the indices of cells immediately to the right and left, respectively, of

the cell with indexi; V is the set of indices of nonempty cells that don’t contain1; and

I1 is the index of the nonempty cell containing1.

Lemma 3.12.The mean squared error of a EOUQ with index assignmentπn is

D(πn)
EO

=
1

3
− 2−n−1 + 2−2n−2 + 2−n

[
∑

i∈V

z2
n(i) · αn(i, Ir(i)) −

2n−1∑

j=0

jpn(πn(j)|πn(I1))

]

+ 2−2n

2n−1∑

j=0

(j + j2)pn(πn(j)|πn(I1)).

The next two theorems give the mean squared errors for the NBCwith a channel

unoptimized uniform quantizer and with an EOUQ. Theorem 3.13 was stated in [8] (see,

e.g. [13] for a proof). The results are given as a function of the quantizer raten and the

channel bit error probabilityε. Let D(πn)
CU

denote the end-to-end MSE of an channel

unoptimized uniform quantizer with index assignmentπn.

With no channel noise the MSE is2−2n/12. If a quantizer with the NBC is

designed for a noiseless channel but used on a noisy channel,then Theorem 3.13 shows

that (for largen) roughly ε/3 is added to the MSE. If a quantizer with the NBC and a

channel-optimized encoder is used on a noisy channel, then Theorem 3.14 shows that

(for largen) the MSE is reduced by roughlyε2/3 from the channel unoptimized case.

Theorem 3.13.The mean squared error of a channel unoptimized uniform quantizer

with the NBC index assignment is

D(NBC)
CU

=
2−2n

12
+

ε

3
(1 − 2−2n).
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Theorem 3.14.The mean squared error of an EOUQ with the NBC index assignment is

D(NBC)
EO

= D(NBC)
CU

− ε2

3
(1 − 2ε)(1 − 2−n)(1 − 2−n+1).

Proof. For the NBC,pn(πn(j)|πn(i)) = pn(j|i) and Theorem 3.2 and Corollary 3.3

imply thatV = {0, 1, . . . , 2n − 2}, Ir(i) = i + 1, andI1 = 2n − 1. Hence, Lemma 3.12

gives

D(NBC)
EO

−
(

1

3
− 2−n−1 + 2−2n−2

)

= 2−2n

2n−1∑

j=0

j2pn(j|2n − 1) + (2−2n − 2−n)

2n−1∑

j=0

jpn(j|2n − 1)

+ 2−n
2n−2∑

i=0

z2
n(i) · αn(i, i + 1)

= 2−2n

(
ε

3
(4n − 1) +

2ε2

3
(2n − 1)(2n − 2) + δ(2n − 1)2

)

+ (2−2n − 2−n)(2n − 1)(1 − ε) − δ2−n

2n−2∑

i=0

[ε + δ(i + 1)2−n]2 (3.12)

= 2−2n

(
ε

3
(4n − 1) +

2ε2

3
(2n − 1)(2n − 2) − ε(2n − 1)2

)

− δ2−n

[

(2n − 1)ε2 + (2n − 1)2εδ2−n + (2n − 1)(2n − 2)εδ2−n

+
(2n − 1)(2n − 2)(2n+1 − 3)δ22−2n

6
+ (2n − 1)2δ22−2n

]

(3.13)

D(NBC)
EO

=
2−2n

12
+

(2n − 1)(2n − 2)(2ε3 − ε2) + (22n − 1)ε

3 · 22n
(3.14)

where the last three terms in (3.12) follow from Lemma 3.21, Lemma 3.20, and (3.6)

and (3.10) respectively; and where (3.14) follows from (3.13) after arithmetic. 2

Let D(πn)
DO

denote the end-to-end MSE of a DOUQ with index assignmentπn.

For a givenn andε, an index assignmentπn ∈ Sn is said to beoptimal for an EOUQif
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for all π′
n ∈ Sn,

D(πn)
EO

≤ D(π′
n)

EO

and is said to beoptimal for a DOUQif for all π′
n ∈ Sn,

D(πn)
DO

≤ D(π′
n)

DO
.

In [3] it was shown that for alln and all ε the NBC is optimal for a DOUQ. Theo-

rems 3.13 and 3.14 show that with the NBC, the reduction in MSEobtained by using a

channel-optimized quantizer encoder instead of one obeying the nearest neighbor con-

dition is
(ε2 − 2ε3)(2n − 1)(2n − 2)

3 · 22n
.

The next two theorems show, however, that the NBC is not optimal for an EOUQ for all

n and allε.

Theorem 3.15.The mean squared error of an EOUQ with the CNC index assignment is

D(CNC)
EO

=







D1(n, ε) for 0 ≤ ε < ε∗n

D2(n, ε) for ε∗n ≤ ε < 1
2n/2+2

D3(n, ε) for 1
2n/2+2

≤ ε < 1/2

where

D1(n, ε)

=
2−2n

3(1 + 2ε)

(

(1/4) + (22n + (5/2))ε− (22n+1 − 15 · 2n + 4)ε2

+ 6(22n − 2n+2 − 4)ε3 + (2n − 4)(2n − 2)ε4 − 12(2n − 4)ε5
)

D2(n, ε)

=
2−3n

3

(

2n − 3 + [(2n − 3)(22n + 10) − 2n−1 + 48]ε
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− [(2n − 6)(2n − 5)(2n − 4) − 3(22n + 2n+2 − 48)]ε2

+ 2(2n − 4)(22n − 11 · 2n + 6)ε3 + 6(2n − 6)(2n − 4)ε4 + 24(2n − 4)ε5
)

D3(n, ε)

=
2−3n

3

(

2n + 3 + [(2n − 3)(22n + 10) − 2n−1]ε − [(2n − 6)(2n − 5)(2n − 4)

− 3 · 22n]ε2 + 2(2n − 6)(2n − 5)(2n − 4)ε3 + 12(2n − 5)(2n − 4)ε4

+ 24(2n − 4)ε5
)

.

Lemma 3.16.On the interval[0, 1/2], the polynomial

gn(ε) = 4(2n − 4)ε4 + 2n(2n − 2)ε3 − 2(22n − 2n+2 − 4)ε2 + 2n(2n − 4)ε − 1

has exactly one root̂εn, andgn(ε) < 0 if and only ifε < ε̂n. Furthermore,2−2n < ε̂n <

2−2n+1 whenn ≥ 4.

Note thatgn(2−2n+a) → 2a − 1 > 0 asn → ∞, for anya > 0. Hence, the

bound on̂εn can be strengthened to2−2n < ε̂n < 2−2n+a, for arbitrarily smalla > 0 and

sufficiently largen. Thus,ε̂n ∼ 2−2n, for asymptotically largen.

The following theorem shows that the quantityε̂n defined in Lemma 3.16 is

a threshold value for the bit error probability of a binary symmetric channel, beyond

which the MSE of an EOUQ with the CNC index assignment is smaller than with the

NBC, for n ≥ 3. Lemma 3.16 then implies that the NBC is sub-optimal for a large

range of transmission rates and bit error probabilities (i.e., for all ε andn satisfying

ε > 2−2n+o(1), whereo(1) → 0 asn → ∞). In particular, for everyε > 0, the CNC

index assignment eventually outperforms the NBC for a largeenough transmission rate.

Figure 3.6 plots the quantityD(NBC)
EO

− D(CNC)
EO

as a function ofε for raten = 3.

Theorem 3.17.D(CNC)
EO

< D(NBC)
EO

if and only ifn ≥ 3 andε > ε̂n.

Some intuition for why EOUQs with the CNC achieve lower MSEs than those
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Figure 3.6: Plot of the difference in MSE achieved by EOUQs with the NBC index
assignment and CNC index assignment for raten = 3. The horizontal axis is the bit
error probabilityε of a binary symmetric channel. The quantityε̂n from Lemma 3.16 is
also shown.

with the NBC can be gained by examining the index generated bythe CNC. For every

ε > 0 and forn sufficiently large, we have

1

2n/2 + 2
< ε

which, by Corollary 3.8, implies the indices of the nonemptycells in an EOUQ with the

CNC are

{i : 1 ≤ i ≤ 2n−1 − 1, i odd} ∪ {i : 2n−1 ≤ i ≤ 2n − 2, i even}.

Corresponding to such nonempty cells, the encoder transmits (by the definition of CNC)

only the odd integers1, 3, . . . , 2n − 1. Hence, the encoder of an EOUQ with the CNC
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emulates the encoder of a raten − 1 EOUQ with the NBC, and then adds an extra bit

(carrying no information) before transmission over the channel. Since the CNC uses

longer codewords than the NBC, the CNC codewords are exposedto fewer channel

errors on average, while being penalized with a lower level of quantizer resolution. This

tradeoff makes the CNC superior to the NBC, except for very small bit error rates.
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Appendix

3.7 Lemmas and Proofs for Section 3.2

Lemma 3.18.For any index assignmentπn ∈ Sn and for 0 ≤ i ≤ 2n − 1,

2n−1∑

j=0

(1 − ε)n−Hn(πn(i),πn(j))εHn(πn(i),πn(j)) = 1.

Proof of Lemma 3.18.It follows immediately since index assignments are permutations.

2

Proof of Lemma 3.1.Let i andk be two distinct integers between0 and2n − 1. Then

the inequality in (3.2) can be rewritten as

2n−1∑

j=0

[x2 − 2xyn(j) + y2
n(j)]pn(πn(j)|πn(i))

≤
2n−1∑

j=0

[x2 − 2xyn(j) + y2
n(j)]pn(πn(j)|πn(k)).

Sinceπn is bijective and
∑

j pn(j|i) = 1, ∀j, cancellation of terms gives

2n−1∑

j=0

[−2xj

2n
+

(j2 + j)

22n

]

pn(πn(j)|πn(i))

≤
2n−1∑

j=0

[−2xj

2n
+

(j2 + j)

22n

]

pn(πn(j)|πn(k))

or equivalently,

x

2n−1∑

j=0

j[pn(πn(j)|πn(i)) − pn(πn(j)|πn(k))]
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≥ 2−n−1
2n−1∑

j=0

(j2 + j)[pn(πn(j)|πn(i)) − pn(πn(j)|πn(k))].

2

3.8 Lemmas and Proofs for Section 3.3

The following lemma is easy to prove and is used in the proofs of Lemmas 3.20

and 3.21.

Lemma 3.19.

Hn+1(i, j) = Hn(i, j) for 0 ≤ i, j ≤ 2n − 1 (3.15)

Hn+1(i, j + 2n) = Hn(i, j) + 1 for 0 ≤ i, j ≤ 2n − 1 (3.16)

Hn+1(i, j) = Hn(i − 2n, j) + 1 for 0 ≤ j ≤ 2n− 1,2n ≤ i ≤ 2n+1− 1 (3.17)

Hn+1(i, j) = Hn(i − 2n, j − 2n) for 2n ≤ i, j ≤ 2n+1 − 1. (3.18)

Lemma 3.20. If 0 ≤ i ≤ 2n − 1, then

2n−1∑

j=0

jpn

(
π(NBC)

n (j)|π(NBC)
n (i)

)
= (2n − 1)ε + iδ. (3.19)

Proof of Lemma 3.20.We use induction onn. The case ofn = 1 is true since

p1

(
π(NBC)

n (j)|π(NBC)
n (i)

)
= p1(j|i)

1∑

j=0

jp1(j|0) = ε

1∑

j=0

jp1(j|1) = 1 − ε.
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Now assume (3.19) is true forn and consider two cases forn + 1.

If 0 ≤ i ≤ 2n − 1, then using (3.15) and (3.16) to expresspn+1(j|i) in terms of

pn(j|i) and simplifying with Lemma 3.18 gives

2n+1−1∑

j=0

jpn+1(j|i) = (1 − ε)
2n−1∑

j=0

jpn(j|i) + ε
2n−1∑

j=0

jpn(j|i) + 2nε

= (2n+1 − 1)ε + iδ (3.20)

where (3.20) follows from the induction hypothesis.

If 2n ≤ i ≤ 2n+1 − 1, then using (3.17) and (3.18) to expresspn+1(j|i) in terms

of pn(j|i) and simplifying with Lemma 3.18 gives

2n+1−1∑

j=0

jpn+1(j|i) = ε
2n−1∑

j=0

jpn(j|i − 2n) + (1 − ε)
2n−1∑

j=0

jpn(j|i − 2n) + 2n(1 − ε)

= (2n+1 − 1)ε + iδ (3.21)

where (3.21) follows from the induction hypothesis. 2

Lemma 3.21. If 0 ≤ i ≤ 2n − 1, then

2n−1∑

j=0

j2pn

(
π(NBC)

n (j)|π(NBC)
n (i)

)
=

ε

3
(4n−1)+

2ε2

3
(2n−1)(2n−2)+i2εδ(2n−1)+i2δ2.

(3.22)

Proof of Lemma 3.21.We use induction onn. The case ofn = 1 is true since

p1

(
π(NBC)

n (j)|π(NBC)
n (i)

)
= p1(j|i)

1∑

j=0

j2p1(j|0) = ε

1∑

j=0

j2p1(j|1) = 1 − ε
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which satisfies the right hand side of (3.22). Now assume (3.22) is true forn and con-

sider two cases forn + 1.

If 0 ≤ i ≤ 2n − 1, then using (3.15) and (3.16) to expresspn+1(j|i) in terms of

pn(j|i) and simplifying with Lemma 3.18 gives

2n+1−1∑

j=0

j2pn+1(j|i)

= (1 − ε)

2n−1∑

j=0

j2pn(j|i) + ε

2n−1∑

j=0

j2pn(j|i) + ε 2n+1
2n−1∑

j=0

jpn(j|i) + 22nε

=
ε

3
(4n+1 − 1) +

2ε2

3
(2n+1 − 1)(2n+1 − 2) + i2εδ(2n+1 − 1) + i2δ2 (3.23)

where (3.23) follows from the induction hypothesis and Lemma 3.20.

If 2n ≤ i ≤ 2n+1 − 1, then using (3.17) and (3.18) to expresspn+1(j|i) in terms

of pn(j|i) and simplifying with Lemma 3.18 gives

2n+1−1∑

j=0

j2pn+1(j|i)

= ε

2n−1∑

j=0

j2pn(j|i − 2n) + (1 − ε)

2n−1∑

j=0

j2pn(j|i − 2n)

+ (1 − ε)2n+1

2n−1∑

j=0

jpn(j|i − 2n) + 22n(1 − ε)

=
ε

3
(4n+1 − 1) +

2ε2

3
(2n+1 − 1)(2n+1 − 2) + i2εδ(2n+1 − 1) + i2δ2 (3.24)

where (3.24) follows from the induction hypothesis and Lemma 3.20. 2
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3.9 Lemmas and Proofs for Section 3.4

The following two lemmas are used in the proofs of Lemmas 3.24and 3.26. Let

Ĥn(i, j) = H(π(CNC)
n (i), π(CNC)

n (j)).

Lemma 3.22.

Ĥn(i, j) = Hn(i, j) for 0 ≤ i, j ≤ 2n−1 − 1 or 2n−1 ≤ i, j ≤ 2n − 1 (3.25)

Ĥn(i, j) = Hn(i, j + 1) for 0 ≤ i ≤ 2n−1 − 1, 2n−1 ≤ j ≤ 2n − 2, and j even

(3.26)

Ĥn(i, j) = Hn(i, j − 1) for 0 ≤ i ≤ 2n−1 − 1, 2n−1 + 1 ≤ j ≤ 2n − 1, and j odd

(3.27)

Ĥn(i, j) = Hn(i, j + 1) for 2n−1 ≤ i ≤ 2n − 1, 0 ≤ j ≤ 2n−1 − 2, and j even

(3.28)

Ĥn(i, j) = Hn(i, j − 1) for 2n−1 ≤ i ≤ 2n − 1, 1 ≤ j ≤ 2n−1 − 1, and j odd .

(3.29)

Proof of Lemma 3.22.It follows from the definition of the CNC. 2

Lemma 3.23. If 0 ≤ i ≤ 2n−1 − 1, then

2n−2∑

j=2n−1

j even

(1 − ε)n−Hn(i,j)εHn(i,j) =







ε(1 − ε) for i even

ε2 for i odd
(3.30)

2n−1∑

j=2n−1+1
j odd

(1 − ε)n−Hn(i,j)εHn(i,j) =







ε2 for i even

ε(1 − ε) for i odd
(3.31)
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and if2n−1 ≤ i ≤ 2n − 1, then

2n−1−2∑

j=0
j even

(1 − ε)n−Hn(i,j)εHn(i,j) =







ε(1 − ε) for i even

ε2 for i odd
(3.32)

2n−1−1∑

j=1
j odd

(1 − ε)n−Hn(i,j)εHn(i,j) =







ε2 for i even

ε(1 − ε) for i odd .
(3.33)

Proof of Lemma 3.23.It follows from the definition of the NBC. 2

Lemma 3.24. If 0 ≤ i ≤ 2n − 1, then

2n−1∑

j=0

jpn

(
π(CNC)

n (j)|π(CNC)
n (i)

)
=







(2n − 1)ε + δ(i + ε) for i even

(2n − 1)ε + δ(i − ε) for i odd .

Proof of Lemma 3.24.If 0 ≤ i ≤ 2n−1 − 1, then using (3.25), (3.26), and (3.27) in

Lemma 3.22 to expresspn

(

π
(CNC)
n (j)|π(CNC)

n (i)
)

in terms ofε, n, andHn(i, j) gives

2n−1∑

j=0

jpn

(
π(CNC)

n (j)|π(CNC)
n (i)

)

=

2n−1−1∑

j=0

j(1 − ε)n−Hn(i,j)εHn(i,j) +

2n−1∑

j=2n−1+1
j odd

(j − 1)(1 − ε)n−Hn(i,j)εHn(i,j)

+

2n−2∑

j=2n−1

j even

(j + 1)(1 − ε)n−Hn(i,j)εHn(i,j)

=







(2n − 1)ε + δ(i + ε) for i even

(2n − 1)ε + δ(i − ε) for i odd
(3.34)

(3.35)

where (3.34) follows from Lemma 3.20 and (3.30) and (3.31) inLemma 3.23.
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If 2n−1 ≤ i ≤ 2n − 1, then using (3.28), (3.29), and (3.25) in Lemma 3.22 to ex-

press

pn

(

π
(CNC)
n (j)|π(CNC)

n (i)
)

in terms ofε, n, andHn(i, j) gives

2n−1∑

j=0

jpn

(
π(CNC)

n (j)|π(CNC)
n (i)

)

=

2n−1−1∑

j=1
j odd

(j − 1)(1 − ε)n−Hn(i,j)εHn(i,j) +

2n−1−2∑

j=0
j even

(j + 1)(1 − ε)n−Hn(i,j)εHn(i,j)

+

2n−1∑

j=2n−1

j(1 − ε)n−Hn(i,j)εHn(i,j)

=







(2n − 1)ε + δ(i + ε) for i even

(2n − 1)ε + δ(i − ε) for i odd
(3.36)

where (3.36) follows from Lemma 3.20 and (3.32) and (3.33) inLemma 3.23. 2

The following lemma is used in the proof of Lemma 3.26.

Lemma 3.25. If 0 ≤ i ≤ 2n−1 − 1, then

2n−2∑

j=2n−1

j even

j(1 − ε)n−Hn(i,j)εHn(i,j)

=







2n−1ε(1 − ε2) − 2ε2(1 − ε) + iδ(1 − ε)ε for i even

(2n−1 − 1)ε2 + iδε2 + 2n−1ε3 for i odd
(3.37)

2n−1∑

j=2n−1+1
j odd

j(1 − ε)n−Hn(i,j)εHn(i,j)

=







(2n−1 + 1)ε2 + iδε2 + (2n−1 − 2)ε3 for i even

2n−1ε(1 − ε2) + iδ(1 − ε)ε for i odd
(3.38)
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and if2n−1 ≤ i ≤ 2n − 1, then

2n−1−2∑

j=0
j even

j(1 − ε)n−Hn(i,j)εHn(i,j)

=







(2n−1 − 1)ε2(1 − ε) − ε2(1 − ε) + (i − 2n−1)δ(1 − ε)ε for i even

(2n−1 − 1)ε3 − ε2(1 − ε) + (i − 2n−1)δε2 for i odd

(3.39)

2n−1−1∑

j=1
j odd

j(1 − ε)n−Hn(i,j)εHn(i,j)

=







(2n−1 − 1)ε3 + ε2(1 − ε) + (i − 2n−1)δε2 for i even

(2n−1 − 1)ε2(1 − ε) + ε2(1 − ε) + (i − 2n−1)δ(1 − ε)ε for i odd .

(3.40)

Proof of Lemma 3.25.For each sum in (3.37)-(3.40) the first and last digits of the binary

expansions ofi andj are constant over all terms in the sum. Therefore, their contribu-

tion to the Hamming distanceHn(i, j) is the same for each term in the sum. Hence,

by summing over the middlen − 2 bits of j, the left hand sides of (3.37)-(3.40) are,

respectively,







2n−2−1∑

j=0

(2j + 2n−1)(1 − ε)n−(Hn−2(i/2,j)+1)εHn−2(i/2,j)+1 for i even

2n−2−1∑

j=0

(2j + 2n−1)(1 − ε)n−(Hn−2((i−1)/2,j)+2)εHn−2((i−1)/2,j)+2 for i odd ,







2n−2−1∑

j=0

(2j + 1 + 2n−1)(1 − ε)n−(Hn−2(i/2,j)+2)εHn−2(i/2,j)+2 for i even

2n−2−1∑

j=0

(2j + 1 + 2n−1)(1 − ε)n−(Hn−2((i−1)/2,j)+1)εHn−2((i−1)/2,j)+1 for i odd ,
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





2n−2−1∑

j=0

2j(1 − ε)n−(Hn−2((i−2n−1)/2,j)+1)εHn−2((i−2n−1)/2,j)+1 for i even

2n−2−1∑

j=0

2j(1 − ε)n−(Hn−2((i−1−2n−1)/2,j)+2)εHn−2((i−1−2n−1)/2,j)+2 for i odd ,







2n−2−1∑

j=0

(2j + 1)(1 − ε)n−(Hn−2((i−2n−1)/2,j)+2)εHn−2((i−2n−1)/2,j)+2 for i even

2n−2−1∑

j=0

(2j + 1)(1 − ε)n−(Hn−2((i−1−2n−1)/2,j)+1)εHn−2((i−1−2n−1)/2,j)+1 for i odd .

The right hand sides of (3.37)-(3.40) then follow from Lemma3.20. 2

Lemma 3.26. If 0 ≤ i ≤ 2n−1 − 1, then

2n−1∑

j=0

j2pn

(
π(CNC)

n (j)|π(CNC)
n (i)

)

=







ε
[(

22n−1
3

)

+ 2n + 1
]

+ ε2

3
(22n+1 − 9 · 2n − 14) − ε3(2n+1 − 8)

+ iδ[2ε(2n − 1) + 2εδ] + i2δ2
for i even

ε
[(

22n−1
3

)

− 2n + 1
]

+ ε2

3
(22n+1 − 3 · 2n − 2) + 2n+1ε3

+ iδ[2ε(2n − 1) − 2εδ] + i2δ2
for i odd

and if2n−1 ≤ i ≤ 2n − 1, then

2n−1∑

j=0

j2pn

(
π(CNC)

n (j)|π(CNC)
n (i)

)

=







ε
[(

22n−1
3

)

− 2n + 1
]

+ ε2

3
(22n+1 + 9 · 2n − 14) − ε3(3 · 2n+1 − 8)

+ iδ[2ε(2n − 1) + 2εδ] + i2δ2
for i even

ε
[(

22n−1
3

)

+ 2n + 1
]

+ ε2

3
(22n+1 − 21 · 2n − 2) + 3 · 2n+1ε3

+ iδ[2ε(2n − 1) − 2εδ] + i2δ2
for i odd .
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Proof of Lemma 3.26.If 0 ≤ i ≤ 2n−1 − 1, then using (3.25), (3.26), and (3.27) in

Lemma 3.22 to expresspn

(

π
(CNC)
n (j)|π(CNC)

n (i)
)

in terms ofε, n, andHn(i, j) and

simplifying with (3.30) and (3.31) from Lemma 3.23 gives

2n−1∑

j=0

j2pn

(
π(CNC)

n (j)|π(CNC)
n (i)

)

=

2n−1∑

j=0

j2(1 − ε)n−Hn(i,j)εHn(i,j) + ε

− 2







2n−1∑

j=2n−1+1
j odd

j(1 − ε)n−Hn(i,j)εHn(i,j) −
2n−2∑

j=2n−1

j even

j(1 − ε)n−Hn(i,j)εHn(i,j)







=







ε
[(

22n−1
3

)

+ 2n + 1
]

+ ε2

3
(22n+1 − 9 · 2n − 14) − ε3(2n+1 − 8)

+ iδ[2ε(2n − 1) + 2εδ] + i2δ2
for i even

ε
[(

22n−1
3

)

− 2n + 1
]

+ ε2

3
(22n+1 − 3 · 2n − 2) + 2n+1ε3

+ iδ[2ε(2n − 1) − 2εδ] + i2δ2
for i odd

(3.41)

where (3.41) follows from Lemma 3.21 and (3.37) and (3.38) inLemma 3.25.

If 2n−1 ≤ i ≤ 2n − 1, then using (3.25), (3.28), and (3.29) in Lemma 3.22 to ex-

press

pn

(

π
(CNC)
n (j)|π(CNC)

n (i)
)

in terms ofε, n, andHn(i, j) and simplifying with (3.32)

and (3.33) from Lemma 3.23 gives

2n−1∑

j=0

j2pn

(
π(CNC)

n (j)|π(CNC)
n (i)

)

=
2n−1∑

j=0

j2(1 − ε)n−Hn(i,j)εHn(i,j) + ε
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− 2







2n−1−1∑

j=1
j odd

j(1 − ε)n−Hn(i,j)εHn(i,j) −
2n−1−2∑

j=0
j even

j(1 − ε)n−Hn(i,j)εHn(i,j)







=







ε
[(

22n−1
3

)

− 2n + 1
]

+ ε2

3
(22n+1 + 9 · 2n − 14) − ε3(3 · 2n+1 − 8)

+ iδ[2ε(2n − 1) + 2εδ] + i2δ2
for i even

ε
[(

22n−1
3

)

+ 2n + 1
]

+ ε2

3
(22n+1 − 21 · 2n − 2) + 3 · 2n+1ε3

+ iδ[2ε(2n − 1) − 2εδ] + i2δ2
for i odd

(3.42)

where (3.42) follows from Lemma 3.21 and (3.39) and (3.40) inLemma 3.25. 2

Proof of Lemma 3.6.Sinceφ′′′
n < 0, φn(0) = −1, φn(1/2) = 2n−1, andφn(1) = −3,

the cubic functionφn has exactly one root (i.e.ε∗n) in (0, 1/2), φn < 0 on [0, ε∗n), and

φn > 0 on (ε∗n, 1/2]. Furthermore,ε∗n > ε∗n+1 since

φn+1(ε) − φn(ε) = 2n+1ε(1 − ε), ∀ε.

The fact that

ε∗n <
1

2n/2 + 2

follows from the fact that

φn

(
1

2n/2 + 2

)

=
22n+1 + 5 · 23n/2

(2n/2 + 2)3
> 0.

2

Proof of Theorem 3.7.The encoding cells satisfy (3.3) in Lemma 3.1, with

αn(i, k) =
2n−1∑

j=0

j
[
pn(π(CNC)

n (j)|π(CNC)
n (i)) − pn(π(CNC)

n (j)|π(CNC)
n (k))

]
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=







δ(i − k) for i, k even or i, k odd

δ(i − k − 2ε) for k even, i odd

δ(i − k + 2ε) for i even, k odd

(3.43)

where (3.43) follows from Lemma 3.24. Letρn(i, k) = βn(i, k)/αn(i, k) for i 6= k.

Note thatρn(i, k) is well defined becauseαn(i, k) 6= 0 wheneverk 6= i, by (3.43). Also,

from (3.43), we have thatαn(i, k) > 0 if and only if i > k, andαn(i, k) < 0 if and only

if i < k.

Thus (3.3) can be rewritten as

Rn(i) = {x ∈ [0, 1] : x ≥ ρn(i, k), ∀ k < i and x ≤ ρn(i, k), ∀ k > i}

=

{

x ∈ [0, 1] : max
k<i

ρn(i, k) ≤ x ≤ min
k>i

ρn(i, k)

}

. (3.44)

Therefore, the encoding cell with indexi is empty if and only if at least one of the

following conditions holds

max
k<i

ρn(i, k) ≥ min
k>i

ρn(i, k) (3.45)

min
k>i

ρn(i, k) ≤ 0 (3.46)

max
k<i

ρn(i, k) ≥ 1. (3.47)

For notational convenience, assumemax
k<i

ρn(0, k) = 0 andmin
k>i

ρn(2n − 1, k) = 1.

We will examine four cases, corresponding to the parity and size of a cell’s index

i.

Case 1 :i even ,0 ≤ i ≤ 2n−1 − 2
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Equations (3.5) and (3.43) and Lemma 3.26 imply

ρn(i, k)

=







ε + 2−n−1(i + k + 1 + 2ε)δ for 0 ≤ k ≤ 2n−1 − 2, k even

ε + 2−n−1(i + k + 1 + 2ε)δ +
ε(1 − ε)

i − k
for 2n−1 ≤ k ≤ 2n − 2, k even

ε + 2−n−1(i + k + 1)δ +
ε(1 − ε)

i − k + 2ε
for 1 ≤ k ≤ 2n−1 − 1, k odd

ε + 2−n−1(i + k + 1)δ for 2n−1 + 1 ≤ k ≤ 2n − 1, k odd .

(3.48)

Equations (3.49) and (3.50) below follow from (3.48) and thefact thatρn(i, k) is in-

creasing ink for k < i andk > i.

max
k<i
i6=0

ρn(i, k) =

(

iδ +
2nε(2 + ε)

1 + 2ε

)

2−n (3.49)

min
k>i

ρn(i, k) =

(

(i + 1)δ − 2nε2

δ

)

2−n. (3.50)

For i 6= 0 theith encoding cellRn(i) is nonempty if and only if the conditions in

(3.45)–(3.47) are each false. (3.49), (3.50), and Lemma 3.6imply (3.45) is false if and

only if

(

iδ +
2nε(2 + ε)

1 + 2ε

)

2−n <

(

(i + 1)δ − 2nε2

δ

)

2−n

or equivalently, if and only if

ε < ε∗n. (3.51)



97

(3.46) is false if and only if (3.50) is positive, or equivalently,

ε <
1

2(n/2)−(1/2) log(i+1) + 2
. (3.52)

Similarly, (3.47) is false if and only if (3.49) is less than1, or equivalently

i <
2n(1 − ε2)

1 − 4ε2
(3.53)

which is always true, since1−ε2

1−4ε2
> 1 andi < 2n. Lemma 3.6 implies that

ε∗n <
1

2(n/2)−(1/2) log(i+1) + 2

for i ≥ 0. Hence, ifε < ε∗n, then (3.52) holds, and thereforeRn(i) is nonempty fori 6= 0

if and only if ε < ε∗n.

For i = 0 the conditions in (3.45) and (3.46) are equivalent and the condition in

(3.47) is always false. Therefore, the encoding cellRn(0) is nonempty (from (3.46) and

(3.50)) if and only if

ε <
1

2n/2 + 2
. (3.54)

Case 2 :i odd ,1 ≤ i ≤ 2n−1 − 1

Equations (3.5) and (3.43) and Lemma 3.26 imply

ρn(i, k)
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=







ε + 2−n−1(i + k + 1)δ − ε(1 − ε)

i − k − 2ε
for 0 ≤ k ≤ 2n−1 − 2, k even

ε + 2−n−1(i + k + 1)δ for 2n−1 ≤ k ≤ 2n − 2, k even

ε + 2−n−1(i + k + δ)δ for 1 ≤ k ≤ 2n−1 − 1, k odd

ε + 2−n−1(i + k + δ)δ − ε(1 − ε)

i − k
for 2n−1 + 1 ≤ k ≤ 2n − 1, k odd .

(3.55)

If i 6= 1, then from (3.55),

max
k<i

ρn(i, k) = max

{

max
k<i

k even

ε + 2−n−1(i + k + 1)δ − ε(1 − ε)

i − k − 2ε
,

ε + 2−n−1(i + k + δ)δ
∣
∣
∣
k=i−2

}

(3.56)

=







(

iδ − 2nε2

δ

)

2−n for ε < ε∗n

(
(2i − 2)δ + δ2 + 2n+1ε

)
2−n−1 for ε ≥ ε∗n.

(3.57)

Equation (3.57) was obtained by noting that in (3.56) the first term is greater than the

second term if and only if bothk = i − 1 (sincek is even) and (after some algebra)

φ(ε) < 0 (i.e. ε < ε∗n via Lemma 3.6). Ifi = 1, then from (3.55),

max
k<1

ρn(i, k) = ρn(1, 0) =

(

δ − 2nε2

δ

)

2−n. (3.58)

For i 6= 2n−1 − 1,

min
k>i

ρn(i, k)

= min







min
k>i

2≤k<2n−1

k even

ε + 2−n−1(i + k + 1)δ − ε(1 − ε)

i − k − 2ε
,

ε + 2−n−1(i + k + 1)δ
∣
∣
∣
k=2n−1

,
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ε + 2−n−1(i + k + δ)δ
∣
∣
∣
k=i+2

,

min
i<k

2n−1+1<k<2n−1
k odd

ε + 2−n−1(i + k + δ)δ − ε(1 − ε)

i − k







(3.59)

=







(

(i + 1)δ + 2nε(2+ε)
1+2ε

)

2−n for ε < ε∗n

(
(2i + 2)δ + δ2 + 2n+1ε

)
2−n−1 for ε ≥ ε∗n.

(3.60)

Equation (3.60) was obtained by noting that in (3.59) the third term is less than the forth

term evaluated at any oddk between2n−1 + 1 and2n − 1; and the first term is less than

the third term if and only if bothk = i + 1 (sincek is even) and (after some algebra)

φ(ε) < 0 (i.e. ε < ε∗n via Lemma 3.6). Ifi = 2n−1 − 1, then

min
k>i

ρn(i, k)

= min







ε + 2−n−1(i + k + 1)δ
∣
∣
∣
k=2n−1

,

min
i<k

2n−1+1<k<2n−1
k odd

ε + 2−n−1(i + k + δ)δ − ε(1 − ε)

i − k







(3.61)

=
1

2
. (3.62)

Equation (3.62) was obtained by noting that in (3.61) the second term evaluated at any

oddk between2n−1 + 1 and2n − 1 is always greater than the first term.

The ith encoding cellRn(i) is nonempty if and only if the conditions in (3.45)-

(3.47) are each false. Suppose0 ≤ ε < ε∗n. Then (3.57), (3.58), and (3.60) imply (3.45)

is false fori 6= 2n−1 − 1 if and only if

−2nε2

δ
< δ +

2nε(2 + ε)

1 + 2ε
(3.63)
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which is always true. Ifi = 2n−1 − 1, then (3.57) and (3.62) imply (3.45) is false if and

only if

−δ − 2nε2

δ
< 2n−1(1 − δ) = 2nε (3.64)

which is always true. (3.60) and (3.62) imply (3.46) is always false sincemin
k>i

ρn(i, k) >

0, by inspection. (3.57) and (3.58) imply (3.47) is false if and only if

iδ2 < 2n(1 − ε)2 (3.65)

which is always true. Hence, ifε ∈ [0, ε∗n), thenRn(i) is nonempty.

Supposeε∗n ≤ ε < 1/2. (3.57) and (3.60) imply (3.45) is false (assumingi 6= 1

andi 6= 2n−1 − 1) if and only if

(
(2i − 2)δ + δ2 + 2n+1ε

)
2−n−1 <

(
(2i + 2)δ + δ2 + 2n+1ε

)
2−n−1 (3.66)

which is always true. Ifi = 2n−1 − 1, then (3.57) and (3.62) imply (3.45) is false if and

only if

2n − δ(4 − δ) < 2n (3.67)

which is always true. Ifi = 1, then (3.58) and (3.60) imply (3.45) is false if and only if

−2n+1ε2 < 2δ2 + δ3 + 2n+1εδ (3.68)

which is always true. (3.60) and (3.62) imply (3.46) is always false sincemin
k>i

ρn(i, k) >

0, by inspection. (3.57) implies (3.47) is false fori 6= 1 if and only if

(2i − 2)δ + δ2 < 2n+1(1 − ε) (3.69)
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which is always true. Ifi = 1, then (3.65) implies thatmax
k<i

ρn(1, k) < 1 and hence

(3.47) is false. Therefore, ifε ∈ [ε∗n, 1/2), thenRn(i) is nonempty.

Case 3 :i even ,2n−1 ≤ i ≤ 2n − 2

Equations (3.5), (3.43), and (3.55) and Lemma 3.26 imply

ρn(i, k)

=







ε + 2−n−1(i + k + 1 + 2ε)δ − ε(1 − ε)

i − k
for 0 ≤ k ≤ 2n−1 − 2, k even

ε + 2−n−1(i + k + 1 + 2ε)δ for 2n−1 ≤ k ≤ 2n − 2, k even

ε + 2−n−1(i + k + 1)δ for 1 ≤ k ≤ 2n−1 − 1, k odd

ε + 2−n−1(i + k + 1)δ − ε(1 − ε)

i − k + 2ε
for 2n−1 + 1 ≤ k ≤ 2n − 1, k odd

= 1 − ρn(2n − 1 − i, 2n − 1 − k). (3.70)

Equation (3.70) implies that

max
k<i

ρn(i, k) = 1 − min
k<i

ρn(2n − 1 − i, 2n − 1 − k)

=







(

iδ +
3 · 2nε2

1 + 2ε

)

2−n for i 6= 2n−1 and ε < ε∗n

(
(2i − 2)δ + 1 − 4ε2 + 2n+1ε

)
2−n−1 for i 6= 2n−1 and ε ≥ ε∗n

1

2
for i = 2n−1

(3.71)

where (3.71) follows from (3.60) and (3.62), and

min
k>i

ρn(i, k) = 1 − max
k>i

ρn(2n − 1 − i, 2n − 1 − k)
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=







(

(i + 1)δ +
2nε(2 − 3ε)

δ

)

2−n for ε < ε∗n

(
(2i + 2)δ + 1 − 4ε2 + 2n+1ε

)
2−n−1 for i 6= 2n − 2 and ε ≥ ε∗n

(

(2n − 1)δ +
2nε(2 − 3ε)

δ

)

2−n for i = 2n − 2 and ε ≥ ε∗n

(3.72)

where (3.72) follows from (3.57) and (3.58).

The ith encoding cellRn(i) is nonempty if and only if the conditions in (3.45)-

(3.47) are each false. (3.70) implies (3.45) is false if and only if

min
k<i

ρn(2n − 1 − i, 2n − 1 − k) > max
k>i

ρn(2n − 1 − i, 2n − 1 − k)

⇐⇒ min
k>j

ρn(j, k) > max
k<j

ρn(j, k) for 1 ≤ j ≤ 2n−1 − 1, j odd

which is always true, as shown by (3.63), (3.64), (3.66), (3.67), and (3.68). (3.70)

implies (3.46) is false if and only if

max
k>i

ρn(2n − 1 − i, 2n − 1 − k) < 1

⇐⇒ max
k<j

ρn(j, k) < 1 for 1 ≤ j ≤ 2n−1 − 1, j odd

which is always true, as shown by (3.65) and (3.69). (3.70) implies (3.47) is false if and

only if

min
k<i

ρn(2n − 1 − i, 2n − 1 − k) > 0

⇐⇒ min
k>j

ρn(j, k) > 0 for 1 ≤ j ≤ 2n−1 − 1, j odd

which is always true, as shown by inspection of (3.60) and (3.62). Hence,Rn(i) is

nonempty.
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Case 4 :i odd ,2n−1 + 1 ≤ i ≤ 2n − 1

Equations (3.5), (3.43), and (3.48) and Lemma 3.26 imply

ρn(i, k)

=







ε + 2−n−1(i + k + 1)δ for 0 ≤ k ≤ 2n−1 − 2, k even

ε + 2−n−1(i + k + 1)δ +
ε(1 − ε)

i − k − 2ε
for 2n−1 ≤ k ≤ 2n − 2, k even

ε + 2−n−1(i + k + δ)δ +
ε(1 − ε)

i − k
for 1 ≤ k ≤ 2n−1 − 1, k odd

ε + 2−n−1(i + k + δ)δ for 2n−1 + 1 ≤ k ≤ 2n − 1, k odd

= 1 − ρn(2n − 1 − i, 2n − 1 − k). (3.73)

Equation (3.73) implies that

max
k<i

ρn(i, k) = 1 − min
k<i

ρn(2n − 1 − i, 2n − 1 − k) (3.74)

=

(

iδ +
2nε(2 − 3ε)

δ

)

2−n (3.75)

where (3.75) follows from (3.50), and (assumingi 6= 2n − 1)

min
k>i

ρn(i, k) = 1 − max
k>i

ρn(2n − 1 − i, 2n − 1 − k) (3.76)

=

(

(i + 1)δ +
3 · 2nε2

1 + 2ε

)

2−n (3.77)

where (3.77) follows from (3.49).

For i 6= 2n − 1 the ith encoding cell,Rn(i), is nonempty if and only if the

conditions in (3.45)-(3.47) are each false. (3.74) and (3.76) implies (3.45) is false if and
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only if

min
k<i

ρn(2n − 1 − i, 2n − 1 − k) > max
k>i

ρn(2n − 1 − i, 2n − 1 − k)

⇐⇒ min
k>j

ρn(j, k) > max
k<j

ρn(j, k) for 2 ≤ j ≤ 2n−1 − 2, j even

⇐⇒ ε < ε∗n (3.78)

where (3.78) follows from (3.51). (3.76) implies (3.46) is false if and only if

max
k>i

ρn(2n − 1 − i, 2n − 1 − k) < 1

⇐⇒ max
k<j

ρn(j, k) < 1 for 2 ≤ j ≤ 2n−1 − 2, j even. (3.79)

Equation (3.53) implies (3.79) is always true. (3.74) implies (3.47) is false if and only if

min
k<i

ρn(2n − 1 − i, 2n − 1 − k) > 0

⇐⇒ min
k>j

ρn(j, k) > 0 for 2 ≤ j ≤ 2n−1 − 2, j even. (3.80)

Equation (3.52) implies that (3.80) holds if and only if

ε <
1

2(n/2)−(1/2) log(2n−1−i+1) + 2
. (3.81)

Lemma 3.6 implies thatε∗n is smaller than the right hand side of (3.81) fori ≤ 2n − 1.

Hence, ifε < ε∗n, then (3.81) holds and therefore,Rn(i) is nonempty fori 6= 2n − 1 if

and only ifε < ε∗n.

Fori = 2n−1 the conditions in (3.45) and (3.47) are equivalent and the condition

in (3.46) is always false. Therefore, the encoding cellRn(2n − 1) is nonempty (from
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(3.47) and (3.74)) if and only if

min
k<2n−1

ρn(2n − 1 − (2n − 1), 2n − 1 − k) > 0

⇐⇒ min
k>0

ρn(0, k) > 0

⇐⇒ ε <
1

2n/2 + 2
(3.82)

where (3.82) follows from (3.54). 2

Proof of Theorem 3.9.The definition ofrc implies

rc =
1

n

∑

i∈Λ

l(Rn(i)) log
1

l(Rn(i))
. (3.83)

For i ∈ Λ, Theorem 3.7 and Corollary 3.8 givel(Rn(i)) as follows. If n = 2 and

ε ∈ [0, 1/4), then

l(Rn(i)) =







δ2−n − ε2

δ
for i = 0, 3

1
2
− δ2−n + ε2

δ
for i = 1, 2.

If n = 2 andε ∈ [1/4, 1/2), then

l(Rn(i)) =
1

2
for i = 1, 2.
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If n ≥ 3 andε ∈ [0, ε∗n), then

l(Rn(i)) =







δ2−n − ε2

δ
for i = 0, 2n − 1

δ2−n + 2ε(1−ε)
1−4ε2

for 1 ≤ i ≤ 2n−1 − 3, i odd ; and

2n−1 + 2 ≤ i ≤ 2n − 2, i even

δ2−n − 2ε(1−ε)
1−4ε2

for 2 ≤ i ≤ 2n−1 − 2, i even; and

2n−1 + 1 ≤ i ≤ 2n − 3, i odd

δ2−n + ε2

δ
+ ε for i = 2n−1 − 1, 2n−1.

If n ≥ 3 andε ∈ [ε∗n, 1/(2n/2 + 2)), then

l(Rn(i)) =







δ2−n − ε2

δ
for i = 0, 2n − 1

δ2−n + 2−n−1δ2 + ε + ε2

δ
for i = 1, 2n − 2

δ21−n for 3 ≤ i ≤ 2n−1 − 3, i odd ; and

2n−1 + 2 ≤ i ≤ 2n − 4, i even

δ21−n − 2−n−1δ2 for i = 2n−1 − 1, 2n−1.

If n ≥ 3 andε ∈ [1/(2n/2 + 2), 1/2), then

l(Rn(i)) =







δ21−n + 2−n−1δ2 + ε for i = 1, 2n − 2

δ21−n for 3 ≤ i ≤ 2n−1 − 3, i odd ; and

2n−1 + 2 ≤ i ≤ 2n − 4, i even

δ21−n − 2−n−1δ2 for i = 2n−1 − 1, 2n−1.

The result follows from (3.83) and routine algebra. 2
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3.10 Lemmas and Proofs for Section 3.5

Lemma 3.27.zn(i) · αn(i, Ir(i)) = βn(i, Ir(i)) .

Proof of Lemma 3.27.Let i andj denote the indices of two adjacent, nonempty encod-

ing cells. Then for allx ∈ Rn(i), the weighted nearest neighbor condition implies

thatαn(i, j)x ≥ βn(i, j). Assume, without loss of generality, thatαn(i, j) < 0. Then

x ≤ βn(i,j)
αn(i,j)

for all x ∈ Rn(i). The weighted nearest neighbor condition also implies that

αn(j, i)x ≥ βn(j, i) for all x ∈ Rn(j), or equivalently thatx ≥ βn(j,i)
αn(j,i)

for all x ∈ Rn(j)

becauseαn(j, i) = −αn(i, j) > 0. Note, however, thatβn(i,j)
αn(i,j)

= βn(j,i)
αn(j,i)

. Hence,βn(i,j)
αn(i,j)

must be the boundary betweenRn(i) andRn(j), for otherwise they cannot be adjacent.

The lemma now follows from the definition ofzn(i). 2

Proof of Lemma 3.12.From (3.1), we have

D(πn)
EO

=
∑

i∈Λ

2n−1∑

j=0

pn(πn(j)|πn(i))

∫

Rn(i)

(x − yn(j))
2 dx. (3.84)

Substitutingyn(j) = (j + 1/2)2−n into (3.84), expanding the squared term, integrating

and then summing over constant terms, and expressing the result in terms ofzn(i) and

Il(i) gives

D(πn)
EO

=
1

3
− 2−n−1 + 2−2n−2 − 2−n

∑

i∈Λ

[z2
n(i) − z2

n(Il(i))]
2n−1∑

j=0

jpn(πn(j)|πn(i))

+ 2−2n
∑

i∈Λ

[zn(i) − zn(Il(i))]
2n−1∑

j=0

(j + j2)pn(π(j)|π(i)) (3.85)

where (3.85) follows since eachRn(i) is an interval. Re-expressing the elements of

(3.85) which includeIl(i) in terms ofIr(i), collecting terms using the definitions of

αn(i, k) andβn(i, k) in (3.4) and (3.5), respectively, and simplifying with Lemma 3.27
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gives

D(πn)
EO

=
1

3
− 2−n−1 + 2−2n−2 + 2−n

[
∑

i∈V

z2
n(i) · αn(i, Ir(i)) −

2n−1∑

j=0

jpn(πn(j)|πn(I1))

]

+ 2−2n
2n−1∑

j=0

(j + j2)pn(πn(j)|πn(I1)).

2

Proof of Theorem 3.15.Let p̂n(j|i) = pn(π
(CNC)
n (j)|π(CNC)

n (i)).

Case 1:0 ≤ ε < ε∗n

Theorem 3.7 and Corollary 3.8 imply thatV = {1, 2, . . . , 2n − 2}, Ir(i) = i + 1, and

I1 = 2n − 1. Hence, using Lemmas 3.24 and 3.26 to evaluate the last two sums in

Lemma 3.12 and (3.43) to simplify the first sum in Lemma 3.12 gives

D(CNC)
EO

=
1

3
− 2−n−1 + 2−2n−2 + (2−2n − 2−n) [(2n − 1)ε + δ(2n − 1 − ε)]

+ 2−2n

(

ε

[(
22n − 1

3

)

+ 2n + 1

]

+
ε2

3
(22n+1 − 21 · 2n − 2) + 3 · 2n+1ε3

+ (2n − 1)δ[2ε(2n − 1) − 2εδ] + (2n − 1)2δ2

)

− 2−n






∑

i∈V
i even

z2
n(i) · δ2 +

∑

i∈V
i odd

z2
n(i) · δ(1 + 2ε)






=
2−2n

3(1 + 2ε)

(
(1/4) + (22n + (5/2))ε − (22n+1 − 15 · 2n + 4)ε2

+ 6(22n − 2n+2 − 4)ε3 + (2n − 4)(2n − 2)ε4 − 12(2n − 4)ε5
)

(3.86)

= D1(n, ε)
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where (3.86) follows from considerable arithmetic and using (from Theorem 3.7)

zn(i) =







(

(i + 1)δ − 2nε2

δ

)

2−n for 0 ≤ i ≤ 2n−1 − 2, i even

(

(i + 1)δ +
2nε(2 − 3ε)

δ

)

2−n for 2n−1 ≤ i ≤ 2n − 2, i even

(

(i + 1)δ +
2nε(2 + ε)

1 + 2ε

)

2−n for 1 ≤ i ≤ 2n−1 − 3, i odd

1

2
for i = 2n−1 − 1

(

(i + 1)δ +
3 · 2nε2

1 + 2ε

)

2−n for 2n−1 + 1 ≤ i ≤ 2n − 3, i odd .

Case 2: 1
2n/2+2

≤ ε < 1/2

Theorem 3.7 and Corollary 3.8 imply that

V = {1, 3, 5, . . . , 2n−1 − 1} ∪ {2n−1, 2n−1 + 2, 2n−1 + 4, . . . , 2n − 4}

Ir(i) = i + 2 for i ∈ {i : i ∈ V, i 6= 2n−1 − 1}

Ir(2
n−1 − 1) = 2n−1

I1 = 2n − 2.

Hence, using Lemmas 3.24 and 3.26 to evaluate the last two sums in Lemma 3.12; using

(3.43) and Theorem 3.7 to simplify the first sum in Lemma 3.12;and collecting terms

according to which power ofε they contain gives

D(CNC)
EO

=
1

3
− 3 · 2−n−1 + 9 · 2−2n−2 +

(

−2

3
+ 6 · 2−n − 34 · 2−2n

3

)

ε

+

(
2

3
− 7 · 2−n + 52 · 2−2n

3

)

ε2 + (2−n+1 − 2−2n+3)ε3

− 2−n







1 − 4ε2

4
+ 2δ

∑

i∈V
i6=2n−1−1

z2
n(i)







. (3.87)
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Theorem 3.7 shows thatzn(i) = 1 − zn(2n − 3 − i) for 2n−1 ≤ i ≤ 2n − 4 andi even

when 1
2n/2+2

≤ ε < 1/2. Therefore, using Theorem 3.7 to evaluatezn(i), the last term

in (3.87) can be rewritten as

−2−n






1 − 4ε2

4
+ 2δ






2n−1−3∑

i=1
i odd

z2
n(i) +

2n−4∑

i=2n−1

i even

z2
n(i)











=

(

−1

3
+ 3 · 2−n−1 − 23

3
· 2−2n−2 + 2−3n

)

+
(
1 − 7 · 2−n + 29 · 2−2n−1 − 5 · 2−3n+1

)
ε

+
(
−1 + 13 · 2−n − 21 · 2−2n+1 + 5 · 2−3n+3

)
ε2

+

(
2

3
− 3 · 2−n+2 +

43

3
· 2−2n+2 − 5 · 2−3n+4

)

ε3

+ (2−n+2 − 9 · 2−2n+2 + 5 · 2−3n+4)ε4 + (2−2n+3 − 2−3n+5)ε5 (3.88)

where (3.88) follows after considerable arithmetic. Substituting (3.88) for the last term

in (3.87) and collecting terms gives

D(CNC)
EO

=
2−3n

3

(

2n + 3 + [(2n − 3)(22n + 10) − 2n−1]ε

− [(2n − 6)(2n − 5)(2n − 4)δ − 3 · 22n]ε2+12(2n − 5)(2n − 4)ε4 + 24(2n − 4)ε5
)

(3.89)

= D3(n, ε).

Case 3:ε∗n ≤ ε < 1
2n/2+2

Theorem 3.7 and Corollary 3.8 imply that

V = {0, 1, 3, 5, . . . , 2n−1 − 1} ∪ {2n−1, 2n−1 + 2, 2n−1 + 4, . . . , 2n − 2}
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Ir(0) = 1

Ir(2
n − 2) = 2n − 1

I1 = 2n − 1.

Theorem 3.7 also shows that ifi ∈ V − {0, 2n − 2}, then the expressions forzn(i) and

Ir(i) are the same as the expressions forzn(i) andIr(i) in Case 2. Hence, Lemma 3.12

gives

D(CNC)
EO

= D3(n, ε) + 2−n
[
z2

n(0)αn

(
0, Ir(0)

)
+ z2

n(2n − 2)αn

(
2n − 2, Ir(2

n − 2)
)]

+ (2−2n − 2−n)
2n−1∑

j=0

j
[
p̂n(j|2n − 1) − p̂n(j|2n − 2)

]

+ 2−2n

2n−1∑

j=0

j2
[
p̂n(j|2n − 1) − p̂n(j|2n − 2)

]
. (3.90)

Simplifying (3.90) with (3.4) and Theorem 3.7, using (3.43)to evaluateαn, and using

Lemma 3.26 to calculate the sum overj2 gives

D(CNC)
EO

= D3(n, ε) − 2−n
[
z2

n(0)δ2 + (1 − zn(0))2δ2
]
+ (2−2n − 2−n)δ2

+ 2−2n

[

2n+1ε +
ε2

3
(−30 · 2n + 12) + ε3(6 · 2n+1 − 8)

+ δ[2ε(2n − 1) − 2(2n+1 − 3)εδ] + (2n+1 − 3)δ2

]

. (3.91)

Theorem 3.7 implies

zn(0) = 1 − 2−n

δ2

(
2n − 1 + (−2n+2 + 6)ε + (5 · 2n − 12)ε2 + (−2n+1 + 8)ε3

)
.

(3.92)



112

Substituting (3.89) and (3.92) into (3.91) and performing considerable arithmetic gives

D(CNC)
EO

= D2(n, ε).

2

Proof of Lemma 3.16.Let N = 2n. The proof is straightforward for the caseN = 4, so

assumeN ≥ 8. Note that

gn(N
−2) = −4N−1 − 2N−2 + 8N−3 + 9N−4 − 2N−5 + 4N−7 − 16N−8

gn(2N−2) = 1 − 8N−1 − 8N−2 + 32N−3 + 40N−4 − 16N−5 + 64N−7 − 256N−8.

We havegn(N−2) < 0 since−4N−1 +8N−3 +9N−4 < 0 and−2N−5 +4N−7 < 0, and

we havegn(2N−2) > 0 for N > 8 since64N−7 − 256N−8 > 0, 40N−4 − 16N−5 > 0,

and1 − 8N−1 − 8N−2 > 0.

Thus, the functiongn has a root in(N−2, 2N−2) ⊂ (0, 1/2) for N > 8, and it

has a root in(0, 1/2) for N = 8 sinceg3(0) = −1 < 0 andg3(1/2) = 8. The first three

derivatives ofgn are:

g′
n(ε) = 16(N − 4)ε3 + 3N(N − 2)ε2 − 4(N2 − 4N − 4)ε + N(N − 4)

g′′
n(ε) = 48(N − 4)ε2 + 6N(N − 2)ε − 4(N2 − 4N − 4)

g′′′
n (ε) = 96(N − 4)ε + 6N(N − 2).

Sinceg′′′
n > 0 on [0, 1/2] andg′′

n(1/2) = −5N2 + 38N − 16 < 0, we must have

g′′
n < 0 on [0, 1/2], which impliesg′

n = 0 at most once on[0, 1/2]. Therefore, since

gn(0) = −1 < 0 andgn(1/2) = N2/8 > 0, the functiongn has exactly one root on

[0, 1/2], which implies thatgn(ε) < 0 on [0, 1/2) if and only if ε < ε̂n. 2

Note that the root̂εn of gn could be found explicitly using the formula for the
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general solution to a quartic polynomial equation.

Proof of Theorem 3.17.If n = 2, then Theorem 3.15 implies that the value ofD(CNC)
EO

is the same for0 ≤ ε < ε∗n andε∗n ≤ ε < 1
2n/2+2

, which gives

D(CNC)
EO

=







1 + 72ε − 48ε2

192
for 0 ≤ ε <

1

4

7 + 24ε + 48ε2

192
for

1

4
≤ ε <

1

2

.

Theorem 3.14 gives

D(NBC)
EO

=
1 + 60ε − 24ε2 + 48ε3

192
.

Therefore, forn = 2,

D(CNC)
EO

− D(NBC)
EO

=







ε(1 − 2ε − 4ε2)

16
for 0 ≤ ε <

1

4

(1 − 2ε)3

32
for

1

4
≤ ε <

1

2

> 0.

Now letn ≥ 3.

Case 1:0 ≤ ε < ε∗n

Theorem 3.14 and Theorem 3.15 imply that

D(NBC)
EO

− D(CNC)
EO

=
2−2nε

1 + 2ε

[

− 1 + (22n − 2n+2)ε − (22n+1 − 2n+3 − 8)ε2 + (22n − 2n+1)ε3

+ (2n+2 − 16)ε4
]

which (by Lemma 3.16) is positive if and only ifε > ε̂n.
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Case 2:ε∗n ≤ ε < 1
2n/2+2

Theorem 3.14 and Theorem 3.15 imply that

D(NBC)
EO

− D(CNC)
EO

2−nδ2
= (1 − ε)ε +

2ε4

δ2
+ 2−n−2

[
δ3 − 2(1 + 6ε)

]
+ 2−2n(1 + 2ε)δ2.

(3.93)

Forn = 3, the right hand side of (3.93) is

−1 + 26ε − 44ε2 − 8ε3

64
+

2ε4

δ2
= 2ε

(
ε3

(1 − 2ε)2
+

1 − 4ε

16

)

+
φ3(ε)

64
> 0 (3.94)

where (3.94) follows fromφ3(ε) ≥ 0 andε < 1/(2 +
√

8) < 1/4. Forn ≥ 4, the right

hand side of (3.93) can be lower bounded as:

ε(1 − ε) +
2ε4

δ2
+ 2−n−2

[
δ3 − 2(1 + 6ε)

]
+ 2−2n(1 + 2ε)δ2

≥ ε − ε2 + 2ε4 + 2−n−2
(
−1 − 18ε + 12ε2 − 8ε3

)
+ 2−2n

(
1 − 2ε − 4ε2 + 8ε3

)

(3.95)

≥ ε2−n−1

[
φn(ε)

2ε
+ 2n(1 − ε) − 10 − (1 + 2ε)2−n+2 − 2ε

]

(3.96)

≥ ε2−n−1
[
24(1 − (1/6)) − 10 − (1 + 2(1/6))2−2 − 2(1/6)

]
(3.97)

> 0

where (3.95) follows from2ε4

δ2 ≥ 2ε4 and simplifying; (3.96) follows by eliminating

all positive terms exceptε, and then simplifying; and (3.97) follows from the fact that

φn(ε) ≥ 0 whenε ≥ ε∗n (by Lemma 3.6), and the fact thatε < 1
2n/2+2

≤ 1
24/2+2

= 1/6,

for all n ≥ 4.

Case 3: 1
2n/2+2

≤ ε < 1/2
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Theorem 3.14 and Theorem 3.15 imply that

D(NBC)
EO

− D(CNC)
EO

= 2−nδ2
[

ε(1 − ε) − 2−n−2(1 + 18ε − 28ε2 + 8ε3) − 2−2nδ3
]

> 2−nδ2
[

ε(1 − ε) − 2−n−2 · 22.1 − 2−2n
]

(3.98)

> 0 (3.99)

where (3.98) follows from the fact thatδ3 < 1 and log(1 + 18ε − 28ε2 + 8ε3) < 2.1

for 0 ≤ ε ≤ 1/2; and (3.99) follows from the facts thatε(1 − ε) is monotone increasing

with ε andε(1 − ε) − 2−n+0.1 − 2−2n > 0 for ε = 1
2n/2+2

andn ≥ 3. 2

This chapter, in full, has been submitted for publication as: Benjamin Farber and

Kenneth Zeger, “Quantizers with Uniform Decoders and Channel Optimized Encoders,”

IEEE Transactions on Information Theory, April 14, 2004. The dissertation author was

the primary investigator of this paper.
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Chapter 4

Quantization of Multiple Sources Using
Nonnegative Integer Bit Allocation

Abstract

Asymptotically optimal real-valued bit allocation among aset of quantiz-

ers for a finite collection of sources was derived in 1963 by Huang and

Schultheiss, and an algorithm for obtaining an optimal nonnegative integer-

valued bit allocation was given by Fox in 1966. We prove that,for a given

bit budget, the set of optimal nonnegative integer-valued bit allocations is

equal to the set of nonnegative integer-valued bit allocation vectors which

minimize the Euclidean distance to the optimal real-valuedbit-allocation

vector of Huang and Schultheiss. We also give an algorithm for finding op-

timal nonnegative integer-valued bit allocations. The algorithm has lower

computational complexity than Fox’s algorithm, as the bit budget grows.

Finally, we compare the performance of the Huang-Schultheiss solution to

that of an optimal integer-valued bit allocation. Specifically, we derive up-

per and lower bounds on the deviation of the mean-squared error using op-

timal integer-valued bit allocation from the mean-squarederror using op-

timal real-valued bit allocation. It is shown that, for asymptotically large

transmission rates, optimal integer-valued bit allocations do not necessarily

118
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achieve the same performance as that predicted by Huang-Schultheiss for

optimal real-valued bit allocations.

4.1 Introduction

The classical bit allocation problem for lossy source coding is to determine the

individual rates of a finite collection of scalar quantizersso as to minimize the sum of

their distortions, subject to a constraint on the sum of the quantizer rates. Bit allocation

arises in applications such as speech, image, and video coding. It has been shown [1,20]

that finding optimal integer bit allocations is NP-hard (as the number of sources grows),

via reduction to the multiple choice knapsack problem.

Huang and Schultheiss [19] analytically solved the bit allocation problem when

the mean-squared error of each quantizer decreases exponentially as its rate grows. The

results in [19] were generalized in [25] by finding optimal real-valued bit allocations

when the mean-squared error of each quantizer is a convex function of its rate. Other

generalizations were given in [16] and [23]. Bit allocationwas studied in [3], in the

context of trading off the total bit budget and the quantization error, a generalization of

the Lagrangian approach.

The formulaic solution given in [19] allows arbitrary real-valued bit allocations.

However, applications generally impose integer-value constraints on the rates used. In

practice, bit allocations may be obtained by using some combinatorial optimization

method such as integer linear programming or dynamic programming [10, 14, 15, 18,

29, 30, 33] or by optimizing with respect to the convex hull ofthe quantizers’ rate-

versus-distortion curves [6,7,24,28,31]. These techniques generally ignore the Huang-

Schultheiss solution. Alternatively, a widely-used technique is to explicitly use an opti-

mal real-valued bit allocation as a starting point and then home in on an integer-valued

bit allocation that is close by. As noted in the textbook by Gersho and Gray [13, p. 230-
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231]:

“In practice, . . . if an integer valued allocation is needed,then each non-

integer allocationbi is adjusted to the nearest integer. These modifications

can lead to a violation of the allocation quota,B, so that some incremental

adjustment is needed to achieve an allocation satisfying the quota. The

final integer valued selection can be made heuristically. Alternatively, a

local optimization of a few candidate allocations that are close to the initial

solution obtained from [the Huang-Schultheiss solution] can be performed

by simply computing the overall distortion for each candidate and selecting

the minimum. . . . Any simple heuristic procedure, however, can be used to

perform this modification.”

In 1966, Fox [11] gave an algorithm for finding nonnegative integer-valued bit alloca-

tions. His algorithm is greedy in that at each step it allocates one bit to the quantizer

whose distortion will be reduced the most by receiving an extra bit. Fox proved this intu-

itive approach is optimal for any convex decreasing quantizer distortion function. There

are many other algorithmic techniques in the literature forobtaining integer-valued bit

allocations. Some examples of these include [1,4,5,12,21,22,26,34].

In this paper we first prove that, for a given bit budget, the set of optimal nonneg-

ative integer-valued bit allocations is equal to the set of nonnegative integer-valued bit

allocation vectors which minimize the Euclidean distance to the optimal real-valued bit-

allocation vector of Huang and Schultheiss. The proof of this result yields an alternate

algorithm to that given by Fox for finding optimal nonnegative integer-valued bit alloca-

tions. This algorithm uses asymptotically (as the bit budget grows) less computational

complexity than Fox’s algorithm.

Despite the wealth of knowledge about bit allocation algorithms, there has been

no published theoretical analysis comparing the performance of optimal bit allocations
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with integer constraints to the performance obtained usingthe real-valued allocations

due to Huang and Schultheiss.

We provide some such theoretical analysis. Specifically, wederive upper and

lower bounds on the deviation of the mean-squared error using optimal integer-valued

bit allocation from the mean-squared error using optimal real-valued bit allocation. In-

formally speaking, we show that no matter what bit budget is chosen, optimal integer-

valued bit allocation might be as much as6% worse than optimal real-valued bit alloca-

tion, but never more than26% worse.

Our main results are summarized in the following (fork ≥ 2):

(i) For anyk scalar sources and any bit budget, the set of optimal nonnegative integer-

valued bit allocations is the same as the set of nonnegative integer-valued bit al-

location vectors (with the same bit budget) which are closest to the optimal real-

valued bit-allocation vector of Huang and Schultheiss. (Theorem 4.17).

(ii) An algorithm is given for finding the set of optimal nonnegative integer-valued bit

allocations from the Huang-Schultheiss optimal real-valued bit allocation (Algo-

rithm 4.18).

(iii) – For anyk scalar sources, suppose the optimal real-valued bit allocation is

nonnegative integer valued for at leastsomebit budget. Then there is a fixed

numbern < k such that for every bit budgetB, an optimal integer-valued

bit allocation achieves the same performance as the optimalreal-valued bit

allocation if and only ifB mod k = n (Theorem 4.22).

– For anyk scalar sources, suppose the optimal real-valued bit allocation is

neverinteger-valued for any bit budget. Then the ratio of the mean-squared

error due to optimal integer-valued bit allocation and the mean-squared error

due to optimal real-valued bit allocation is bounded away from1 over all bit

budgets (Theorem 4.22).
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(iv) There existk scalar sources, such that for all bit budgets, the mean-squared error

due to optimal integer-valued bit allocation is at least6% greater than the mean-

squared error due to optimal real-valued bit allocation (Theorem 4.24).

(v) For anyk scalar sources and for all bit budgets, the mean-squared error due to

optimal integer-valued bit allocation is at most26% greater than the mean-squared

error due to optimal real-valued bit allocation (Theorem 4.25).

Cases (i) and (ii) are first established for integer-valued bit allocations and then

extended to such allocations with nonnegative components.In case (ii), the problem of

finding an optimal nonnegative integer-valued bit allocation is reduced to first computing

a particular real-valued bit allocation for the same bit budget, and then performing a

(low complexity) nearest neighbor search in a certain lattice using the real-valued bit

allocation vector as the input to the search procedure. In each of the cases (iii), (iv), and

(v) we derive explicit bounds on the mean-squared error penalty paid for using integer-

valued bit allocation rather than real-valued bit allocation.

This paper is organized as follows. Section 4.2 gives definitions, notation, and

some lemmas. Section 4.3 shows the equivalence of closest nonnegative integer-valued

bit allocation and optimal nonnegative integer-valued bitallocation. Section 4.4 char-

acterizes, for a given set of sources, the set of bit budgets for which no penalty occurs

when using integer-valued bit allocation instead of real-valued bit allocation. Also, a

lower bound is given on the ratio of the mean-squared errors achieved by using op-

timal integer-valued bit allocation and optimal real-valued bit allocation. Section 4.5

presents an upper bound on the ratio of the mean-squared errors achieved by using opti-

mal integer-valued bit allocation and optimal real-valuedbit allocation. The Appendix

contains proofs of lemmas.
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4.2 Preliminaries

Let X1, . . . , Xk be real-valued random variables (i.e. scalar sources) withvari-

ancesσ2
1 , . . . , σ

2
k. Throughout this paper, we assumek ≥ 2 and0 < σ2

1, . . . , σ
2
k < ∞.

The sourcesX1, . . . , Xk are scalar quantized with resolutionsb1, . . . , bk, respectively,

measured in bits. The goal in bit allocation is to determine thek quantizer resolutions,

subject to a constraint on their sum, so as to minimize the sumof the resulting mean-

squared errors.

Let R denote the reals andZ denote the integers. We will use the following

notation:

b = (b1, . . . , bk)

|u| =

k∑

i=1

ui ∀u ∈ R
k

g =

(
k∏

i=1

σ2
i

)1/k

AR(B) = {u ∈ R
k : |u| = B}

AI(B) = {u ∈ Z
k : |u| = B}

A+
I (B) = {u ∈ Z

k : ui ≥ 0 ∀i, |u| = B}.

The vectorb will be called abit allocationand the integerB ≥ 1 a bit budget. We say

thatb is anonnegative bit allocationif bi ≥ 0 for all i. AR(B), AI(B), andA+
I (B) are,

respectively, the sets of all real-valued, integer-valued, and nonnegative integer-valued

bit allocationsb with bit budgetsB. Bit allocations inAI(B) andA+
I (B) are said to be

integer bit allocations. We use the notationB mod k to represent the unique integerx

satisfyingk | (B−x) and0 ≤ x ≤ k−1. If the components of two vectors are the same

but ordered differently, then each vector is said to be apermutationof the other vector.
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We will assume the mean-squared error of theith quantizer is equal to

di = hiσ
2
i 4

−bi (4.1)

wherehi is a quantity dependent on the distribution ofXi, but independent ofbi. It

is known that (4.1) is satisfied for asymptotically optimal scalar quantization [13], in

which case

hi = (1/12)

(∫

|fXi/σi
|1/3

)3

wherefXi
denotes the probability density function ofXi. Also, uniform quantizers

satisfy (4.1), but with a different constanthi. Many useful quantizers have distortions of

the form in (4.1), as the distortiondi in (4.1) often represents a reasonable approximation

even for non-asymptotic bit rates.

The total mean-squared error (MSE) resulting from the bit allocationb is

d =

k∑

i=1

di.

We will also assume thathi = h for all i. It is straightforward to generalize our results

to the case whered is a weighted combination of thedi’s and where not all thehi’s are

equal.

For anyk scalar sources and for each bit budgetB, let

aor(B) = argmin
b∈AR(B)

k∑

i=1

hσ2
i 4

−bi

dor =

k∑

i=1

hσ2
i 4

−aor(B)i .

We call aor(B) the optimal real-valued bit allocationand dor the MSE achieved by
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aor(B). In 1963, Huang and Schultheiss [19] derived the optimal high resolution real-

valued bit allocation for the multiple source quantizationproblem. Their result, stated

in the following lemma, shows thataor(B) is unique.

Lemma 4.1. For anyk scalar sources and for each bit budgetB,

aor(B) =
B

k
( 1, . . . , 1
︸ ︷︷ ︸

k

) +
1

2

(

log2

σ2
1

g
, . . . , log2

σ2
k

g

)

dor = khg4−B/k.

Lemma 4.1 implies that the components of the bit allocationaor(B) are posi-

tive for a sufficiently large bit budgetB; however,aor(B) need not be an integer bit

allocation for any particular bit budget. The next lemma follows immediately from

Lemma 4.1.

Lemma 4.2. For anyk scalar sources, for each bit budgetB, and for any bit allocation

b ∈ AR(B), the mean-squared error resulting fromb is

d = hg4−B/k ·
k∑

i=1

4(aor(B)−b)i .

For anyk scalar sources and for each bit budgetB, let

doi = min
b∈AI (B)

k∑

i=1

hσ2
i 4

−bi

Aoi(B) =

{

b ∈ AI(B) :

k∑

i=1

hσ2
i 4

−bi = doi

}

d+
oi = min

b∈A+
I (B)

k∑

i=1

hσ2
i 4

−bi

A+
oi(B) =

{

b ∈ A+
I (B) :

k∑

i=1

hσ2
i 4

−bi = d+
oi

}

.
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By Lemma 4.1, these equations are equivalent to

doi = min
b∈AI (B)

hg4−B/k
k∑

i=1

4(aor(B)−b)i

Aoi(B) =

{

b ∈ AI(B) : hg4−B/k
k∑

i=1

4(aor(B)−b)i = doi

}

(4.2)

d+
oi = min

b∈A+
I (B)

hg4−B/k
k∑

i=1

4(aor(B)−b)i

A+
oi(B) =

{

b ∈ A+
I (B) : hg4−B/k

k∑

i=1

4(aor(B)−b)i = d+
oi

}

.

We call Aoi(B) the set ofoptimal integer bit allocationsand doi the MSE achieved

by any bit allocation inAoi(B). The setA+
oi(B) and the scalard+

oi are the analogous

quantities for nonnegative bit allocations. In order to analyze A+
oi(B) andd+

oi, we will

first obtain results aboutAoi(B) anddoi.

4.2.1 Lattice Tools

We next introduce some notation and terminology related to lattices that will

be useful throughout the paper. We exploit certain facts from lattice theory to estab-

lish bit allocation results, specifically Theorems 4.24 and4.25. Most of the following

definitions and notation are adapted from [8].

For anyw ∈ R
m, denote a setΓ ⊂ R

m translated by the vectorw by

Γ + w = {u + w : u ∈ Γ}.
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For anyk ≥ 1, define1 the following lattice:

Λk = {u ∈ Z
k+1 : |u| = 0}.

The latticeΛk−1 is useful for analyzing bit allocations fork scalar sources since it con-

sists of points withk integer coordinates which sum to zero. For0 ≤ j ≤ k, define the

(k + 1)-dimensional vector

c(k, j) =
1

k + 1
(−j, . . . ,−j
︸ ︷︷ ︸

k+1−j

, k + 1 − j, . . . , k + 1 − j
︸ ︷︷ ︸

j

). (4.3)

Note that|c(k, j)| = 0 for all j andk.

Let ‖w‖ denote the Euclidean norm ofw. For anyk ≥ 1 andw ∈ R
k+1, define

Φk(w) =

{

u ∈ Λk : ‖w − u‖ = min
v∈Λk

‖w − v‖
}

i.e., the closest lattice points inΛk to w.

Lemma 4.3. For anyw, y ∈ R
k+1,

{

u ∈ Λk + y : ‖w − u‖ = min
v∈Λk+y

‖w − v‖
}

= Φk(w − y) + y.

Denote theVoronoi cellassociated with any pointy in the latticeΛk by

V (y) = {u ∈ R
k+1 : ‖u − y‖ ≤ ‖u − w‖, ∀w ∈ Λk}.

Let

Hk =
{
u ∈ R

k+1 : |u| = 0
}

.

1Usually denotedAk in the literature. We use alternate notation to avoid confusion with sets of bit
allocations.
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The latticeΛk is a subset ofRk+1 and also a subset of thek-dimensional hyperplaneHk.

Define the quantity

Vk(y) = V (y) ∩Hk.

4.3 Closest Integer Bit Allocation

In this section, we first demonstrate the equivalence of closest integer bit allo-

cation and optimal integer bit allocation. Then, we extend this equivalence to the case

where the bit allocations must have nonnegative integer components. Finally, we obtain

an algorithm for finding optimal nonnegative integer bit allocations.

For anyk scalar sources and for each bit budgetB, let

Aci(B) =

{

b ∈ AI(B) : ‖b − aor(B)‖ = min
b̂∈AI (B)

‖b̂ − aor(B)‖
}

Dci =

{
k∑

i=1

hσ2
i 4

−bi : b ∈ Aci(B)

}

∆ = Aci(B) − aor(B)

A+
ci(B) =

{

b ∈ A+
I (B) : ‖b − aor(B)‖ = min

b̂∈A+
I (B)

‖b̂ − aor(B)‖
}

D+
ci =

{
k∑

i=1

hσ2
i 4

−bi : b ∈ A+
ci(B)

}

.

For a given bit budgetB, Aci(B) is the set of closest integer bit allocations, with re-

spect to Euclidean distance, to the optimal real-valued bitallocation. Note that each

b ∈ Aci(B) is, in general, different from a bit allocation obtained by finding the closest

integer to each component ofaor(B), since such a component-wise closest bit allocation

might result in using either more or less thanB bits. The set∆ is a translate ofAci(B)

and is a function ofσ2
1, . . . , σ

2
k andB, although we will notationally omit these depen-
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dencies.A+
ci(B) andD+

ci are the analogous quantities toAci(B) andDci, respectively,

for nonnegative bit allocations.

The following lemma will be used to prove Lemmas 4.5 and 4.23,Corollary 4.11,

and Theorem 4.25. Define the quantities

µ =
1

2

(

log2

σ2
1

g
, . . . , log2

σ2
k

g

)

− c(k − 1, B mod k)

MB =
⋃

σ2
1 ,...,σ2

k

∆

and note thatµ ∈ Hk−1.

Lemma 4.4.For anyk scalar sources with variancesσ2
1, . . . , σ

2
k and for each bit budget

B,

∆ = Φk−1(µ) − µ.

Furthermore,MB = Vk−1(0) for all B.

The next lemma states that the smallest distance (in the Euclidean sense) that a

closest integer bit allocation can be to the optimal real-valued bit allocation vector must

occur when the bit budget is at most the number of sources.

Lemma 4.5. For anyk scalar sources,

inf
w∈∆
B≥1

‖w‖ = min
w∈∆

1≤B≤k

‖w‖.

4.3.1 An Algorithm for Finding Aci(B)

The following theorem is adapted from [9, p. 230-231] and immediately yields

an algorithm for finding closest integer bit allocation vectors (the components of the
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resulting bit allocation vectors need not all be nonnegative). For allu ∈ R, define

r(u) = bu + (1/2)c

ρ(u) = u − r(u).

The quantityr(u) is a closest integer tou.

Theorem 4.6. Let B be a bit budget,̂b = (r(aor(B)1), . . . , r(aor(B)k)), andt = |b̂| −

B ∈ Z. LetIk denote the set of all permutations(i1, . . . , ik) of {1, . . . , k} such that

−1

2
≤ ρ(aor(B)i1) ≤ · · · ≤ ρ(aor(B)ik) <

1

2

and let

R+

=







b ∈ AI(B) : ∃(i1, . . . , ik) ∈ Ik such thatbj =







b̂j − 1 if j ∈ {i1, . . . , it}

b̂j if j ∈ {it+1, . . . , ik}







R−

=







b ∈ AI(B) : ∃(i1, . . . , ik) ∈ Ik such thatbj =







b̂j + 1 if j ∈ {ik+t+1, . . . , ik}

b̂j if j ∈ {i1, . . . , ik+t}







.

Then

Aci(B) =







{b̂} if t = 0

R+ if t > 0

R− if t < 0.
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Proof. For anyw ∈ Z
k,

∥
∥
∥aor(B) − b̂

∥
∥
∥ ≤ ‖aor(B) − w‖ .

Supposet = 0. Thenb̂ ∈ AI(B) ⊂ Z
k. Thus,̂b is a point inAI(B) of minimum

distance toaor(B). This means that̂b ∈ Aci(B). Sincer(u) is a closest integer to

u and sincer breaks ties by rounding upward, any other integer bit allocation b with

minimum distance fromaor(B) must satisfy|b| < |aor(B)|. Thus,b /∈ AI(B) and

henceAci(B) = {b̂}.

Supposet 6= 0 and let

R =







R+ if t > 0

R− if t < 0.

It can be seen that every element ofR is a bit allocationb ∈ AI(B) which minimizes

the difference between‖aor(B) − b‖ and‖aor(B) − b̂‖. Since‖aor(B) − b̂‖ does not

depend on suchb, we have

R ⊂ {b ∈ AI(B) : ‖aor(B) − b‖ ≤ ‖aor(B) − b′‖ ∀b′ ∈ AI(B)} = Aci(B).

To finish the proof, we will show thatAci(B) ⊂ R. Let b ∈ Aci(B). For anyi

andj, the following identity holds:

[(bi − 1) − aor(B)i]
2 + [(bj + 1) − aor(B)j]

2 − [bi − aor(B)i]
2 − [bj − aor(B)j ]

2

= 2[1 + aor(B)i − bi + bj − aor(B)j]. (4.4)

Suppose there exists ani such thatbi − aor(B)i ≥ 1. Then there must exist aj

such thatbj − aor(B)j < 0, since
∑

l bl =
∑

l aor(B)l = B. But then the right-hand



132

side of (4.4) would be negative which would implyb 6∈ Aci(B), since subtracting1 from

bi and adding1 to bj would result in an integer bit allocation closer thanb to aor(B).

A similar contradiction results in the case wherebi − aor(B)i ≤ −1. Thus, for every

i, we must havebi ∈ {baor(B)ic, daor(B)ie}. Sinceb̂i ∈ {baor(B)ic, daor(B)ie} we

conclude that|b̂i − bi| ≤ 1 for all i.

Now, supposet > 0. Then there exists at least onei such thatbi = b̂i − 1 =

baor(B)ic < aor(B)i. For eachj, it cannot be the case thatbj = b̂j + 1 = daor(B)je >

aor(B)j , for otherwise the right-hand side of (4.4) would be positive, which would imply

that the Euclidean distance betweenb andaor(B) can be reduced by adding1 to b̂i and

subtracting1 from b̂j , which violates the fact thatb ∈ Aci(B). Thus, for alli, we have

b̂i − bi ∈ {0, 1}. To minimize the distance betweenb andaor(B), thet components ofb

for which b̂i − bi = 1 must be those components with the smallest values ofρ(aor(B)i).

Thusb ∈ R+.

A similar argument shows that ift < 0, then for alli, we havêbi − bi ∈ {0,−1};

this then implies that thet components ofb for which b̂i − bi = −1 must be those

components with the largest values ofρ(aor(B)i), i.e.,b ∈ R−. In summary,b ∈ R. 2

Note that in practiceAci(B) will usually consist of a single bit allocation, al-

though in principle it can contain more than one bit allocation.

We note that Guo and Meng [17] gave a similar algorithm to thatimplied by

Theorem 4.6. Instead of rounding each component of the Huang-Schultheiss solution

aor(B) to the nearest integer, they round each component down to thenearest integer

from below. Then, they added1 bit at a time to the rounded components, based on which

components were rounded down the most. The technique implied from our Theorem 4.6

uses the same idea, but also adds bits to components which were rounded up too far. The

authors of [17] did not claim that their resulting bit allocation gave a closest integer bit

allocation. They did, however, assert that their resultingbit allocation was optimal; but,
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in fact, their proof was not valid. They attempted to show that adding bits, one at a time,

in the manner they described was optimal among all ways to addbits to the rounded bit

allocation. However, their proof did not eliminate the possibility of adding more than

two bits to multiple components of the rounded bit allocation. Nor did they rule out the

possibility of subtracting extra bits from some componentsin order to add even more

bits to other components. We believe their algorithm is indeed correct, despite the lack

of proof.

Wintz and Kurtenbach [32, p. 656] also gave a similar algorithm for obtain-

ing integer-valued bit allocations. Their technique was toround the components of the

Huang-Schultheiss solution to the nearest integer, and then add or subtract bits to certain

components until the bit budget was satisfied. However, their choice of which compo-

nents to adjust up or down was based on the magnitudes of the components, rather than

how much they were initially truncated. The authors of [32] note that their technique is

suboptimal.

The algorithm in [17] assumes the Huang-Schultheiss solution has nonnegative

components, as does the algorithm implied by our Theorem 4.6. However, in Sec-

tion 4.3.3, we generalize the result of Theorem 4.6 to give analgorithm for finding opti-

mal nonnegative integer bit allocations without any such assumptions about the Huang-

Schultheiss solution.

4.3.2 Equivalence of Closest Integer Bit Allocations and

Optimal Integer Bit Allocations

In this subsection, we allow bit allocations to have negative components. In

Section 4.3.3 we will add the nonnegativity constraint. Thenext two technical lemmas

are used to prove Lemma 4.9.

Lemma 4.7. For anyk scalar sources and for each bit budgetB, letβ ∈ ∆ be such that
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βj ∈ (−1/2, 1/2] for somej.

If βi < −1/2, then

βi = −ρ(aor(B)i) − 1

βj = −ρ(aor(B)j)

ρ(aor(B)i) ≤ ρ(aor(B)j).

If βi > 1/2, then

βi = −ρ(aor(B)i) + 1

βj = −ρ(aor(B)j)

ρ(aor(B)i) ≥ ρ(aor(B)j).

Lemma 4.8. For anyk scalar sources and for each bit budgetB, let

t = r(aor(B)1) + · · · + r(aor(B)k) − B.

Then for anyβ ∈ ∆ and for all i,

βi ∈







(−1/2, 1/2] if t = 0

(−1, 1/2] if t > 0

(−1/2, 1) if t < 0 .

For eachi andj, define ak-dimensional vectorω(i, j) whose components are

ω(i, j)l =







1 if l = i

−1 if l = j

0 otherwise.

(4.5)
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Lemma 4.9. For anyk scalar sources, for each bit budgetB, and for anyb ∈ Aci(B),

let β = b − aor(B). Then for alli, j,

βj − βi ≤ 1.

If βj − βi = 1, then

b + ω(i, j) ∈ Aci(B). (4.6)

The following theorem establishes that for each bit budget,the closest integer bit

allocations and the optimal integer bit allocations are thesame collections.

Theorem 4.10.For anyk scalar sources and for each bit budgetB,

Aci(B) = Aoi(B)

Dci = {doi}.

Proof. First, we show thatAci(B) ⊂ Aoi(B). Let b ∈ AI(B) andb̃ ∈ Aci(B), and let

d andd̃ denote the resulting MSEs, respectively. It suffices to showthatd ≥ d̃.

Define

η+ = {l : bl − b̃l > 0}

η− = {l : bl − b̃l < 0}

and consider any sequence of integer bit allocation vectors

b̃ = b(0), . . . , b(n) = b (4.7)
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such that for eachm = 0, . . . , n − 1 there exists ani ∈ η+ and aj ∈ η− such that

b
(m+1)
l − b

(m)
l = ω(i, j). (4.8)

Such a sequence is guaranteed to exist since|b̃| = |b|. For eachm, let d(m) be the MSE

achieved byb(m). To establishd ≥ d̃, we will show thatd(m) is monotonic nondecreasing

in m.

The construction of the sequenceb(0), . . . , b(n) implies that for each

m = 0, . . . , n − 1

(b(m) − b(0))i ≥ 0

(b(m) − b(0))j ≤ 0

wherei ∈ η+ andj ∈ η− are defined by (4.8), and are functions ofm. Thus,

(b(m) − b(0))j ≤ (b(m) − b(0))i.

Let

β(m) = b(m) − aor(B).

Then,

β
(0)
j − β

(0)
i ≤ 1 [from Lemma 4.9]

and therefore for eachm = 0, . . . , n − 1, we get

β
(0)
j − β

(0)
i − (b(m) − b(0))i ≤ 1 − (b(m) − b(0))j
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or equivalently (by the definition ofβ(0))

−(b(0) − aor(B))i − (b(m) − b(0))i − 1 ≤ −(b(0) − aor(B))j − (b(m) − b(0))j . (4.9)

Canceling terms in (4.9) and raising4 to the remaining quantity on each side of the

inequality gives

4−β
(m)
i −1 ≤ 4−β

(m)
j (4.10)

or equivalently

4−β
(m)
i + 4−β

(m)
j ≤ 4−(β

(m)
i +1) + 4−(β

(m)
j −1)

= 4−β
(m+1)
i + 4−β

(m+1)
j [from (4.8)]

which implies

d(m) = hg4−B/k ·
k∑

l=1

4−β
(m)
l ≤ hg4−B/k ·

k∑

l=1

4−β
(m+1)
l = d(m+1) [from Lemma 4.2].

(4.11)

Thusd(m) is monotonic and therefore we have shownAci(B) ⊂ Aoi(B). The fact that

Dci = {doi} then immediately follows.

Next, we show thatAoi(B) ⊂ Aci(B). Letb ∈ Aoi(B). SinceAoi(B) ⊂ AI(B),

a decomposition as in (4.7) still holds. Our goal is to showb ∈ Aci(B), which will be

accomplished by showingb(n) ∈ Aci(B). By the optimality ofb, we must haved ≤ d̃,

which by the monotonicity ofd(m) impliesd(n) = d(0). Hence, equality holds in (4.11)

and therefore also in (4.10), which implies for eachm = 0, . . . , n − 1 that

β
(m)
j − β

(m)
i = 1. (4.12)
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Now, we use induction to showb(n) ∈ Aci(B). Them = 0 case holds sinceb(0) = b̃ ∈

Aci(B). Now suppose for allm ≤ l (wherel ≥ 1) that b(m) ∈ Aci(B). Then we can

apply Lemma 4.9 to (4.12) in the casem = l, and use (4.8) to obtainb(l+1) ∈ Aci(B).

2

Corollary 4.11. The components of every element inAoi(B) tend to infinity as the bit

budget grows without bound.

Proof of Lemma 4.11.By Lemma 4.1, the components ofaor(B) grow without bound

asB → ∞. By Lemma 4.4,∆ is a subset ofVk−1(0), which is known to be a bounded

convex polytope [8, p. 461–462]. Thus, asB → ∞, for everyb ∈ Aci(B), the com-

ponents ofb also must grow without bound. The result follows from Theorem 4.10.

2

4.3.3 Equivalence of Closest Nonnegative Integer Bit Allocations

and Optimal Nonnegative Integer Bit Allocations

The problem of finding nonnegative bit allocations was addressed by Segall

[25], but his solution did not assure integer-valued quantizer resolutions. Fox [11] gave

a greedy algorithm for finding nonnegative integer bit allocations by allocating one bit

at a time to a set of quantizers. His algorithm is optimal for any convex decreasing

distortion function, and in particular, it is optimal for the distortion function we assume

in (4.1).

In this section, we prove (in Theorem 4.17) that optimal nonnegative integer bit

allocations are equivalent to closest nonnegative integerbit allocations. Our proof leads

to an alternate algorithm for finding optimal nonnegative integer bit allocations. The

algorithm is faster than Fox’s algorithm (as the bit budget grows).

First we introduce some useful notation and then establish five lemmas that will

be used to prove Theorem 4.17.
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For any bit budgetB and any nonempty setS ⊂ {1, 2, . . . , k}, define a vector

aor(B, S) ∈ R
k whose components are

aor(B, S)i =







B
|S|

+ 1
2
log2

σ2
i

g(S)
if i ∈ S

0 otherwise

where

g(S) =

(
∏

i∈S

σ2
i

)1/|S|

.

Lemma 4.1 shows that the|S|-dimensional vector obtained by extracting the coordinates

of aor(B, S), corresponding to the elements ofS, is the optimal real-valued bit allocation

for the quantizers corresponding to the elements ofS. For any given nonempty set

S ⊂ {1, . . . , k}, let

θ1(b) = ‖b − aor(B, S)‖

θ2(b) = hg4−B/k
k∑

i=1

4(aor(B,S)−b)i

and for any setT ⊂ Z
k and any functionf : T → R, let

Q(T, f) =

{

b ∈ T : f(b) = min
b̂∈T

f(b̂)

}

.

Define the quantities

Z
k
S = {u ∈ Z

k : uj = 0 ∀j /∈ S}

AI(B, S) = {u ∈ Z
k
S : |u| = B}

A+
I (B, S) = {u ∈ AI(B, S) : ui ≥ 0 ∀i}

Aci(B, S) = Q(AI(B, S), θ1)
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A+
ci(B, S) = Q(A+

I (B, S), θ1)

A+
oi(B, S) = Q(A+

I (B, S), θ2).

For a given bit budgetB, Aci(B, S) is the set of closest integer bit allocations to

aor(B, S), andA+
ci(B, S) is the set of closest nonnegative integer bit allocations to

aor(B, S).

Lemma 4.12. If Q(W, f) ⊂ V ⊂ W , thenQ(W, f) = Q(V, f).

The following lemma shows that to find a closest integer bit allocation to

aor(B, S), one can assume without loss of generality that zeros are located in bit al-

location vector components corresponding to integers not in S.

Lemma 4.13.For each bit budgetB and for any nonempty setS ⊂ {1, 2, . . . , k},

Aci(B, S) = Q(AI(B), θ1).

Lemma 4.14. For anyk scalar sources, for each bit budgetB, and for any nonempty

setS ⊂ {1, 2, . . . , k}, if aor(B, S) is nonnegative, then every bit allocation inAci(B, S)

is nonnegative.

Lemma 4.15. Consider k scalar sources with bit budgetB and a nonempty set

S ⊂ {1, 2, . . . , k}. If A+
ci(B) ⊂ AI(B, S), thenA+

ci(B) = A+
ci(B, S). If A+

oi(B) ⊂

AI(B, S), thenA+
oi(B) = A+

oi(B, S).

Lemma 4.16.Considerk scalar sources with bit budgetB. SupposeA+
ci(B),A+

oi(B) ⊂
AI(B, S) and there exists ani ∈ S ⊂ {1, 2, . . . , k} such thataor(B, S)i < 0. Then

bi = 0 for all b ∈ A+
ci(B) ∪A+

oi(B).

The following theorem shows that optimal nonnegative integer bit allocation is

equivalent to closest nonnegative integer bit allocation.In other words, minimizing the
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distortion among all nonnegative integer bit allocations is equivalent to finding which

nonnegative integer bit allocation vectors are closest in Euclidean distance to the Huang-

Schultheiss real-valued bit-allocation vector. This, in turn, can be accomplished with

a nearest neighbor search in a lattice. Following Theorem 4.17, we give an efficient

algorithm for finding optimal nonnegative integer bit allocation vectors.

Theorem 4.17.For anyk scalar sources and for each bit budgetB,

A+
ci(B) = A+

oi(B)

D+
ci = {d+

oi}.

Proof. Let S(0) = {1, . . . , k} and consider the sequence of bit allocations

aor(B, S(0)), . . . , aor(B, S(n))

where

S(m+1) = {i ∈ S(m) : aor(B, S(m))i ≥ 0}

andn is the smallest nonnegative integer such thataor(B, S(n))i ≥ 0 for all i. Such an

integern exists since the following hold:

• |S(m)| ≥ 1 for all m.

• If |S(m)| = 1, thenaor(B, S(m))i ≥ 0 for all i.

• |S(m)| is monotone decreasing inm.

We will show that bothA+
ci(B) andA+

oi(B) are equal toAci(B, S(n)). The fact that

D+
ci = {d+

oi} then follows from the definition ofD+
ci.

Note that for anym ≥ 0, if A+
oi(B),A+

ci(B) ⊂ AI(B, S(m)), then

(by Lemma 4.16) any optimal or closest nonnegative integer bit allocationb must sat-
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isfy bi = 0 for i /∈ S(m+1), and thereforeA+
oi(B),A+

ci(B) ⊂ AI(B, S(m+1)). Thus, since

A+
oi(B),A+

ci(B) ⊂ AI(B) = AI(B, S(0)) we obtain by induction that

A+
oi(B),A+

ci(B) ⊂ AI(B, S(n)). (4.13)

Now using (4.13) and Lemma 4.15 we have

A+
ci(B) = A+

ci(B, S(n)) (4.14)

A+
oi(B) = A+

oi(B, S(n)). (4.15)

Sinceaor(B, S(n)) is nonnegative by definition, Lemma 4.14 implies that eachb ∈

Aci(B, S(n)) is nonnegative, i.e.

Aci(B, S(n)) ⊂ A+
I (B, S(n)). (4.16)

From (4.16) and the fact thatA+
I (B, S(n)) ⊂ AI(B, S(n)), we can apply Lemma 4.12

with W = AI(B, S(n)), V = A+
I (B, S(n)), andf = θ1 to obtainAci(B, S(n)) =

A+
ci(B, S(n)). Thus, we have

A+
ci(B) = Aci(B, S(n)) [from (4.14)].

Now consider a set of sourceŝX1, . . . , X̂k with variances

σ̂2
i =







σ2
i

g(S(n))
4

B(k−|S(n)|)

k|S(n)| if i ∈ S(n)

4−B/k if i /∈ S(n).

Lemma 4.1 shows thataor(B, S(n)) is the optimal real-valued bit allocation for

X̂1, . . . , X̂k (mimicking the argument from the proof of Lemma 4.14). Therefore, by

Lemma 4.13,Aci(B, S(n)) is the set of closest integer bit allocations (without requiring
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any zero components) for̂X1, . . . , X̂k. Hence, by Theorem 4.10,Aci(B, S(n)) is also

the set of optimal integer bit allocations for̂X1, . . . , X̂k. Thus,

Aci(B, S(n)) = Q(AI(B), θ2) [from (4.2)] (4.17)

⊂ A+
I (B, S(n)) [from (4.16),(4.17)]

⊂ AI(B).

Now applying Lemma 4.12 withW = AI(B), V = A+
I (B, S(n)), andf = θ2 gives

Q(AI(B), θ2) = A+
oi(B, S(n)).

Therefore, we have

A+
oi(B) = Aci(B, S(n)) [from (4.15),(4.17)].

2

The proof of Theorem 4.17 yields an alternative procedure tothat given by

Fox [11] for finding optimal nonnegative integer bit allocations. The main idea is to

remove any negative components in the Huang-Schultheiss real-valued solution and

then re-compute the Huang-Schultheiss solution for the surviving quantizers, iteratively

repeating this procedure until no negative components remain. Then, the set of clos-

est integer-valued vectors (with the same bit budget) to theresulting nonnegative real-

valued vector is computed as the output of the algorithm.

Algorithm 4.18. (Procedure to findA+
oi(B) andA+

ci(B)):

For anyk scalar sources and for each bit budgetB, the following procedure generates

a set of bit allocations which is both the setA+
oi(B) and the setA+

ci(B).

• Step 1: SetS = {1, 2, . . . , k}.
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• Step 2: Computeaor(B, S) and letJ = {i ∈ S : aor(B, S)i ≥ 0}.

• Step 3: If J = S go to Step 4. Otherwise, setS = J and go to Step 2.

• Step 4: Setaor(B) equal toaor(B, S) in Theorem 4.6 and then computeAci(B).

SetA+
oi(B) = A+

ci(B) = Aci(B).

Remark:

We briefly remark on the computational complexity of the algorithm above as a function

of the bit budgetB, for a fixedk. When there exists a unique closest nonnegative integer

bit allocation, the computational complexity of the algorithm reduces to the complexity

of determiningAci(B). The complexity of this lattice search is known to be constant in

B (e.g. see [9, p. 231]). In contrast, Fox’s algorithm has complexity linear inB. Thus

for largeB, Algorithm 4.18 is faster than Fox’s algorithm.

4.4 Distortion Penalty for Integer Bit Allocations

In this section and in Section 4.5 all sources will be assumedto have optimal

real-valued solutions with nonnegative components. In particular, the following defini-

tion is only meaningful whenaor(B)i ≥ 0 for all i.

For anyk scalar sources and for each bit budgetB, let

poi =
doi

dor
.

We callpoi the distortion penaltyresulting from optimal integer bit allocation.

For anyb ∈ Aoi(B), we have

poi =
1

k

k∑

i=1

4(aor(B)−b)i [from (4.2), Lemma 4.1]. (4.18)

Also, clearlypoi ≥ 1.
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Theorem 4.19.For anyk scalar sources with variancesσ2
1 , . . . , σ

2
k and a bit budgetB,

the following three statements are equivalent:

(i) poi = 1.

(ii) The optimal real-valued bit allocation is an integer bit allocation.

(iii) 1
2
log2

σ2
i

g
+ B mod k

k
∈ Z ∀i.

Proof. If aor(B) is an integer bit allocation, thenaor(B) ∈ Aoi(B), so poi = 1, i.e.

(ii) =⇒ (i). Conversely, supposepoi = 1. Then, for anyb ∈ Aoi(B), by (4.18) and the

arithmetic-geometric mean inequality, we have

1 =
1

k

k∑

i=1

4(aor(B)−b)i ≥ 4
Pk

i=1
1
k
(aor(B)−b)i = 4

1
k
(B−B) = 1 (4.19)

so the inequality in (4.19) is, in fact, equality. Thus,aor(B)i − bi is a constant for all

i, which must equal zero since|aor(B)| = |b|. This proves(i) =⇒ (ii). Lemma 4.1

and the equivalence of(i) and(ii) imply: poi = 1 if and only if for all i the quantity

1
2
log2

σ2
i

g
+ B

k
is an integer. Then(i) ⇐⇒ (iii) follows from

1

2
log2

σ2
i

g
+

B

k
=

(
1

2
log2

σ2
i

g
+

B mod k

k

)

+

(
B − B mod k

k

)

.

2

Lemma 4.20.For anyw ∈ AR(0),

4−‖w‖
√

(k−1)/k + (k − 1)4‖w‖
√

1/(k(k−1))

≤
k∑

i=1

4−wi ≤

4‖w‖
√

(k−1)/k + (k − 1)4−‖w‖
√

1/(k(k−1)).
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For anyb ∈ AR(B), if w = b − aor(B), then Lemma 4.20 gives bounds on the

sum in Lemma 4.2. Moreover, both the upper and lower bounds inLemma 4.20 are

functions only ofk and‖w‖, both bounds are monotone increasing with‖w‖, and as

‖w‖ → 0 the bounds become tight.

Lemma 4.21.For anyk scalar sources, for each bit budgetB, and for any bit allocation

b ∈ AI(B), the mean-squared errord resulting fromb satisfies

hg4−B/k ·
(

4−‖b−aor(B)‖
√

(k−1)/k + (k − 1)4‖b−aor(B)‖
√

1/(k(k−1))
)

≤ d ≤

hg4−B/k ·
(

4‖b−aor(B)‖
√

(k−1)/k + (k − 1)4−‖b−aor(B)‖
√

1/(k(k−1))
)

.

For anyk scalar sources, define

δ = min
B≥1

min
b∈Aoi(B)

‖b − aor(B)‖.

δ is the minimum distance, fork fixed sources, between an optimal integer bit allocation

and the optimal real-valued bit allocation vector, over allbit budgets. The quantityδ is

well defined by Lemma 4.5 and Theorem 4.10.

The following theorem shows that eitheraor(B) ∈ Aoi(B) for all bit budgetsB

congruent to some constant modulok, or elseaor(B) is never an element ofAoi(B), in

which case the distortion penalty resulting from optimal integer bit allocation is bounded

away from1 for all bit budgets.

Theorem 4.22.Considerk scalar sources.

(i) If δ = 0, then there exists a nonnegative integern ≤ k − 1 such that for each bit

budgetB, the following holds:

poi = 1 if and only if B mod k = n.
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(ii) If δ > 0, then for each bit budgetB, the following holds:

poi ≥ 1

k

(

4−δ
√

(k−1)/k + (k − 1)4δ
√

1/(k(k−1))
)

> 1.

Proof. Supposeδ = 0. Then there exists a bit budget̂B such thataor(B̂) ∈ Aoi(B̂).

Theorem 4.19 implies, for each bit budgetB, thatpoi = 1 if and only ifaor(B) ∈ AI(B).

Let n = B̂ mod k. We show thataor(B) ∈ AI(B) if and only if B mod k = n.

Supposeaor(B) ∈ AI(B). Then, for eachi, the quantitiesaor(B)i andaor(B̂)i are both

integers, so

aor(B)i − aor(B̂)i =

(
B

k
+

1

2
log2

σ2
i

g

)

−
(

B̂

k
+

1

2
log2

σ2
i

g

)

[from Lemma 4.1]

=
B − B̂

k
∈ Z

which impliesB mod k = n. Now supposeB mod k = n. This implies there exists an

integerm such thatB = B̂ + km. Hence, for eachi,

aor(B)i =
B

k
+

1

2
log2

σ2
i

g
[from Lemma 4.1]

= m +
B̂

k
+

1

2
log2

σ2
i

g

= m + aor(B̂)i [from Lemma 4.1]

∴ aor(B) ∈ AI(B̂ + km) [from aor(B̂) ∈ AI(B̂)]

= AI(B).

Now supposeδ > 0. Then for each bit budgetB and for anyb ∈ Aoi(B),

‖b − aor(B)‖ ≥ δ > 0. (4.20)
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Define a functionf : [0,∞) → (0,∞) by

f(u) = 4−u
√

(k−1)/k + (k − 1)4u
√

1/(k(k−1)).

For each bit budgetB and for everyb ∈ Aoi(B),

poi =
doi

dor

≥ hg4−B/k

dor

· f(‖b − aor(B)‖) [from Lemma 4.21]

=
1

k
f(‖b − aor(B)‖) [from Lemma 4.1]

≥ 1

k
f(δ) [from (4.20) and the monotonicity off ]

> 1 [from the arithmetic-geometric mean inequality].

2

4.4.1 Lower Bound on Worst Case Distortion Penalty

for Integer Bit Allocations

For any particular set ofk sources, the distortion obtained by using optimal

integer-valued bit allocation may be larger than the distortion predicted by optimal real-

valued bit allocation. Theorem 4.24 below illustrates how much worse integer-valued

bit allocation can be compared to real-valued bit allocation.

Let

γk =
1

2k + 2

(
− k,−k + 2, . . . , k − 2, k

)
.

Lemma 4.23. If the variancesσ2
1, . . . , σ

2
k of k scalar sources satisfy

1

2

(

log2

σ2
1

g
, . . . , log2

σ2
k

g

)

= γk−1
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then for each bit budgetB and for anyb ∈ Aoi(B), the vectorb−aor(B) is a permutation

of γk−1.

Theorem 4.24.For eachk, there existk scalar sources, such that for any bit budget,

the distortion penalty resulting from optimal integer bit allocation satisfies

poi =
3 · 2(k−1)/k

k(4 − 4(k−1)/k)
> 1.

The distortion penalty in Theorem 4.24 is monotone increasing with k and is

bounded as:

1.06 ≈ 3
√

2

4
≤ poi ≤ 3

4 ln 2
≈ 1.08

where the lower bound is attained atk = 2 and the upper bound is approached as

k → ∞. Thus, the theorem guarantees that for some sources, the mean-squared error

due to optimal integer-valued bit allocation is at least6% greater (and as much as8%

greater for largek) than the mean-squared error due to optimal real-valued bitallocation.

We do not claim this is the largest possible distortion penalty – rather, it demonstrates

thatpoi can be bounded away from1.

Proof. Let a > 0 be arbitrary. For eachi ≤ k, consider a scalar source whose variance

is given by

σ2
i = a4(γk−1)i .

Then

g =

(
k∏

i=1

σ2
i

)1/k

= a

1

2

(

log2

σ2
1

g
, . . . , log2

σ2
k

g

)

= γk−1

and Lemma 4.23 implies that for each bit budgetB and for anyb ∈ Aoi(B), the vector
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b − aor(B) is a permutation ofγk−1. Hence, for eachB,

poi =
1

k

k∑

i=1

4−(γk−1)i [from (4.18)]

=
1

k

k−1∑

i=0

4−[(−(k−1)+2i)/2k]

=
2(k−1)/k

k

k−1∑

i=0

4−i/k (4.21)

=
2(k−1)/k

k
· 1 −

(
4−1/k

)k

1 − 4−1/k

=
3 · 2(k−1)/k

k(4 − 4(k−1)/k)
.

Applying the arithmetic-geometric mean inequality to (4.21) givespoi > 1. 2

We note that for the sources used in the proof of Theorem 4.24,the lower bound

in Theorem 4.24 is greater than that given in case (ii) of Theorem 4.22, for allk.

4.5 Upper Bound on Distortion Penalty

for Integer Bit Allocations

Lemma 4.8 and Theorem 4.10 imply that each component of any optimal integer

bit allocationb differs from the corresponding component of the optimal real-valued bit

allocation by less than1. Hence, using (4.2) and Lemma 4.1, one easily obtains the

bound

poi =

hg4−B/k

k∑

i=1

4(aor(B)−b)i

khg4−B/k
< 4.
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In the following theorem we give a tighter upper bound on the distortion penalty re-

sulting from optimal integer bit allocation. The bound doesnot depend on the source

distribution or the bit budget.

Theorem 4.25.For eachk ≥ 2, for anyk scalar sources, and for any bit budget, the

distortion penalty resulting from optimal integer bit allocation is upper bounded as

poi ≤ 4τ

(

1 − 3τ

4

)

whereτ = 1
k
d4k

3
− 1

1−4−1/k e.

The upper bound onpoi in Theorem 4.25 is tight since, for arbitrarya > 0, if

σ2
i = a4−c(k − 1, kτ)i 1 ≤ i ≤ k

and the bit budgetB is a multiple ofk, then by Theorem 4.6, Theorem 4.10, and (4.18)

we havepoi = 4τ
(
1 − 3τ

4

)
. For all k ≥ 2, the upper bound onpoi in Theorem 4.25

satisfies

1.25 ≤ 4τ

(

1 − 3τ

4

)

<
3

e21/3 ln 2
≈ 1.26 (4.22)

where the lower bound in (4.22) is attained atk = 2 andk = 4 and the upper bound in

(4.22) is approached ask → ∞. Thus, Theorem 4.25 guarantees that for anyk scalar

sources and for all bit budgets, the mean-squared error due to optimal integer-valued bit

allocation is at most26% greater than the mean-squared error due to optimal real-valued

bit allocation.

Figure 4.1 compares the upper bound in Theorem 4.25 with the distortion penalty

from Theorem 4.24.
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Proof. We show that

sup
B

sup
σ2
1 ,...,σ2

k

doi

dor

= 4τ

(

1 − 3τ

4

)

where, for a fixedk, the suprema are taken over all possiblek-tuples of sources and over

all bit budgets.

Define a mappingf : R
k → R by

f(u) =

k∑

i=1

4−ui.

Then we have

sup
B

sup
σ2
1 ,...,σ2

k

doi

dor

=
1

k
sup

B
sup

σ2
1 ,...,σ2

k

k∑

i=1

4(aor(B)−b)i ∀b ∈ Aoi(B) [from (4.18)]

=
1

k
sup

B
sup

σ2
1 ,...,σ2

k

k∑

i=1

4(aor(B)−b)i ∀b ∈ Aci(B) [from Theorem 4.10]

=
1

k
sup

B
sup

σ2
1 ,...,σ2

k

k∑

i=1

4−ui ∀u ∈ ∆ [from the definition of∆]

=
1

k
sup

B
sup

u∈MB

f(u) [from the definition ofMB]

=
1

k
sup

u∈Vk−1(0)

f(u) [from Lemma 4.4]

=
1

k
max

0≤j≤k−1

k∑

i=1

4−c(k−1,j)i (4.23)

= max
0≤j≤k−1

4j/k

(

1 − 3

4k
j

)

[from (4.3)]

where (4.23) follows from the fact that the convex functionf , restricted to the closed and

bounded polytopeVk−1(0), achieves a global maximum (e.g., see [27, Theorem 6.12 on
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p. 154]) on the polytope’s set of vertices, which consists ofall coordinate permutations

of c(k − 1, 0), . . . , c(k − 1, k − 1) [8, p. 461–462].

For j = 0, . . . , k − 1, define

g(j) = 4j/k

(

1 − 3

4k
j

)

.

Sinceg(j) > 0 if and only if j < 4k/3, the functiong must attain it’s maximum when

j < 4k/3. In the range0 ≤ j < 4k/3, the ratio

g(j + 1)

g(j)
= 41/k

(

1 − 1
4k
3
− j

)

is greater than1 if and only if

j <
4k

3
− 1

1 − 4−1/k

sog attains is maximum whenj = d4k
3
− 1

1−4−1/k e. 2
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Figure 4.1: Plot of the achievable distortion penalty from Theorem 4.24 and the upper
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Appendix

Proof of Lemma 4.3.

{

u ∈ Λk + y : ‖w − u‖ = min
v∈Λk+y

‖w − v‖
}

= y +

{

u ∈ Λk : ‖w − (u + y)‖ = min
v∈Λk

‖w − (v + y)‖
}

= Φk(w − y) + y.

2

Proof of Lemma 4.4.First, note that for eachk ≥ 1 and for anyu ∈ Hk, the symmetry

of Λk implies that

u ∈ Vk(0) if and only if − u ∈ Vk(0). (4.24)

Also, note that sinceΛk−1 consists of all vectors withk integer coordinates

which sum to0, and since

B

k
( 1, . . . , 1
︸ ︷︷ ︸

k

) + c(k − 1, B mod k) ∈ AI(B)

it follows that

AI(B) = Λk−1 +
B

k
( 1, . . . , 1
︸ ︷︷ ︸

k

) + c(k − 1, B mod k). (4.25)

Now, Lemma 4.3 and (4.25) imply that

Aci(B) = Φk−1



aor(B) −




B

k
( 1, . . . , 1
︸ ︷︷ ︸

k

) + c(k − 1, B mod k)









+
B

k
( 1, . . . , 1
︸ ︷︷ ︸

k

) + c(k − 1, B mod k).
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Thus, Lemma 4.1 gives

∆ = Φk−1(µ) − µ.

Sinceµ ∈ Vk−1

(
w
)

for all w ∈ Φk−1(µ), we have that for eachw ∈ Φk−1(µ)

‖µ − w‖ ≤ ‖µ − y‖ ∀y ∈ Λk−1 (4.26)

= ‖(µ − w) − (y − w)‖ ∀y ∈ Λk−1. (4.27)

Sincew ∈ Λk−1, we havey − w ∈ Λk−1 for all y ∈ Λk−1. Thus, by (4.24) and the

definition ofVk−1(0), (4.26)–(4.27) implyw − µ ∈ Vk−1(0). Hence,∆ ⊂ Vk−1(0), and

thereforeMB ⊂ Vk−1(0).

Now, for anyv ∈ Vk−1(0) and for arbitrarya > 0, setting

σ2
i = a4c(k − 1, B mod k)i − vi

for 1 ≤ i ≤ k results in

g =

(
k∏

i=1

σ2
i

)1/k

= a

1

2

(

log2

σ2
1

g
, . . . , log2

σ2
k

g

)

= c(k − 1, B mod k) − v

and therefore

∆ = Φk−1(−v) + v.

Sincev ∈ Vk−1(0), by (4.24), we also have−v ∈ Vk−1(0). Hence,0 ∈ Φk−1(−v), and

thusv ∈ ∆. So,Vk−1(0) ⊂ MB and thereforeMB = Vk−1(0). 2
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Proof of Lemma 4.5.From (4.3) we have

{c(k − 1, B mod k) : B ≥ 1} = {c(k − 1, B mod k) : 1 ≤ B ≤ k}.

Lemmas 4.3 and 4.4 imply that for eachB, any element of∆ is the difference between

the vector(1/2)
(
log2(σ

2
1/g), . . . , log2(σ

2
k/g)

)
and a point (not necessarily unique) clos-

est to it from the setΛk−1 + c(k − 1, B mod k). Hence,

⋃

B≥1

∆ ⊂
⋃

1≤B≤k

∆

so, in fact, these two unions are equal. The result then follows from the fact that for each

B, the set∆ is finite. 2

Proof of Lemma 4.7.Let t andIk be defined as in Theorem 4.6 and letb = β+aor(B) ∈
Aci(B). Then for alli,

βi = bi − r(aor(B)i) − ρ(aor(B)i) [from the definitions ofρ andr] (4.28)

−1

2
≤ ρ(aor(B)i) <

1

2
[from the definitions ofρ andr] (4.29)

bi − r(aor(B)i) ∈







{0,−1} if t > 0

{0, 1} if t < 0
[from Theorem 4.6]. (4.30)

Sinceβj ∈ (−1/2, 1/2], we have

−1

2
< bj − r(aor(B)j) − ρ(aor(B)j) ≤

1

2
[from (4.28)] (4.31)

bj − r(aor(B)j) = 0 [from (4.29),(4.30),(4.31)] (4.32)

βj = −ρ(aor(B)j) [from (4.28),(4.32)].
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Supposeβi < −1/2. Then

bi − r(aor(B)i) = βi + ρ(aor(B)i) [from (4.28)]

< −1

2
+ ρ(aor(B)i)

< 0 [from (4.29)] (4.33)

bi − r(aor(B)i) = −1 [from (4.30),(4.33)] (4.34)

βi = −ρ(aor(B)i) − 1 [from (4.28),(4.34)].

By (4.32), (4.34), the fact thatb ∈ Aci(B), and Theorem 4.6, there exists(i1, . . . , ik) ∈

Ik such thati ∈ {i1, . . . , it}, j ∈ {it+1, . . . , ik}, andρ(aor(B)i) ≤ ρ(aor(B)j).

Supposeβi > 1/2. Then

bi − r(aor(B)i) = βi + ρ(aor(B)i) [from (4.28)]

>
1

2
+ ρ(aor(B)i)

> 0 [from (4.29)] (4.35)

bi − r(aor(B)i) = 1 [from (4.30),(4.35)] (4.36)

βi = −ρ(aor(B)i) + 1 [from (4.28),(4.36)].

By (4.32), (4.36), the fact thatb ∈ Aci(B), and Theorem 4.6, there exists(i1, . . . , ik) ∈

Ik such thati ∈ {ik+t+1, . . . , ik}, j ∈ {i1, . . . , ik+t}, andρ(aor(B)i) ≥ ρ(aor(B)j). 2

Proof of Lemma 4.8.Let b̂ andIk be defined as in Theorem 4.6. Ift = 0, then the result

follows from Theorem 4.6 and the definitions of∆ andr(·).

Supposet > 0 and letb = β + aor(B) ∈ Aci(B). By Theorem 4.6, there exists
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(i1, . . . , ik) ∈ Ik such that

bj =







b̂j − 1 if j ∈ {i1, . . . , it}
b̂j if j ∈ {it+1, . . . , ik}.

(4.37)

Subtractingaor(B) from both sides of (4.37) gives

βj =







b̂j − 1 − aor(B)j if j ∈ {i1, . . . , it}

b̂j − aor(B)j if j ∈ {it+1, . . . , ik}

=







−ρ(aor(B)j) − 1 if j ∈ {i1, . . . , it}

−ρ(aor(B)j) if j ∈ {it+1, . . . , ik}.

Since−1/2 ≤ ρ(aor(B)j) < 1/2, we have−ρ(aor(B)j) ∈ (−1/2, 1/2] ⊂ (−1, 1/2].

Thus, it suffices to show thatρ(aor(B)j) < 0 for j ∈ {i1, . . . , it}, since then

−ρ(aor(B)j) − 1 ∈ (−1,−1/2].

Let n denote the number of components ofaor(B) such thatρ(aor(B)j) <

0. Since the subscriptsij are ordered by increasing value ofρ(aor(B)j), we have

ρ(aor(B)j) < 0 for j ∈ {i1, . . . , in}. Hence, it suffices to showt ≤ n. We have

t =

(
k∑

i=1

r(aor(B)i)

)

− B

= n +

(
k∑

i=1

baor(B)ic
)

− B

= n −
k∑

i=1

(aor(B)i − baor(B)ic)

≤ n.

The result then follows by symmetry fort < 0. 2

Proof of Lemma 4.9.Sinceβ ∈ ∆, Lemma 4.8 givesβi, βj ∈ (−1, 1). It is easy to
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verify thatβj − βi ≤ 1 in the following three cases:

• βi, βj ∈ [0, 1)

• βi ∈ (−1, 1), βj ∈ (−1, 0]

• βi ∈ [−1/2, 0], βj ∈ [0, 1/2].

The inequality also holds forβi ∈ (−1,−1/2) andβj ∈ [0, 1/2] since

βj − 1 = −ρ(aor(B)j) − 1 ≤ −ρ(aor(B)i) − 1 = βi [from Lemma 4.7]

and it holds forβi ∈ (−1/2, 0] andβj ∈ (1/2, 1) since

βj − 1 = −ρ(aor(B)j) ≤ −ρ(aor(B)i) = βi [from Lemma 4.7].

Finally, Lemma 4.8 implies that it cannot be the case thatβi ∈ (−1,−1/2] andβj ∈
(1/2, 1). Thus,βj − βi ≤ 1 for all i andj.

Let b̃ = b + ω(i, j) and supposeβj − βi = 1. Then

b̃i = bi + 1 = βi + 1 + aor(B)i = βj + aor(B)i

b̃j = bj − 1 = βj − 1 + aor(B)j = βi + aor(B)j.

Hence,

b̃l − aor(B)l =







βj if l = i

βi if l = j

βl otherwise.

Therefore,‖b̃ − aor(B)‖ = ‖β‖, which by the definition of∆, impliesb̃ ∈ Aci(B). 2
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Proof of Lemma 4.12.AssumeQ(W, f) ⊂ V ⊂ W . If b ∈ Q(W, f), then

f(b) = min
b̂∈W

f(b̂) [from b ∈ Q(W, f)]

≤ min
b̂∈V

f(b̂) [from V ⊂ W ]

≤ f(b) [from b ∈ V ]

and thereforeb ∈ Q(V, f). Thus,Q(W, f) ⊂ Q(V, f).

If b ∈ Q(V, f), then

f(b) = min
b̂∈V

f(b̂) [from b ∈ Q(V, f)]

≤ min
b̂∈Q(W,f)

f(b̂) [from Q(W, f) ⊂ V ]

= min
b̂∈W

f(b̂) [from the definition ofQ(W, f)]

≤ f(b) [from b ∈ V ⊂ W ]

and thereforeb ∈ Q(W, f). Thus,Q(V, f) ⊂ Q(W, f). 2

Proof of Lemma 4.13.Supposeb ∈ Q(AI(B), θ1). For anyi andj, the following iden-

tity holds:

[(bi − 1) − aor(B, S)i]
2 + [(bj + 1) − aor(B, S)j]

2

− [bi − aor(B, S)i]
2 − [bj − aor(B, S)j]

2

= 2[1 + aor(B, S)i − bi + bj − aor(B, S)j]. (4.38)

Now, suppose there exists ani such thatbi − aor(B, S)i ≥ 1. Then there must exist aj

such thatbj − aor(B, S)j < 0, since
∑

l bl =
∑

l aor(B, S)l = B. But then the right-

hand side of (4.38) would be negative which would implyb 6∈ Q(AI(B), θ1), since
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subtracting1 from bi and adding1 to bj would result in an integer bit allocation closer

thanb to aor(B, S). A similar contradiction results in the case wherebi − aor(B, S)i ≤

−1. Thus, for everyi, we must havebi ∈ {baor(B, S)ic, daor(B, S)ie}.

The definition ofaor(B, S) then impliesbi = 0 for all i /∈ S. Thus, b ∈

AI(B, S), and thereforeQ(AI(B), θ1) ⊂ AI(B, S). Now applying Lemma 4.12 with

W = AI(B), V = AI(B, S), andf = θ1 givesQ(AI(B), θ1) = Aci(B, S). 2

Proof of Lemma 4.14.Consider a set of sourceŝX1, . . . , X̂k with varianceŝσ1
1, . . . , σ̂

2
k

given by

σ̂2
i =







σ2
i

g(S)
4

B(k−|S|)
k|S| if i ∈ S

4−B/k if i /∈ S.

The geometric mean of the variances is

(
k∏

i=1

σ̂2
i

)1/k

=

(
∏

i∈S

σ2
i

g(S)
· 4

B(k−|S|)
k|S|

)1/k(
∏

i/∈S

4−B/k

)1/k

=







∏

i∈S

σ2
i

g(S)|S|
· 4B(k−|S|)

k







1/k

(

4
−B(k−|S|)

k

)1/k

=

(
g(S)|S|

g(S)|S|
· 4B(k−|S|)

k

)1/k (

4
−B(k−|S|)

k

)1/k

[from g(S) =
(∏

i∈S σ2
i

)1/|S|
]

= 1.

Therefore, substituting the variances and their geometricmean into Lemma 4.1 gives

aor(B)i =
B

k
+

1

2
log2

σ̂2
i

1
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=







B
|S|

+ 1
2
log2

σ2
i

g(S)
if i ∈ S

0 otherwise

= aor(B, S)i.

Hence,aor(B, S) is the optimal real-valued bit allocation for̂X1, . . . , X̂k. Thus, by

Lemma 4.13,Aci(B, S) is the set of closest integer bit allocations forX̂1, . . . , X̂k (re-

gardless ofS). Let

t = |(r(aor(B, S)1), . . . , r(aor(B, S)k))| − B

and forb ∈ Aci(B, S), let

β = b − aor(B, S) ∈ Aci(B, S) − aor(B, S).

Then Lemma 4.8 implies that for alli,

βi ∈







(−1/2, 1/2] if t = 0

(−1, 1/2] if t > 0

(−1/2, 1) if t < 0 .

(4.39)

Combining the fact thataor(B, S)i ≥ 0 for all i with (4.39) givesbi ≥ 0 for all i. 2

Proof of Lemma 4.15.Let

m =

(
B(k − |S|)

k|S| +
1

2
log2

g

g(S)

)

.

Then for alli ∈ S,

aor(B)i + m = aor(B, S)i. (4.40)
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SupposeA+
ci(B) ⊂ AI(B, S). Since every vector inA+

ci(B) is nonnegative, we

have

A+
ci(B) ⊂ A+

I (B, S)

⊂ A+
I (B). (4.41)

From (4.41), we can apply Lemma 4.12 withW = A+
I (B), V = A+

I (B, S) andf(b) =

‖b − aor(B)‖ to obtain

A+
ci(B) = Q

(
A+

I (B, S), ‖b − aor(B)‖
)
. (4.42)

For anyb ∈ A+
I (B, S),

‖b − aor(B)‖2

=
∑

i/∈S

|aor(B)i|2 +
∑

i∈S

|bi − aor(B)i|2 [from bi = 0 ∀ i /∈ S] (4.43)

=
∑

i/∈S

|aor(B)i|2 +
∑

i∈S

|m + bi − (m + aor(B)i)|2

=
∑

i/∈S

|aor(B)i|2 + |S| · m2 +
∑

i∈S

2m (bi − aor(B, S)i) + (bi − aor(B, S)i)
2

[from (4.40)]

=
∑

i/∈S

|aor(B)i|2 + |S| · m2 +
∑

i∈S

(bi − aor(B, S)i)
2

[from
∑

i∈S

bi =
∑

i∈S

aor(B, S)i = B]

(4.44)

=
∑

i/∈S

|aor(B)i|2 + |S| · m2 +
k∑

i=1

|bi − aor(B, S)i|2
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[from bi = aor(B, S)i = 0 ∀ i /∈ S]

(4.45)

=
∑

i/∈S

|aor(B)i|2 + |S| · m2 + ‖b − aor(B, S)‖2 . (4.46)

Equations (4.43)–(4.46) show that the quantities‖b−aor(B)‖ and‖b−aor(B, S)‖ differ

by a constant which is independent ofb. Hence, among all bit allocations inA+
I (B, S),

we see thatb is of minimal distance fromaor(B, S) if and only if b is of minimal distance

from aor(B), i.e. A+
ci(B, S) = Q

(
A+

I (B, S), ‖b − aor(B)‖
)
. Thus, by (4.42), we have

A+
ci(B) = A+

ci(B, S).

Now, to show the second part of the lemma, supposeA+
oi(B) ⊂ AI(B, S). Since

every vector inA+
oi(B) is nonnegative, we have

A+
oi(B) ⊂ A+

I (B, S)

⊂ A+
I (B). (4.47)

From (4.47), we can apply Lemma 4.12 withW = A+
I (B), V = A+

I (B, S), andf(b) =

d to obtain

A+
oi(B) = Q

(
A+

I (B, S), d
)
. (4.48)

For anyb ∈ A+
I (B, S),

d = hg4−B/k ·
k∑

i=1

4(aor(B)−b)i [from Lemma 4.2]

= hg4−B/k ·
∑

i/∈S

4aor(B)i + hg4−B/k ·
∑

i∈S

4(aor(B)−b)i [from bi = 0 ∀ i /∈ S]

= hg4−B/k ·
∑

i/∈S

4aor(B)i + hg4−B/k ·
∑

i∈S

4−m+(m+aor(B)i)−bi

= hg4−B/k ·
∑

i/∈S

4aor(B)i + hg4(−B/k)−m ·
∑

i∈S

4(aor(B,S)−b)i [from (4.40)]



166

= hg4−B/k ·
∑

i/∈S

4aor(B)i

+ hg4(−B/k)−m ·
(
∑

i∈S

4(aor(B,S)−b)i +
∑

i/∈S

4(aor(B,S)−b)i −
∑

i/∈S

4(aor(B,S)−b)i

)

= hg4−B/k ·
∑

i/∈S

(
4aor(B)i − 4−m

)
+ 4−m · θ2(b) [from aor(B, S)i = bi = 0 ∀ i /∈ S]

which is an affine function ofθ2(b), with coefficients which are independent ofb. There-

fore, among all bit allocations inA+
I (B, S), we see thatb minimizesθ2(b) if and only if

b minimizesd, i.e. A+
oi(B, S) = Q

(
A+

I (B, S), d
)
. Thus, by (4.48), we haveA+

oi(B) =

A+
oi(B, S). 2

Proof of Lemma 4.16.We prove that for allb ∈ AI(B, S), if bi > 0, thenb /∈ A+
ci(B) ∪

A+
oi(B).

Let b ∈ AI(B, S) satisfybi > 0. By Lemma 4.15, we know thatA+
ci(B) =

A+
ci(B, S) and A+

oi(B) = A+
oi(B, S). We will show thatb /∈ A+

ci(B, S) and b /∈
A+

oi(B, S). In particular, we demonstrate that there existsj ∈ S such that adding1

bit to bj and subtracting1 bit from bi reduces bothθ1(b) andθ2(b), i.e., the originalb

chosen could not have been an optimal nor a closest nonnegative integer bit allocation.

Suppose

aor(B, S)i − bi ≥ aor(B, S)l − bl − 1 ∀l ∈ S. (4.49)

Then we get

(|S| − 1)(aor(B, S)i − bi)

=
∑

l∈S
l 6=i

aor(B, S)i − bi

≥
∑

l∈S
l 6=i

(aor(B, S)l − bl − 1) [from (4.49)]
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= (B − aor(B, S)i) − (B − bi) − (|S| − 1) [from
∑

l∈S

bl =
∑

l∈S

aor(B, S)l = B]

= −(aor(B, S)i − bi) − (|S| − 1)

which implies

|S|(1 − bi + aor(B, S)i) ≥ 1,

a contradiction, sincebi ≥ 1 andaor(B, S)i < 0. Therefore, (4.49) is false, so there

existsj ∈ S such thatj 6= i and

aor(B, S)i − bi < aor(B, S)j − bj − 1. (4.50)

Multiplying each side of (4.50) by−2 and adding(aor(B, S)i − bi)
2

+ (aor(B, S)j − bj)
2 to each side gives

(aor(B, S)i − bi)
2 − 2(aor(B, S)i − bi) + (aor(B, S)j − bj)

2

> (aor(B, S)i − bi)
2 − 2(aor(B, S)j − bj) + 2 + (aor(B, S)j − bj)

2

or equivalently

(aor(B, S)i − bi)
2 + (aor(B, S)j − bj)

2

> (aor(B, S)i − bi)
2 + 2(aor(B, S)i − bi) + 1

+ (aor(B, S)j − bj)
2 − 2(aor(B, S)j − bj) + 1

= (aor(B, S)i − (bi − 1))2 + (aor(B, S)j − (bj + 1))2.

Thus, subtracting1 bit from bi and adding1 bit to bj reducesθ1(b). Some algebra shows

that the inequality in (4.50) is equivalent to

4aor(B,S)i−bi + 4aor(B,S)j−bj > 4aor(B,S)i−(bi−1) + 4aor(B,S)j−(bj+1)
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from which it follows thatθ2(b) can be reduced by adding1 bit to bj and subtracting1

bit from bi. 2

Proof of Lemma 4.20.The proof is trivial for‖w‖ = 0, so assume‖w‖ > 0. We

determine the extrema of
k∑

i=1

4−wi (4.51)

subject to the constraints

k∑

i=1

wi = 0 (4.52)

k∑

i=1

w2
i = a2. (4.53)

Define a LagrangianJ associated with multipliersλ1 andλ2 by:

J =
k∑

i=1

4−wi + λ1

k∑

i=1

wi + λ2

(
k∑

i=1

w2
i − a2

)

.

The extrema ofJ must satisfy (for1 ≤ i ≤ k):

0 =
∂J

∂wi
= −(ln 4)4−wi + λ1 + 2λ2wi. (4.54)

Supposeλ2 > 0. Then ∂J
∂wi

is monotone increasing inwi and approaches±∞ aswi −→
±∞. Thus, exactly onewi satisfies (4.54) for eachi, and thereforewi = wj for all i, j.

So, by (4.52) it follows thatwi = 0 for all i, contradicting‖w‖ > 0.

Thus we can assumeλ2 < 0. Since ∂J
∂wi

is strictly concave, (4.54) can have at

most two solutions. It cannot be the case that (4.54) has onlyone solution, for otherwise

(4.52) would again imply thatwi = 0 for all i, contradicting‖w‖ > 0. So (4.54) has

exactly two solutions and by (4.52) these two solutions mustbe of different signs.
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Thus, the extrema ofJ must lie in the set

P = P1 ∪ · · · ∪ Pk−1

wherePj is the set of all
(

k
j

)
component-wise permutations of the vector

a

(
j

k(k − j)

)1/2

·








−
(

k − j

j

)

, . . . ,−
(

k − j

j

)

︸ ︷︷ ︸

j

, 1, . . . , 1
︸ ︷︷ ︸

k−j








. (4.55)

The constant factor in (4.55) ensures that the elements ofP satisfy (4.52) and (4.53).

Summing both sides of (4.54) overi and solving forλ1 yields

λ1 =
ln 4

k

k∑

i=1

4−wi. (4.56)

From (4.54), we obtain

(ln 4)4−wi − λ1 = 2λ2wi

which when squared, summed overi, and simplified using (4.53) and (4.56) gives

λ2 = − ln 2

a





k∑

i=1

16−wi − 1

k

(
k∑

i=1

4−wi

)2




1/2

. (4.57)

Now, for any componentwi of anyw ∈ Pj, using (4.55), (4.56), and (4.57) gives

− (ln 4)4−wi + λ1 + 2λ2wi

= −(ln 4)4−wi +
ln 4

k

k∑

i=1

4−wi − 2wi ln 2

a





k∑

i=1

16−wi − 1

k

(
k∑

i=1

4−wi

)2




1/2

= −(ln 4)4−wi +
ln 4

k

(

j4a
√

(k−j)/(kj) + (k − j)4−a
√

j/(k(k−j))
)
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− wi ln 4

a

[

j16a
√

(k−j)/(kj) + (k − j)16−a
√

j/(k(k−j))

− 1

k

(

j4a
√

(k−j)/(kj) + (k − j)4−a
√

j/(k(k−j))
)2
]1/2

= −(ln 4)4−wi +
ln 4

k

(

j4a
√

(k−j)/(kj) + (k − j)4−a
√

j/(k(k−j))
)

− wi ln 4

a

√

j(k − j)

k

[

4a
√

(k−j)/(kj) − 4−a
√

j/(k(k−j))
]

= 0 (4.58)

where (4.58) follows by considering the caseswi = −a
√

(k − j)/(kj) and wi =

a
√

j/(k(k − j)). Hence everyw ∈ P satisfies (4.54), and thereforeP is the set of

solutions to (4.54) subject to the constraints in (4.52) and(4.53).

Substituting an arbitrary elementw ∈ P (i.e. an extremum ofJ) into (4.51)

gives

k∑

i=1

4−wi = j4a
√

(k−j)/(kj) + (k − j)4−a
√

j/(k(k−j))

= j4‖w‖
√

(k−j)/(kj) + (k − j)4−‖w‖
√

j/(k(k−j)) [from (4.53)]. (4.59)

To complete the proof it suffices to show that (4.59) is decreasing in j. This

implies (4.51) is upper bounded by (4.59) whenj = 1 and lower bounded by (4.59)

whenj = k − 1.

Note that if the right-hand side of (4.59) is viewed as a continuous function ofj,

then its derivative with respect toj is

4‖w‖
√

(k−j)/(kj)

[

1 − ‖w‖ ln 2

(
k

j(k − j)

)1/2
]

− 4−‖w‖
√

j/(k(k−j))

[

1 + ‖w‖ ln 2

(
k

j(k − j)

)1/2
]
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which is negative if and only iff
(

‖w‖ ln 2
√

k/(j(k − j))
)

> 0, where

f(u) = 1 + u − (1 − u)e2u.

Sincef(0) = f ′(0) = 0 andf ′′(u) = 4ue2u > 0 for all u > 0, we havef(u) > 0 for all

u > 0. 2

Proof of Lemma 4.21.The result follows from Lemma 4.2 and Lemma 4.20 withw =

b − aor(B). 2

Proof of Lemma 4.23.For any vectoru and any permutationπ of the positive integers

less than or equal to the dimension ofu, let π(u) denote the component-wise permu-

tation of u according toπ. First observe thatΦk

(
π(γk)

)
= {0} for any k and any

permutationπ of {1, . . . , k + 1}. To see this, note that for anyw ∈ Λk \ {0}, since

|(γk)i| < 1/2 for all i, we have

|(π(γk))i − wi| > |(π(γk))i| if wi 6= 0

|(π(γk))i − wi| = |(π(γk))i| if wi = 0

which implies

‖π(γk) − w‖ > ‖π(γk)‖

and therefore

Φk

(
π(γk)

)
=

{

u ∈ Λk : ‖π(γk) − u‖ = min
v∈Λk

‖π(γk) − v‖
}

= {0}.

Now observe thatγk−1−c(k−1, j) is the left-cyclic shift ofγk−1 by j positions,

for anyj, since

γk−1 − c(k − 1, j)
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=
1

2k

(
− (k − 1) + 2j,−(k − 1) + 2j + 2, . . . , k − 1,

− (k − 1), . . . ,−(k − 1) + 2j − 4,−(k − 1) + 2j − 2
)
.

In particular, for each bit budgetB, Theorem 4.10 and Lemma 4.4 imply that for every

b ∈ Aoi(B),

b − aor(B) ∈ Φk−1

(
γk−1 − c(k − 1, B mod k)

)
−
(
γk−1 − c(k − 1, B mod k)

)

= Φk−1

(
γ̂k−1

)
− γ̂k−1

= {−γ̂k−1}

whereγ̂k−1 denotesγk−1 left-cyclic shifted byB mod k positions. Since the compo-

nents ofγk−1 are the same as those of−γk−1, so are the components of−γ̂k−1. Thus,

−γ̂k−1 is a permutation ofγk−1. 2

This chapter, in full, has been submitted for publication as: Benjamin Farber

and Kenneth Zeger, “Quantization of Multiple Sources UsingNonnegative Integer Bit

Allocation,” IEEE Transactions on Information Theory, May 2005. The dissertation

author was the primary investigator of this paper.
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Chapter 5

Conclusion

In this dissertation we have presented work on two importantproblems having

to do with scalar quantization. This study raises some addition interesting problems and

ideas. We, therefore, conclude by discussing pertinent extensions of our work.

Chapter 2 deals exclusively with scalar quantization. However, one can also ap-

ply the weighted centroid condition to vector quantizer decoders. A challenging aspect

of generalizing Chapter 2 tok ≥ 2 dimensions is how to define a uniform quantizer en-

coder with a reasonablek-dimensional analog of the assumption that the encoding cells

are ordered from left to right. With a well definedk-dimensional analog of a decoder

optimized uniform quantizer, one can tackle the same questions that Chapter 2 answers:

1. For a given source, is there an optimal family of index assignments for all trans-

mission rates and all bit error probabilities?

2. Are most index assignments asymptotically bad?

3. What do the point density functions look like for different families of index as-

signments?

Similarly, with a reasonable definition of ak-dimensional uniform quantizer de-

coder, one can generalize the notion of an encoder optimizeduniform quantizer tok ≥ 2
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dimensions. Extending the work in Chapter 3 to higher dimensions could then involve

answering questions such as:

1. Is the Natural Binary Code index assignment still sub-optimal for a large range of

transmission rates and bit error probabilities?

2. How many empty cells do particular families of index assignments induce in the

quantizer encoder?

3. What do the cell density functions look like for particular families of index as-

signments?

Another extension of the work in Chapter 3 would be to characterize the occurrence

of empty cells and compute the expected mean squared error ofan encoder optimized

uniform quantizer with an index assignment chosen uniformly at random.

Both Chapters 2 and 3 restrict index assignments to be a permutation operation

on the input to the channel and the inverse permutation operation on the output of the

channel. A relaxed notion of index assignments would not require the permutation on

the output of the channel to be the inverse of the permutationon the input to the channel.

Both Chapters 2 and 3 also consider only binary symmetric channels. An interesting and

challenging problem would be to consider any of the main results in Chapters 2 and 3

in the context of a different channel and/or a relaxed notionof index assignments.

One other interesting problem stemming from Chapters 2 and 3is how well

scalar quantizers can perform, and how they are structured when both the quantizer

encoder and decoder are optimized to the channel statistics(i.e. when both the weighted

centroid condition and the weighted nearest neighbor condition are satisfied). We found

this to be a very difficult problem analytically, even for relatively small rate quantizers.

One approach is to simplify the source so there are a finite number of possible quantizer

encoders and decoders. This can be done by assuming the source consists of a discrete
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random variable. Perhaps by making progress in this simplified case, one could gain

understanding for the case of a continuous source random variable.

In Chapter 4 we assumed an individual quantizer with rateb achieves a mean

squared error (MSE) proportional to4−b. However, we suspect our results might gener-

alize to the case when the MSE is instead proportional to an arbitrary decreasing convex

function ofb. Two main issues must be resolved in order to make such a generalization.

First of all, the optimal real-valued bit allocation derived by Huang and Schultheiss [1]

must be generalized. Since their solution guarantees a unique optimal real-valued bit al-

location, any generalization of their work would hopefullydo the same. Secondly, one

would need to find a way of relating the MSE achieved by an integer bit allocation to

its component-wise difference from the generalized notionof an optimal real-valued bit

allocation. Without such a relation, one cannot show that closest integer bit allocations

are the same as optimal integer bit allocations. We relied onthis fact to analyze the MSE

of optimal integer bit allocations.
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