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ABSTRACT OF THE DISSERTATION

Quantization Over Noisy Channels and Bit Allocation

by
Benjamin Farber
Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)
University of California, San Diego, 2005

Professor Kenneth Zeger, Chair

In this dissertation we study two problems related to saglantization, namely
guantization over a noisy channel and bit allocation. Saplantizers have been exten-
sively studied for the case of a noiseless channel. Howéwer, structure and perfor-
mance is not well understood when operating over a noisyraiahe bit allocation
problem is how to allocate a limited number of bits to a setoalla quantizers so as to
minimize the sum of their mean squared errors.

We first examine scalar quantizers with uniform encoderschiadnel optimized
decoders for uniform sources and binary symmetric channdis calculate the point
density functions and the mean squared errors for sevdfatatit index assignments.
We also show that the Natural Binary Code is mean squarechaptimong all possi-
ble index assignments, for all bit error rates, and all gaanttransmission rates. In

contrast, we find that almost all index assignments perfasorlg and have degenerate

Xi



codebooks.

Next, we study scalar quantizers with uniform decoders drahigel optimized
encoders for uniform sources and binary symmetric chankééscompute the number
of empty cells in the quantizer encoder, the asymptoticdisitibution, and the effective
channel code rates for two families of index assignmentso Ave demonstrate that the
Natural Binary Code is sub-optimal for a large range of tnaission rates and bit error
probabilities. This contrasts with its known optimality @rheither both the encoder and
decoder are not channel optimized, or when only the decsddrannel optimized.

Lastly, we consider bit allocation. The problem of asymigtdty optimal bit
allocation among a set of quantizers for a finite collectibsaurces was analytically
solved in 1963 by Huang and Schultheiss. Their solutiongyaveeal-valued bit al-
location, however in practice, integer-valued bit allimas are needed. In 1966, Fox
gave an algorithm for finding optimal nonnegative integéabocations. We prove that
Fox’s solution is equivalent to finding a nonnegative integued vector closest in the
Euclidean sense to the Huang-Schultheiss solution. Aaditly, we derive upper and
lower bounds on the deviation of the mean squared error usteger bit allocation

from the mean squared error using optimal real-valued laitation.
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Chapter 1

Introduction

To motivate this dissertation, consider the following teglgem. By transmit-
ting only two bits, how can one most accurately convey an masen of a random
variable X uniformly distributed on the intervad, 1] to a remote receiver? That is, the
receiver forms an estimaté of the observationX based on the received two bits from
the transmitter. This is the problem of scalar quantizatiegr a communications chan-
nel where performance is measured by the distortion betteeariginal sample from
the random variable and its reconstruction. Typically tieeadtion is measured by the
mean squared erroF[(X — Y)2.

One approach to solving this example is the following. Eyequdrtition the
interval [0, 1] into four encoding cells{0,1/4), [1/4,1/2), [1/2,3/4), and[3/4, 1] and
assign them indice80, 01, 10, and11, respectively. If the random variabl¥ falls
in a particular cell, then transmit its corresponding 2ubitex. This is an example of
a quantizer encoder. At the receiver, take the two bits froenencoder and pick the
corresponding encoding cell midpoint as the estimataf the original source random
variable. Suppose, for example, the encoder transmitiexhd these bits are observed
error free by the receiver. Then the receiver picks the ggitas its estimat@”. This

is an example of a quantizer decoder; its estimate called a codepoint.



The combination of a quantizer encoder and a quantizer @ecwdrks well
when the communication between the encoder and the decoeleor free. It is easy to
show that in this example the encoder and decoder descrilmghize the mean squared
error for an error free channel.

What if the channel between the encoder and decoder is nfecp2i~or exam-
ple, suppose the encoder transmits one bit at a time to tleelde@nd each transmission
has a fixed probability of being in error, independent of the previous transmission
This is the problem of scalar quantization over a discretsynchannel. For example, if
e = 0.1, then a known numerical quantizer design algorithm yighsollowing encod-
ing cells:[0,0.37), [0.37,0.5), [0.5,0.63), and[0.63, 1] with indices00, 01, 10, and11,
respectively, and corresponding (non-midpoint) codegsogqual t0:0.21, 0.46, 0.54,
and0.79, respectively.

In general, it is not known how to algorithmically find optihrguantizer en-
coders and quantizer decoders for transmission over a ab@&ynel. Also, almost noth-
ing is known analytically about optimal quantizer encodarguantizer decoders for
noisy channels except certain necessary (but not suffyaenditions they must satisfy
(e.g. [4]).

As an approach to understanding quantization in the preseinchannel noise,
one can fix the quantizer encoder and study the resultingtiqeamecoder or fix the
guantizer decoder and study the resulting quantizer emcofhile this approach is
sub-optimal, it can yield valuable insight into the problefrquantization over a noisy
channel.

In the toy example we have been considering, if we fix the guanéncoder to
be uniform, i.e. encoding cell8,1/4), [1/4,1/2), [1/2,3/4), and[3/4, 1] with indices
00, 01, 10, and 11, respectively, it can be shown that the optimal decodet fer 0.1
has corresponding codepointsiof, 2/5, 3/5, and4/5, respectively. Similarly, if we

fix the quantizer decoder to be uniform, i.e. codepoints/éf 3/8, 5/8, and7/8, it can
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be shown that the optimal encoder for= 0.1 has encoding cells d#), 0.3), [0.3,0.5),
[0.5,0.7), [0.7, 1] with indices00, 01, 10, and11, respectively.

This toy example illustrates some of the main ideas consdierthe first part of
this thesis (Chapters 2 and 3). The mean squared df¢X(— Y)?]) in the toy exam-
ple illustrates the idea of “loss.” The receiver cannot @ettf determine the observed
guantity at the source.

In general, there are two types of data compression, losdyaasless. Each
strives to reduces the number of bits required to describe@om source. An observa-
tion from a random source can be perfectly reconstructed tie output of a lossless
data compression scheme, where as it cannot from a lossycdiatjaression scheme.
Lossy data compression is used to represent analog siggdtdlg (commonly known
as analog-to-digital conversion). In this dissertation,study only lossy data compres-
sion.

There are two main approaches to studying lossy data cosipre®©ne is to fix
the transmission rate (i.e. the number of bits transmitiethb encoder to the decoder)
and let the dimension or block length grow without bound.sfdpproach was started by
Shannon [5, 6] who laid the information theoretic foundatior the study of both lossy
and lossless data compression with his ground breakingsaiarkhe 1948 and 1959.
By considering asymptotically large block lengths, i.ee tlumber of samples from
a random source described by one use of a quantizer encaderas able to derive
bounds on the achievable performance of lossless and lossgression schemes. He
also showed that with infinite time and computing resourttese was nothing to be lost
by separating the two problems of source coding, i.e. fovargrandom source and a
perfect channel finding the best quantizer encoder and éecaxad channel coding, i.e.
for a given random channel, finding the best quantizer encanlé decoder to combat
channel noise.

Another approach to studying lossy data compression wesgtay Bennett [1]
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in 1948. This approach is to consider the performance andtste of quantizers as
their rate becomes asymptotically large. The assumptidargé rate is often called
high resolution We use this approach since the structure and performartaglofeso-
lution quantizers can be a good guide for the design, arsalgsd expected performance
of more practical quantizers, i.e. quantizers with rekltismall rate which are easy to
implement. In particular, Chapters 2 and 3 examine the hagblution structure of fam-
ilies of quantizers under different assumptions on theargizer encoders and decoders
and in Chapter 4 we assume the performance of a scalar gesaistgiven by a formula
for the mean squared error of a generic high resolution dggemt

In Chapters 2 and 3 we attempt to gain a better understanélimgloresolution
guantization theory over noisy channels. In both Chapters23 we assume the source
random variable to be quantized is uniformly distributedtloa interval[0, 1] and the
guantizer encoder and quantizer decoder must communigateadbinary symmetric
channel using index assignments. In Chapter 2, as the uidigests, we examine quan-
tizers with uniform encoders and channel optimized decdEnis means we consider
guantizer decoders whose choice of codepoint location &éas bptimized to the statis-
tics of the channel. For such quantizers we determine the fgigolution structure of
the quantizer decoder and the mean squared error achiessVéral different families
of index assignments. Chapter 2 is a copy of a paper publisiteé IEEE Transactions
on Information Theory. In Chapter 3, as the title suggesesexamine quantizers with
uniform decoders and channel optimized encoders. This sn@arconsider quantizer
encoders whose choice of encoding cell boundaries has pgenized to the statistics
of the channel. For such quantizers we determine the higiutesn structure of the
guantizer encoder and the mean squared error achieved kgiffex@nt families of in-
dex assignments. Chapter 3 is a copy of a paper in revisiothélEEE Transactions
on Information Theory.

In Chapter 4 we consider the bit allocation problem. Thispgm concerns how
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to allocate a constrained number of bits among a set of qaeastio as to minimize the
sum of their distortions.

Huang and Schultheiss [3] provided an optimal real-valwdaten to this prob-
lem. However, applications generally impose integer-@alonstraints on the rates used.
Unfortunately, it has been shown that finding optimal intdgjeallocations is NP-hard
(as the number of sources grows), via reduction to the meltipoice knapsack prob-
lem. In practice, authors have suggested using using catdrial optimization meth-
ods such as integer linear programming or dynamic prograig{2i] or optimizing with
respect to the convex hull of the quantizers’ rate-versswrion curves to find bit al-
locations. There are also many algorithmic techniques énliterature for obtaining
integer-valued bit allocations.

Despite the wealth of knowledge about finding integer baadtions, there has
been no published theoretical analysis comparing the pedoce of optimal bit allo-
cations with integer constraints to the performance obthumsing the real-valued allo-
cations due to Huang and Schultheiss. In this thesis, weactaaize optimal integer bit
allocations as those that minimize the Euclidean distandbd solution proposed by
Huang and Schulthiess. Also, we derive upper and lower b®andhe deviation of the
sum of the component mean squared error’s using integeltdibsion from the sum of
the component mean squared error’s using optimal reakddbit allocation. Chapter 4

has been submitted for publication to the IEEE Transactonsformation Theory.
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Chapter 2

Quantizers with Uniform Encoders and
Channel Optimized Decoders

Abstract

Scalar quantizers with uniform encoders and channel opéichdecoders
are studied for uniform sources and binary symmetric chianites shown
that the Natural Binary Code and Folded Binary Code indudatpten-
sity functions that are uniform on proper subintervals eftburce support,
whereas the Gray Code does not induce a point density funclive mean
squared errors for the Natural Binary Code, Folded BinargeCdGray
Code, and for randomly chosen index assignments are ctddudand the
Natural Binary Code is shown to be mean squared optimal aralbpgssi-
ble index assignments, for all bit error rates and all quantiransmission
rates. In contrast, it is shown that almost all index assigmis perform

poorly and have degenerate codebooks.

2.1 Introduction

The most basic source and quantizer are the uniform scalacesand the uni-

form scalar quantizer. If the source is uniform 1], for example, then am-bit
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uniform quantizer has equally spaced encoding cells ofksizeand has equally spaced
output points which are the centers of the encoding cells. tiie source, the mean
squared distortion of this quantizer is known exactly whagré is no channel noise,
and is known to be minimal among all quantizers.

In the presence of channel noise, one approach to improysigms performance
is to add explicit error control coding, so that some of tlEmsmission rate is devoted
towards source coding and some towards channel coding.ldawzks of this include the
added complexity and delay of channel decoding.

An alternative low-complexity approach in the presencel@rmel noise is to
add to the quantizer an index assignment, which permutesitiaey words associated
with each encoding cell prior to transmission over the cle§nand then unpermutes
the binary words at the receiver prior to assigning a repridn point at the output.
The cells are assumed to be labeled in increasing order fedintdl right, before the
index assignment. Examples of index assignments inclugBl#tural Binary Code, the
Folded Binary Code, and the Gray Code. The benefit of an ingigiament is derived
from the fact that reproduction codepoints that are retfficlose on the real line can
be assigned binary words which are close in the Hamming geesén the number of
same bits) on average. Thus when channel errors occur, the sggiared error impact
on the quantizer is reduced.

Yamaguchi and Huang [8] and Huang [9] derived formulas ferttean squared
error of uniform scalar quantizers and uniform sources ffier Nlatural Binary Code,
the Gray Code, and for a randomly chosen index assignmenttbnagy symmetric
channel. They also asserted (without a published proofpgienality of the Natural
Binary Code for the binary symmetric channel. Crimmins efHlIstudied the uniform
scalar quantizer for the uniform source and proved the YatisigHuang assertion, that
the Natural Binary Code is the best possible index assighméme mean squared sense

for the binary symmetric channel, for all bit error prob@tlek and all quantizer rates.



McLaughlin, Neuhoff, and Ashley [3] generalized this regaf certain uniform vector
guantizers and uniform vector sources. Other than theserpafhere are no others
presently known in the literature giving index assignmepittroality results.

There have been some analytic studies on the performanaaiotis index as-
signments. Hagen and Hedelin [7] used Hadamard transfarrstutly certain lattice-
type quantizers with index assignments on noisy channelagk&nhjelm and Agrell [10]
introduced an analytic method of approximating the qualftgn index assignment us-
ing Hadamard transforms. Skoglund [12] provided indexgassient analysis for more
general channels and sources. In [4] explicit mean squared fermulas were com-
puted for uniform sources on binary asymmetric channels vatious structured classes
of index assignments. In [5] it was shown that for the unif@arce and uniform quan-
tizer the mean squared error resulting from a randomly ahivgkex assignment was, on
average, equal in the limit of largeto that of the worst possible index assignment. In
this sense the result showed that randomly chosen indeyraseits are asymptotically
bad. A number of papers have also studied algorithmic teetas for designing good
index assignments for particular sources and channel$hi{sastations in [6, p. 2372]).

While index assignments can improve the robustness of geasidesigned for
noiseless channels to the degradation caused by chansel aoiother low-complexity
approach is to use quantizers whose encoders and/or de@vdetesigned for the chan-
nel’s statistical behavior. It is known that an optimal qgtizer for a noiseless channel
must satisfy what are known as “nearest neighbor” and “oatitrconditions on its
encoder and decoder, respectively [2]. For discrete melessychannels it is known
that an optimal quantizer must satisfy what we call “weightearest neighbor” and
“weighted centroid” conditions on its encoder and decodespectively (see [11] for
example). Even for uniform scalar sources, the resultirantjgers in general do not
have uniform encoding cells nor equally spaced reprodnctadepoints. In fact very

little is presently understood analytically about quastszfor noisy channels beyond the
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Natural Binary Code optimality results previously mengdrfor uniform quantizers.

In the present paper, we attempt to move a step closer towadsrstanding
optimal quantization for noisy channels by examining thhactire of quantizers with
uniform encoders and channel optimized decoders (i.es#tatfy the weighted centroid
condition), for uniform sources df, 1] and for certain previously studied index assign-
ments. In particular, we study the high resolution distiidiu of codepoints for such
guantizers and the resulting distortions. Slightly moneagal, but notationally cumber-
some results could also be easily obtained from our resylédlowing the source to be
confined to any bounded interval instead of jiést |.

An important tool in analyzing the performance of quanszerthe concept of
point density functions. Point density functions charazeethe high resolution distrib-
ution of scalar quantizer codepoints. As a result, they iplinsight about the asymp-
totic behavior of scalar quantizer codebooks and encodiitg. doint density functions
also are useful in analyzing the distortion of quantizersr é&xample, Bennett's inte-
gral [2, p.163] gives the average distortion in the high k&tsan case for a nonuniform
guantizer in terms of a point density function, source thstion, and size of the quan-
tizer codebook (see [6] for more details). For uniform queers, the computation of
a point density function is trivial. For nonuniform quamig however, point density
functions are not always guaranteed to exist, and when tbethdir computation can
be difficult.

Point density functions depend on the quantizer decodenain&! optimized
guantizer decoders, in turn, depend on the source, theigaaenhcoder, the channel,
and the index assignment. For this paper, we assume a ursfmunce on [0,1], a uni-
form quantizer encoder, a channel optimized quantizerdkrcand a binary symmetric
channel with bit error probability. An index assignment maps source codewords to
channel codewords. The quantizer R&sencoding cells, and index assignments are

one-to-one maps from the index of an encoding cell to a binangl of lengthn. These
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words are transmitted across the channel and decoded awgtodthe weighted cen-
troid condition.

Certain results we obtain are somewhat counter-intuitfoe example, we show
that for a binary symmetric channel with bit error probadpiti, quantizers using the Nat-
ural Binary Code index assignment andbits of resolution have codepoints uniformly
distributed on the intervat + 6, 1 — ¢ — §] whered = (1 — 2¢)/2"*!. This is peculiar
in light of the fact that the source is uniformly distributed the interval0, 1], and yet
asymptotically a1 — oo no codepoints are located within a distance: &fom 0 or
1. The lack of codepoints in regions of positive source prdlgls due to the reduc-
tion in average distortion that results from moving codefocloser to the source mean
(by the weighted centroid condition), to avoid large jumpguclidean distance from
channel errors. The weighted centroid condition dictatesrmovement of codepoints
to minimize average distortion for a given quantizer encodesimilar result occurs for
the Folded Binary Code.

For the Gray Code index assignment, we show that in fact nat pensity func-
tion exists. In other words, the location of codepoints cdrte described according to
a point density function a8 — oo. The structure of the Gray Code simply does not
allow the histogram of codepoint locations to converge tmaath function in the limit
of high resolution.

We also show that asymptotically, almost all index assigmsigive rise to quan-
tizers which have almost all of their codepoints clusterey ¢lose to the source’s mean
value (i.e.1/2). Thus almost all index assignments are badnAgows, the clustering
of codepoints becomes tighter and tighter. This contragtstive Natural Binary Code
and the Folded Binary Code cases where the codepoints remdormly distributed
on proper subsets ¢, 1] no matter how large. becomes. An additional curiosity we
show is that among all possible index assignments, the BldBimary Code is optimal

despite its lack of codepoints withaof 0 or 1.
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Our main results for quantizers with uniform encoders arahael optimized
decoders are the following. First, we show that the NatumaadB/ Code index assign-
ment yields a uniform point density function on the interg@all — ¢) (Theorem 2.4),
the Folded Binary Code index assignment yields a uniformtpdénsity function on a
union of two proper subintervals ¢, 1] (Theorem 2.6), the Gray Code index assign-
ment does not yield a point density function (Theorem 2.46)Y an arbitrarily large
fraction of all index assignments have an arbitrarily lahgetion of codepoints arbi-
trarily close to the source mean as— oo (Theorem 2.20). Then we extend a result
in [5] by showing that most index assignments are asymgatibfibad (Theorem 2.22),
and we extend results in [4], [8], and [9] by computing the mequared error result-
ing from the Natural Binary Code (Theorem 2.24), the Fold@whB/ Code (Theorem
2.26), the Gray Code (Theorem 2.28), and a randomly chosiEx imssignment (Theo-
rem 2.30). As comparisons, we state previously known meaarsg error formulas for
channel unoptimized decoders (i.e. that satisfy the cehtmndition), for the Natural
Binary Code (Theorem 2.23), the Folded Binary Code (The®e8), the Gray Code
(Theorem 2.27), and for a randomly chosen index assignmiéeiofem 2.29). Finally
we extend the (uniform scalar quantizer) proof in [3] by shmaythat the Natural Binary
Code is an optimal index assignment (Theorem 2.32).

The paper is organized as follows. Section 2.2 gives defimstiand notation.
Section 2.3 gives Natural Binary Code results, Section &dsgrolded Binary Code
results, Section 2.5 gives Gray Code results, Section Zh6iders arbitrarily selected

index assignments, and Section 2.7 gives distortion aisalys
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2.2 Preliminaries
A raten quantizeron [0, 1] is a mapping
Q:[0,1] — {yn(0),yn(1),. .., ya(2" — 1)}

The real-valued quantitieg (i) are calleccodepointand the sefy,,(0), ..., y,(2"—1)}
is called acodebook For a noiseless channel, the quantigeis the composition of a

guantizer encodeand aquantizer decoderThese are respectively mappings

Q. : [0,1] —{0,1,...,2" — 1}

Qq : {0,1,...,2" =1} — {yn(0), yn(1), ...,y (2" = 1)}

such thatQ,(i) = y,(i) for all i. For eachi the setQ'(y,(i)) = Q;1(Q;" (y.(4))) is

called theith encodingcell. The quantizer encoder is said toln@formif for eachs,

QM (ya(i)) 2 (227", (i + 1)277).

Thenearest neighbocells of a rate: quantizer are the sets

By (i) = { = |yn(0) — 2] < [yn(j) — 2|, V5 # i}

for 0 <i < 2™ — 1. Letm denote Lebesgue measure and for edeh

fin (1) = m(Bp(i))-

A quantizer’s encoder is said to satisfy thearest neighbor conditioifi for eachi,

Q™ (yali)) 2 Rali).



14

That is, its encoding cells are essentially nearest neigtddts (boundary points can be
assigned arbitrarily).
For a givem, ¢, and source random variahlé, thecentroidof theith cell of the

guantizerQ is the conditional mean

cn(t) = B[X|Q(X) = y,(7)].

The quantizer decoder is said to satisfy tieatroid conditiorif the codepoints satisfy

for all 7. A quantizer isuniformif the encoder is uniform and for eaclthe decoder
codepointy, (i) is the midpoint of the cel@(y,(4)). It is known that if a quantizer
minimizes the mean squared error for a given source and alassschannel, then it
satisfies the nearest neighbor and centroid conditiondii2particular, if the source is
uniform, then a uniform quantizer satisfies the nearesteigand centroid conditions.

For a raten quantizer, anindex assignment,, is a permutation of the set
{0,1,...,2"—1}. Let Sy» denote the set of alf"! such permutations. For a noisy chan-
nel, arandom variabl& < [0, 1] is quantized by transmitting the indéx= 7, (Q.(X))
across the channel, receiving indékrom the channel, and then decoding the codepoint
yn(m H(T)) = Qq(m 1(J)). We impose the following monotonicity constraint on quan-
tizer encoders in order to be able to unambiguously refeettam index assignments:
Foralls,t € [0,1], if s < t, thenQ.(s) < Q.(t). Themean squared erro(MSE) is
defined as

D =FE[(X — Qu(m,"(])))?] .

The random inde¥ is a function of the source random variab{e the randomness in

the channel, and the deterministic functi@ddsandr,,.
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An alternative approach would be to view the quantizer eacad the compo-
sition 7, - Q. and the quantizer decoder as the composithn =, !, by relaxing the
monotonicity assumption made above. This would removedigsaf index assignments
from the study of quantizers for noisy channels. Howeverretain these encoder and
decoder decompositions, as a convenient way to isolatdféeseof index assignments,
given known quantizer encoders and decoders.

Assume a binary symmetric channel with bit error probabiit Denote the
probability that index was received, given that indeéxvas sent by(j|i) = /() (1 —
e Hn(3) for 0 < e < 1/2, whereH,,(i, j) is the Hamming distance betweerbit
binary wordsi and;. Let¢(i|j) denote the probability that indéxwvas sent, given that
indexj was received.

For a given sourceX, channelp(-|-), index assignment,,, and quantizer en-
coder, the quantizer decoder is said to satisfywleéghted centroid conditiorf the
codepoints satisfy

2n—1

Yn(j) = : cn(1)q(mn (3) |70 (7))

Throughout this paper we assume a uniform quantizer encedéhe centroids of the

encoder cells are given by

cali) = (i + (1/2))27"

for 0 <1i < 2™ — 1. Since the source is uniform and the encoder cells are edehgth
27", we know thap(j|i) = q(i|7) for all i and;. Hence the weighted centroid condition

implies that
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2n_1é;tzggzgzefbﬂﬂn@%ﬂnUD(]__E)n—fﬂﬂﬂn@%WnUJX
For a given quantizer encoder and index assignment, we saguantizer decoder is
channel optimized it satisfies the weighted centroid condition.

Notice that if the centroid condition is assumed, then thentjaer decode@,
does not depend on the index assignment, even though the sqeared error does.
In contrast, if the weighted centroid condition is assuntbdn the quantizer decoder
Q, does depend on the index assignment, as does the mean squaredrhus, un-
der the centroid condition, minimizing the mean squaredresver all possible index
assignments is carried out for a fixed quantizer decoder. edevy under the weighted
centroid condition, minimizing the mean squared error @lepossible index assign-
ments involves altering the quantizer decoder for each neex assignment.

For any set4, let the indicator functio 4(x) of A be

1 ifzeAd

IA(I): ) .
0 ifzgA

For eachn and each index assignment € S,., define the function\ﬁrﬁ) 2 [0,1] —

[0, 00) by
2n—1 1
— 2" (1)

1=

A () = TRt ().
For a sequence, € S« (forn = 1,2,...) of index assignments, if there exists a
function \ such that

Az) = lim A"(2)

n—oo

for almost allx € [0, 1] andfo1 A(z) dz = 1, then\ is said to be goint density function

with respect to{7,, }.
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The following lemma is a result of the fact that index assignis are permuta-

tions.

Lemma 2.1. For anyn and any index assignment € Sa»,

2" —1
3 (1 — €))7 0) —
j=0

for 0<j<2"—1.

Let adecoder optimized uniform quantizéenote a rate quantizer with a uni-
form encoder orj0, 1] and a channel optimized decoder, along with a uniform source
on [0, 1], and a binary symmetric channel with bit error probabilityLet a channel
unoptimized uniform quantizelenote a rate uniform quantizer or0, 1], along with a

uniform source on0, 1], and a binary symmetric channel with bit error probabiity

2.3 Natural Binary Code Index Assignment

For each, theNatural Binary CodgNBC) is the index assignment defined by
aNBO () = for0 <i<2"—1.

The following lemma is easy to prove and is used in the pro®froposition 2.3.

Lemma 2.2.

Hy(i+2"7) = Hy(i,j)+1 if 0<4,7<2"—1 (2.2)
Hy1(i,j) = Hy(i,7 —2")+1 if 0<i<2"—1,2"<j<2" 1 (2.3)

Hy,1(i,7) = Hy(i — 2", 5 —2") if 2" <, 5 <2t — 1. (2.4)
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Proposition 2.3. The codepoints of a decoder optimized uniform quantizen e

Natural Binary Code index assignment are, fox j < 2" — 1

yn(]) =€+ (1 - 2€>Cn(j)' (2.5)

Proof. We use induction on. The weighted centroid condition implies that

2" —1
yn(§) =277 ) (L — @) DM (24 4 1), (2.6)
=0
In particular, (2.6) gives
Yo(0) = 1/2

which satisfies (2.5). Now assume (2.5) is truerf@and consider two cases far+ 1.

If 0 <j <2"—1,then

yn—i-l(j)
2n+1_1
= 27 Y (1 e i) (2 1 1)
j=0
2" —1

= (1—027"7) (1— e ME)HMnbi(24 4 1)
j=0

2ntl_1
4 gn—2 Z (1 — e)tiHnsa () Hnin (i) (24 4 1) (2.7)
j=2m
(1= 99as)
_ # 4 gn-2 Z (1 — )" @D Halbi)+ 1 (95 4 1 4 onF1y (2.8)
j=0
(1—ya(j) | enly) | €
_ € 29
: + 5+ (2.9)

= e+ (1 —2€¢)cys1(y) (2.10)
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where the first sum in (2.7) and the second sum in (2.8) follmmf(2.1) and (2.2),
respectively, (2.9) follows from Lemma 2.1, and (2.10)dals from the induction hy-
pothesis.

If 27 < j < 27+ — 1, then

antl_q
Ynii(j) = 9—n—2 Z (1— €>n+1—Hn+l(i7j)€Hn+1(ivj)(27;+ 1)
=0
2n 1
- g g
2n+1—1
P2 Y (1= IR G 0 1) (2.4)
j=2"
= Ynlg — 2")e 427 22”2:1 — €)M (g =2 Ha (05 =27) (94 4 1 4 21
2
yn(J —2")e Yl — 2”)(1 —9 (1-9
= 2.12
2 + 2 + 2 ( )
= e+ (1 —2€¢)cn1(y) (2.13)

where the sums in (2.11) follow from (2.3) and (2.4), respety, (2.12) follows from

Lemma 2.1, and (2.13) follows from the induction hypothesis O

The following theorem shows that with the Natural Binary €pthe quantizer
codepoints are uniformly distributed on a proper subirgkem the source’s support
region, in the limit of high resolution. As the channel impes (i.e. ag — 0), the point

density function approaches a uniform distributionf@n |.

Theorem 2.4. A sequence of decoder optimized uniform quantizers wittiNgtearal

Binary Code index assignment has a point density functieargby

1
)\ (.T) _ 1—2¢
0  otherwise

fe<z<l—e
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Proof. Let

1 .
Toe if e<z<l—c¢

AMz) =
0 if 0<z<eor (1—¢<zx<l.

From (2.5), the codepoints satisfy(j + 1) — y.(j) = (1 — 2¢)2~™ and thus are equally

spaced apart. Also,

Yn(0) = e+ (1—2¢)27""

yn(2n - 1)

e+(1—2¢)(1—2771).

Thus,

. (1—26)2_” i 1<i<2m -2
Mn(z):
e+(1—26)2_" if i1 =0ori=2"-1

and therefore

T if e+(1—-2)2"<z<(l—¢€)—(1-2¢)2"

(n) _
)\W'ELNBC) (x) - m lf 0 S Tr < € + (1 - 26)2_n

or (1—¢)—(1-2e)27"<zx<1

— Ax) asn — oc.
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2.4 Folded Binary Code Index Assignment

For eachn, theFolded Binary Cod€FBC) is the index assignment defined by

2nl 1 —4 if 0<i<2ml—1
l if 2nl <y <2m—1.

The FBC is closely related to the NBC and has somewhat sipitaerties for decoder
optimized uniform quantizers, as shown by Proposition AcbEheorem 2.6. The proofs
of Proposition 2.5 and Theorem 2.6 are similar to those gb&sition 2.3 and Theorem

2.4, respectively, and are therefore omitted for brevity.

Proposition 2.5. The codepoints of a decoder optimized uniform quantizen e

Folded Binary Code index assignment are

0 32 1 (1—26)%¢c,(j) if 0<j <2t —1
Yn\J) =
568 4 (1 —2¢)%,(j) if 21 <j<2m 1,
The following theorem shows that with the Folded Binary Catle quantizer
codepoints are uniformly distributed on two proper subidbs of the source’s support
region, in the limit of high resolution. As the channel impes (i.e. ag — 0), the point

density function approaches a uniform distributionf@n |.

Theorem 2.6. A sequence of decoder optimized uniform quantizers with-thaed

Binary Code index assignment has a point density functieargby

(1—2¢)2 2

cp 36962 _ 2 9.2 202
1 1f3622e <x<le;—2e Orl+622e <x<1_(36 26)
M) =

0 otherwise
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2.5 Gray Code Index Assignment

For eachn, let 7\ denote the Gray Code (GC) index assignment, recursively

defined by

0y =0
m) =1
o). 9 i) if 0<i<2n—1
7Tn-i-l (7’> = ee)
s (20— 1 =) 427 i 2r << 2 1,
Define the quantity

H,(i. j) = H(x i), m ().
The definition of the Gray Code directly implies the follogilemma.
Lemma 2.7.

A

Hoy(i,j) = Ho(ij) if 0<i,j<2"—1 (2.14)

~

Hy(i+2" )= Hy(2" —1—i,j)+1 if 0<i,j<2"—1 (2.15)
R R -l <j<om—1
H,(i,j) = H,(2" —1—14,2" — 1 —j) if (2.16)
0<s <2 — 1.
Lemma 2.8. The codepoints of a decoder optimized uniform quantizdr thi¢ Gray

Code index assignment satisfy
2n—1 . .
o) = 1 =271 37 (1= e BB (97 4 1)

J=0

for0 <j <2"—1.
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Proof.
2" —1 . .
2—n—l Z (1 - E)n—Hn(Q"—l—i,j)EHn(2n—l—i,j)(21: + 1)
§=0
1 2n—1 ) )
= S+2 ;(1 — @ 2D (9 (2~ 1)) (2.17)
1 2n—1 A )
_ |- _o9—n-1 _ A\n—Hn(i,5) Hn(3,5) n_ 1 _ s _ (on _
= 1-|5-2 ;(1 €) Detn(@a) (22" — 1 —4) — (2" — 1))
- 2" -1 . .
= 1— 27770 (1— el (25 4 1) (2.18)
L =0
= 1—w.(j) (2.19)
where (2.17) and (2.18) follow from Lemma 2.1. O

Corollary 2.9. The codepoints of a decoder optimized uniform quantizér thg Gray

Code index assignment satisfy

Yn(j) =1 —yn(2" =1 —j)

foran—t <j<2m—1.

Proof.

on—1
val) = 2770 3 (1= ) i) g 4 1)
=0
2n_1 X R
_ 9-n-1 Z (1 . E)n—Hn(2”—1—i,2”—1—j)€Hn(2”—1—i,2n—1—j)(QZ’ + 1)(2_20)
=0

= 12" 1)) (2.21)

where (2.20) follows from (2.16), and (2.21) follows fromrama 2.8. O
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For0 < j <2"—1andl <i<n,leth,(j,i) be thei’® most significant bit of

then-bit binary representation gf Then
J= balj, 2"
=1
and it follows that fol) < j < 2" — 1,

Proposition 2.10. The codepoints of a decoder optimized uniform quantizer thie

Gray Code index assignment are

(—1)bnGOH (— — 6)2 (2.23)

for0 <j<2m—1.
Proof. We use induction on. The weighted centroid condition implies that for gl

2" —1

Ualf) =277 Yo (1= @I (g 4 1),
§=0
Forn = 0 this reduces to
yO(O) = 1/2

which satisfies (2.23). Now assume Proposition 2.10 is tue &nd consider two cases
forn + 1.
If 0 <j<2"—1,then

Yn+1 (])
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2ntl_g
— 9n—2 Z (1 - E)n—i-l—HnJrl(M)Eﬁnﬂ(i,j)(21’ + 1)
=0
2n—1 R .
= (1 —¢)2 "2 (1 — ) Hnlia) Hn(d) (25 4 1)
7=0
on—1

4 9n-2 Z (1- E)n—Hn(zn—1—z‘,j)€ﬁ1n(2”—1—i,j)+1(QZ- 1+ 2n+1) (2.24)
i=0

(1 —€)yn(j 6[2n+1 + 2n+1(1 — yn(4))]

— : + TS (2.25)
_ 1 1 + + (== ( ) _ 1 1 _
EACER g )T\ ¢
1/1 1 1 1< 1 !
S - - - 1 bn(4,4)+1 -
2(2+6)+(2 e) 2+2Z:1( ) (2 e)]
1/1
1 1 1 n+1 N 1 7
— 4+ |-(== —1)brr G+ (2 2.27
S +3 (2 e)+;( ) (2 e)] (2.27)
1 1 n+1 N 1 7
_ 4z — 1)1 G+ [ = 2.2
e (5-°) (2.29)

where the sums in (2.24) follow from (2.14) and (2.15) resipely, (2.25) follows from
Lemmas 2.1 and 2.8, (2.26) follows from the induction hypsth, (2.27) follows from
(2.22), and (2.28) follows from the fact thiat,; (7, 1) = 0 wheneveh < j < 2" — 1.

If 27 < 5 < 27F1 — 1, then

n+l i
. . . 1
Yni1(J) = ( + = Z Yorr (@151 <§ —(—:) ) (2.29)
n+1 1 7
_ 1 —Z Y1 G+ (5_6) (2.30)

where (2.29) follows from Corollary 2.9 and (2.28), and (8.®llows from (2.22). O

To show that no point density function arises from the Grage&€imdex assign-
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ment, we will show that\(z) = lim,,_, )\:(%C) (x) = 0 almost everywhere of, 1],
and hencgfo1 A(x)dz # 1. To simplify notati;n, Ietxfﬁéc) be denoted by,,.

First, several preliminary results are necessnary. In daddetermine the asymp-
totic behavior of\,, we examine the values ¢f,(i) and the relationship oR, (i) to
R,_1(|i/2]). For any fixed value of. there are groups of nearest neighbor cells with
the same length. These groups and the properties of theicdghem are key to the
subsequent results.

Lemma 2.12 describes each of these groups by the numbeld®frcéie group
and their common length. This is done by identifying a cekkath group whose index
is of the formi = 2"~* — 1 and considering its length. Lemma 2.11 shows that the

codepoints are indexed in increasing order, and is usectipribof of Lemma 2.12.

Lemma 2.11. The codepoints of a decoder optimized uniform quantizdr thi¢ Gray

Code index assignment satisfy(j + 1) > v, (j) whenevep < j < 2" — 2.

Proof. Let £ = min{t’ : b,(j,7) = 1,Vi > k’}. Then the binary representation pf

ends in exactly: — k£ + 1 ones, and therefore

= 0

= 1 for i >k

)
)
bo(j+1,4) = by(j,i) for 1 <i<k—2
) = 1

)

= 0 for i>k.
Thus, from (2.23), we have

Yn(J+1) — ynlJ)

= 3 ; [(_1)bn(y7) —(=1)® (G+1, )} <§ — 6)
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Lemma2.12.For1 < k < n—1, adecoder optimized uniform quantizer with the Gray

Code index assignment h2lsnearest neighbor cells whose lengths equgb™ " —1).
Proof. By Lemma 2.11, the codepoinig(j) are increasing iry. Thus, forl < i <
2" — 2,

i) = 5 (ali+1) = yali = 1))

Note that forl < k& < n — 1, the binary representation af—* is 00...0100...00
N— N —
k n—=k
and the binary representation®f* — 2is 00...0011...10, which agree on the first
N—— N —

k — 1 digits and on the last digit. By (2.23)],6 the d?f?érence bedweheith and jth
codepoints depends only on the locations in the binary sgptations of and; where
they differ. For allw € {0,...,2F1 — 1} andb € {0, 1}, the binary representations of
2n=k 4 q2n=h Ll 4 pand2"* — 2 + w2 Rl 4+ b agree in exactly the same locations

that2"—* and2"~* — 2 agree in, and hence

(90 (2"7") =y (2" — 2))

(yn (2" 7% + w2 F 4 1) — y, (2" = 2+ w2 4 D))

,Un(2n_k -1) =

N — DN -

The claimed* nearest neighbor cells are thEg2"—* — 1 + w2 *+1 4 p). O
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The next lemma computes, (i) for 0 < i < 2" — 1. By Lemma 2.12, it suffices

to consider the lengths dt,,(0), R,(2" — 1), andR,(2"* —1)for1 <k <n — 1.

Lemma 2.13. For a decoder optimized uniform quantizer with the Gray Caouex

assignment,
" e+ 3(—em
D) + €
andforl <k<n-1,
G- +iG -
. Qn_k _1 — 2 2\2
i ) T

Proof. By Corollary 2.9, Lemma 2.11, and the definitions/f(0) and R, (2" — 1),

Mn(zn - 1) = 1- (yn(Qn - 2) + yn(2n - 1))

= 1—=-(1—y,(1)+1—1y,(0))

N — DN~

I
=
3
—

o
N

Since then-bit binary representations 6fand1 differ only in the least significant bit,

1
(0) = 5 (n(0) + (1))
n—1 i
11 a1 (1
_ .1 _ )0+ [ 2 232
332 (2 ) (2.32)
_l 1G9
22 5 te
IS CRrol
B %—i—e

where (2.32) follows from (2.23).
Recall from the proof of Lemma 2.12 that,(2" % — 1) = $(y.(2"7") —

y.(2"7% — 2)) and that the binary representations of* and 2% — 2 are
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00...0100...00 and00...0011...10 respectively. Combining this information with
N—_— N — N—_—— N —
k n—=k

k n—=k
(2.23) gives

,Un(2n_k - 1)
1 n— n—
- 5(1%1(2 k) - yn(2 b 2))
= % (—1)bn(2n_k7i)+1 (% — E) - i Z(—l)bn@”_k—?ﬂ')"‘l (% — E)

i=1 =1

The next result follows directly from Lemma 2.13 and will Imegortant in de-

termining the behavior of,, asn — oc.

Corollary 2.14. For a decoder optimized uniform quantizer with the Gray Cuoutkex

assignment,
1 1
lim — = lim ———— =0
=00 271 (0)  n—o0 274, (27 — 1)

and for each fixed > 1,

lim = 0. (2.33)

Define the sets

Enp = U R,(i) forl<k<n-1
it (1) =pin (20~ F 1)

F, = R,(0)UR,(2"—1) forn>1

and note that’,, , and F}, are disjoint for allk andn.
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Lemma 2.15. For a decoder optimized uniform quantizer with the Gray Caouex

assignment,

(i)  R1(0) D Ry(0) D R3(0) D - --
(i) Ri(2'—1) D Ra(2® = 1) D Rs(2* —1) D -+
(ZZZ) FLDF,DF3D---

(iv) VE>1,Ep0k D Erpor D Epysp Do

X _e(1—2e)F
(v) m( ﬂ Enk> = ?

n=k+1

Proof. By Lemma 2.13,

which is decreasing in. This proves part (i) and also shows that (using Corollagy 2.

yn(2" =2) +yn(2" = 1) _ T—ya(1) +1 —a(0)
2 2

is increasing im, thus proving part (ii). Part (iii) follows directly from pis (i) and (ii).

To prove part (iv), first note that (2.23) implies that fox ¢ < 27! — 1,

b(@) = v ()~ (; - )

hn(2i+1) = yn_1<z>+%(§_e)”.

Also assume without loss of generality that

{22 |yn(0) — 2] = [yn(i + 1) — 2[} C Ru(i 4+ 1).
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Supposd <i < 2" —2andn > 2.

If 7 is even (say = 2j), then

CRUR e (ACCED ESIESAC R ES U

2 ’ 2
_ |:yn l( 1;+yn l(]),yn_1(j))
C Rna1(j) = Bna(i/2) (2.34)

where (2.34) follows from the definition @?,,_; (7).
If 7 is odd (sayi = 25 + 1), then

Ri() = R,(2j +1) = |¥ (29) + n 2]+1)’yn(2j+1);yn(2j+2))
- Yn— l 2 )
C R,1(j)=R,1((i—1)/2) (2.35)

where (2.35) follows from the definition @?,,_; (7).
For each celR, (i) in E, ; with 1 < k < n— 1, the proof of Lemma 2.12 shows
thati is of the form: = 2"=% — 1 4+ w2"**1 4+ p wherew € {0,...,2"' — 1} and

be {0,1}. If R,(i) C E, andi is even, theh = 1 and

7; — Qn_k + w2n—k+1

or equivalently

— o(n=1)=k 4 yyon—1)—k+1

2

which impliesR,,_1(i/2) C E,_1. (2.34) shows thaR, (i) C R,_1(i/2), and hence
Rn(l) C En—l,k-
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Likewise if R, (i) C E, x and: is odd, therb = 0 and
2' — 2n—k - 1 + w2n—k’+l

or equivalently

(i—-1) 91—k _ 1 4 yy2n-—k+1
2

which impliesR,,_1((¢: — 1)/2) C E,_1. (2.35) shows thaR,,(i) C R,—1((: — 1)/2),

and henc&?,, (i) C E,,_1 . Therefore,

proving part (iv).

Since{E, 1 }2 .., is a decreasing sequence of bounded sets (for eachi)xed

by part (iv),
m ( N Enk> = lim m(E,)
n=k+1 oo
= lim m U R, (i)
ipin (1) =pin (20— —1)
— lim > m(Ry, (1))
iz im (1) =pun (27K 1)
(B9 G-
= lim 2F ( 2 22 (2.36)
n—oo 5 + €
Ce(1—2e)"
— 7%+6 ,
where (2.36) follows from Lemmas 2.12 and 2.13. This proas ). O

The following theorem shows that the sequence of functib(ﬁéc) does not

converge to a point density function as— oo.
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Theorem 2.16.A sequence of decoder optimized uniform quantizers witGthg Code

index assignment does not have a point density function.

Proof. We construct disjoint sets), C [0, 1] whose union has measurend for which
lim,, .o, A, (z) = 0 for all x € E), and for allk.

Let By, = ﬁ F,. Then for anyn and anyx € E,, eitherr € R,(0) orz €
R,(2"—1),and tﬁzlreforé\n(x) =1/(2"u,(0)) = 1/(2"u, (2" — 1)) by Lemma 2.13.
Hence for anyr € EOOO, limy, o0 An(2) = lim, . 1/(2"1,,(0)) = 0, by Corollary 2.14.

Let £, = ﬂ E, for k > 1. Then for anyn andk such that, > k + 1
n=k+1
and for anyr € E,, there exists am such thatr € R, (i) andu, (i) = p,(2" % — 1),

which implies\, (x) = 1/(2"u,(2"7% — 1)). Hence for anyr € Ej, lim,, .o \,(7) =
lim,, o 1/(2"u,(277% — 1)) = 0, by Corollary 2.14.

Lemma 2.15(v) shows thdt,, is nonempty for alk > 1. It will be shown below
that £, is nonempty.

E, and E), are disjoint for allk > 1, sincek,, , andF,, are disjoint for allk and
n. The setst, are disjoint fork > 1, for otherwiseE,, ; and E,, ; would intersect for

somen and some # j. Therefore,

7n/<LJ_E@> = 2{:7n(E%)

k=0
= m ((]F%) +—j{:7n,< (] E%k>
n=1 k=1 n=k+1
, L €(1 — 2€)F
= 1 "  E—— .
nLII;Om(F)+Z T (2.37)
k=1 2
2 1
N __1) (2.38)
;te 5+e\2e
=1

where the first term in (2.37) follows from Lemma 2.15(iii)cathe boundedness of
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R,(0) andR,(2" — 1), the second term in (2.37) follows from Lemma 2.15(v), arel th
first term in (2.38) follows from (2.31). Thus the set € [0, 1] : lim,, .., A,(z) # 0}

has measure since it is a subset ¢fJ° , £;)° N [0, 1]. O

2.6 Randomly Chosen Index Assignments

Suppose for each > 1 an index assignmeiht,, is chosen uniformly at random
from the set of alR™! index assignments. Thendoes not exist in a deterministic sense
as the limit of\{’. However, the distribution of codepoints can still be cheztzed

probabilistically.

Proposition 2.17. Suppose an index assignment is chosen uniformly at randomn fo
decoder optimized uniform quantizer. Then for allthe expected value of thigh

codepoint is

Bl =3+ (o) - 3) (125 ) (-7 —27).

Proof. Letd = ¢/(1 — ¢) and note thatl — ¢)(1 + 0) = 1. Then,

= ch(i)E[p(Hn(j)lﬂn(i))]

ugﬁ
|
Lo

1 ) . ) )
= (i) * o 3 e @mai) (1 ey Hamn @m0

WnGSQn
n 27—1

=0 WnGSQn

L_of ] ) Tn(2),mn (J
- ! Qn!) <2"!Cn(1)+2cn(z) Y gt nu)))

7,75‘] TR ESon

[e=]

1=




_ (e <cn(j)+<icn(i)—cn(j)><w (Z)ak))@.sg)

= (1—e)" (cn(j) L2 = () %) (2.40)

— % + (cn(j) — %) (1 _12_n) (1—¢"—2").

To justify (2.39), consider the following observationsppase # j. There are™ pos-

sible valuesr, (j) can have, and for each one there2ire 1 valuesr, (i) can take(}) of
which must have Hamming distankdrom 7,,(7). Given any of the™(2" — 1) possible
choices ofr, () andr, (i), there ard2™ —2)! ways to assign the remaining index assign-

ment words. (2.40) follows from the fact thgt> ' ¢, (i) = 27" 3.7 (i 4 (1/2)) =

2n—1. Od

With Proposition 2.17 the variance of th& codepoint is

Var(yn (7))
— Var (ynu)— %)

(1t - ;)] (- D) (55 ) - -2 e

The motivation for the form of (2.41) will become clear in theof of Theorem 2.20.

= F

Evaluation of the expectation in (2.41) yields Proposi2oh9 below.

Lemma 2.18.

2?1_1 <cn(2') — %)2 = % (2" —27").
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Il
[\]
3
.
—
N
~

3
7N

~.

+
N[ =
~__

|

DN | =

(V)

=0
ron—1 271 on _ 1\ 2
— 9=2n 2 (on _ . n -
S 2n - Z it 2 ( 5 ) ]
=0 =0
[ 2n2r =12t -1 on(2n — 1) o —1\°
= o™ —(2"—1 on
6 ( )= 2
1 n —n
= 3 (2" —27").

Proposition 2.19. Suppose for each, an index assignment is chosen uniformly at ran-
dom for thenth quantizer (of rate:) in a sequence of decoder optimized uniform quan-
tizers. Then for allj, the variance of theith codepoint decays to zero at the rate

Var(y,(j)) = O(27°") asn — oo, where = — log, (1 — 2¢ + 2€2).

Proof. Recall from (2.41) that the variance gf(j) is

Var(yn(j))

(1t - %)] (a0 -3) (1) (-0 -2 @2

whose second term goes to zera¥$1 — ¢)?") whenn — oo. Expanding the first term

of (2.42) yields
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i=0 =0 2
— (1 € 2n
2"—12"—1 1 1 ' ' '
(cn(z) — 5)(%([) — 5) E [5Hn(Hn(Z),Hn(J))Jan(Hn(l),Hn(J))} .(2.43)
=0 1=0

We consider four cases. The computation in the last threesdagustified by an argu-
ment similar to the one used to justify (2.39).

Q) Ifi=1=j,then

B [§ 0@ @)+ (0T (0)] = 1

2)1fi=1+#j,then

B [§1 M@0+ (00 0)] - — 1 $ @ m)
2n!

T ESon

(2" =2 N o (1
N 2n! Zé (r)

r=1
(1+06%)" —1
m—1

(3)If i #£ 1,7 # j, andl # 7, then

E [an(Hn(i)7Hn(j))+Hn(Hn(l)7Hn(j))}

_ L' S G 01 )+ (D7 )
e
- 2n] 2 2 0 (k) '

k=1 m=1

(r)—1 if m=k
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- T-iE 3 { [Z () 5kr B

(1+6)" —1)° = (1 +62)" —1)
(27 — 1)(27 — 2)
24+ (1+6)* —2(14+0)" — (1+6*)"
(2n — 1)(2" — 2) '

3
—
VRS
> 3
~__
<%
(V)
B
——

@) Ifj=i#1(orj=1+#1),then

B [5HMn O IG)Hn ([Mn IG)] - = L' Y )
Qn

’ TTnESon

22" =2) =,
N 27! ;5 (r)
(140)" —

n — 1

Thus (2.43) can be written in terms of the four cases as

o ()

2

(1o Ez (1+06)2 —2(1+6)" (1+52)n)
L

(2 — 1)(2" — 2)

)( )
Z#J I#i,l#] 2

+(1—€>.2 <%) ; (cn(j) - %) (cn(l) - %) . (2.44)

The first term in (2.44) decays tbasO((1 — €)?") asn — oo. The second term in
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(2.44) is

- g (21 [(Z (et - %)) SCEE %)]
1o (S5 [55 (e-3)]

o 41 2 " 1 4j
1—9 2) 2\n __ 1 — 2n7] |
[( €+ 2¢ ) ( E) ] {12 . 9n + 22n(2n _ 1) 22n+2

O ((1—2¢+26%)")

asn — oo, sincel < e < 1. To evaluate the third term in (2.44) note that

S % (al-3) (e0-3)

i i

_ rz;ol (cn(i) - %)] - rg; (cn(z‘) - %)2]

Thus, since1 — €)(1 + §) = 1, the third term in (2.44) is
_ £)2n _ _ A\ __ _ 2\n 2 n
21— ) +1—2(1 —€)” — (1 — 26 + 2¢?) ) cn(j)—l BEA
(27 —1)(2" — 2) 2 12 12-27
which tends td) asO(27") asn — oo. To evaluate the forth term in (2.44) note that
. 1 1 _ 1 1
S (@ -3) (a0-3) = (a0)-3) 5 (a0-3)
I#j I#j
1
=~ (at-3) -
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Thus the forth term in (2.44) is

1= -2 (52 5 (a0 ) (0~ )

I#]

() )

- 0@

asn — oo. ThusVar(y,(j)) = O((1 —2¢+263)") = O(27°") asn — oo, where
B = —logy(1 — 2¢ + 2¢2) > 0. O

Proposition 2.19 is key to the proof of the next result. Treotlem below shows
that asymptotically, an arbitrarily large fraction of indessignments induce an arbitrar-
ily large fraction of codepoints to be arbitrarily closelt@®. This result is in contrast to
the fact that the Natural Binary Code index assignment haslatrarily small fraction

of codepoints arbitrarily close tb/2.

Theorem 2.20.For a decoder optimized uniform quantizer, arbitrarily dinas, ¢t > 0,
andn sufficiently large, at leastl —r)2"! index assignments each have at lgdst s)2"

codepoints within a distance ofrom1/2.

Proof. Assumell,, is chosen uniformly at random from the s&f. of all 2"! index

assignments. Let = ¢/(1 — ¢) and note thatl — ¢)(1 + §) = 1. Also, let

o= ()~ 3) (1255 ) (@ =7 -27).

By the Chebychev inequality, for arty> 0,

TP I WSRO
< P|lwli) - 5 - > - la
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= Pllya(y) — Elyn ()] >t — lan]]
(t — lanl)?

which means that

{ﬂ'n € Sgn .

5 >t}'<w.

Thus, for anyA > 0 there are at most-2" . \gji(f;’;%? index assignments, € Son, such

that for each such,,, there exist at least codepointsy,,(j) satisfying\yn(j) — %\ > .

Taking A = a2™ we get the following equivalent conclusion. For amy (0, 1), there

are at most-- - \gji(f;’;%%) index assignments, € Sy, such that for each sueh,, there
exist at leastv2" codepointsy,(j) satisfying|y,(j) — 1| > ¢. This implies that for any

€ (0,1), there are at leagt"! (1 — %) index assignments,, € Sy» such that
for each suchr,,, there exist at most2™ codepointsy,,(j) satisfying\yn(j) — %\ > .

A careful look at the variance shows a dependency buat we can easily make

a uniform upper bound on the variance which goes to zero agbeed)(2-°"), where
B = —logy(1 — 2¢ + 2¢2) > 0. We choosg¢ = o = 27°"/4, This implies that for
anyn, a fraction of at least — O(27%"/4) of all index assignments have the property
that the fraction of codepointg,(j) farther from1/2 than2=°"/4, is at mos2~""/4. In
other words, as — oo, an arbitrarily large fraction of all index assignmentsegiise

to codebooks with an arbitrarily large fraction of codegsiarbitrarily close td /2. O

Note that the proof of Theorem 2.20 demonstrates that tmi)mrmapping\gf

converges to zero in probability.
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2.7 Distortion Analysis

Let w,, be the index assignment for a ratequantizer with a uniform encoder
on [0, 1] for a uniform source oif0, 1] and a binary symmetric channel with bit error

probabilitye. Then the end-to-end MSE can be written as

2n—12"-1 (i+1)/27"

D = 323 plm () // (0 = yal)? da
= 3 +2 " Z Zp (7 (J) |70 (3) [ n( ) — an(z)yn@)} .

For any index assignment, € S, let D(C@n) denote the MSE of a channel
unoptimized uniform quantizer and Iélé? denote the MSE of a decoder optimized
uniform quantizer. For givenandn, an index assignment, € S, is said to beoptimal

for a channel unoptimized uniform quantizéfor all 7/, € Sy»,
D) < i)
cu  — cuU

and,, is said to beoptimal for a decoder optimized uniform quantizefor all 7/, €
SQ"I
D) < plm),

- coO

Lemma 2.21. The mean squared error of a decoder optimized uniform gaentvith

index assignment, € So. IS

2n—1



43

Proof.
2n—12"-1
DI = —+2 "N pa(G)|ma(i)) [Y2(5) — 2¢a(i)yn(4)]
7=0 =0
1 2n—1 2n—1
= g+27" D0 1unG) = 20n0) D p(ma () (@) en(d)
7=0 =0
1 2" -1
= -2 ) v (2.45)
=0
where (2.45) follows from the weighted centroid condition. O

In [5] it was shown that randomly chosen index assignmemta tthannel unop-
timized uniform quantizer are asymptotically bad in thessethhat their MSE approaches
that of the worst possible index assignment in the limibas co. The proof involved
an explicit construction of a worst index assignment. THewang theorem extends
the result to a decoder optimized uniform quantizer andnt®fdoes not require the
construction of a worst case index assignment. In Theor@@the terml /12 is in fact

the variance of the source.

Theorem 2.22.The mean squared error of a decoder optimized uniform gmants at
mostl /12, and forn sufficiently large, an arbitrarily large fraction of indexsaignments

achieve a mean squared error arbitrarily closelto12.

Proof. For any index assignment,, the average of the codepoints is

2" —1 2n—12"-1

20D i) = 2 “Z ch ()l (3))
= 2" z_: (1)

1
5
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Thus,

2" —1

U 1 —-n .
D = 2 =27 uil)
3=0

IN
Wl Wl

- (2‘” i yn(j)> (2.46)
=0

12

A~ =

where (2.46) follows from Jensen’s inequality. The secastdion follows from The-

orem 2.20 and Lemma 2.21. |

Although Theorem 2.22 indicates that asymptotically masgek assignments
yield mean squared errors closd d 2, in the following it will be shown that the Natural
Binary Code, the Folded Binary Code, and the Gray Code parfubstantially better
asymptotically.

The next two theorems give the mean squared errors for the&&inary Code
with a channel unoptimized decoder and with a channel opéchdecoder. Theorem
2.23 was stated in [8] (see, e.qg. [4] for a proof). The resarkggiven as a function of the
guantizer rater and the channel bit error probability Analogous results are then given
for the Folded Binary Code, the Gray Code, and the averagarfondex assignment

chosen uniformly at random.

Theorem 2.23.The mean squared error of a channel unoptimized uniform tipen

with the Natural Binary Code index assignment is

DWNBO) _ ﬁ 4 £ (1 _ 2—2n) '
ov 123

Theorem 2.24.The mean squared error of a decoder optimized uniform qmantvith
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the Natural Binary Code index assignment is

pWBO) _ 272 e(l—¢)

__9—2n
o 5t 3 (1—27").

Proof. Combining Proposition 2.3 and Lemma 2.21 gives

NBC
DGR
1 ~— 1 1
o -n 2 -n . —2n 2 -2 .
= 5—2 ;{6 + 2€2 (1—26)(7—'—5)—'—2 (1—26) (j —|—j—|—1)}

_ 1 |i€2 +27"e(1 —2€) +27 (1 —2¢)(2" — 1)

3 +2727(1 — 2¢)? ((Qn_ 1)(62n+1_ D, 2n2_1 +i)}

27 e(l—¢) o
= 45 T3 (1—27%").

The next two theorems give the mean squared errors for tlue&@inary Code
with a channel unoptimized decoder and with a channel opéchdecoder. Theorem
2.25 was given in [4]. The proof of Theorem 2.26 is similarttattof Theorem 2.24 and

is omitted for brevity.

Theorem 2.25.The mean squared error of a channel unoptimized uniform tgem

with the Folded Binary Code index assignment is

1
DWFBC) _ o (56 — 922+ 2_2”(1 — 8+ 862)) .

cU

Theorem 2.26.The mean squared error of a decoder optimized uniform gmantvith
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the Folded Binary Code index assignment is

1
DUP? = = (5e—9¢ + 86 —de* —27(1 - 20)").

co

The next two theorems give the mean squared errors for thye Gode with a
channel unoptimized decoder and with a channel optimizeddts. Theorem 2.27 was

stated in [9] (see, e.q. [4] for a proof).

Theorem 2.27.The mean squared error of a channel unoptimized uniform tgem

with the Gray Code index assignment is

Theorem 2.28.The mean squared error of a decoder optimized uniform gmantvith

the Gray Code index assignment is

11 1-(3-9”

1 1
(GC) .\
DCO 12 4 (%_6)—2_1'

Proof. Combining Proposition 2.10 and Lemma 2.21 gives

=1 k=1
1 - 1
= ——2" w(J) — =
L z(y 0-3)

n n 2"—1 1 i+k
i=1 k=1 j=0
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_ 2—"—22n:2” 1 ! (2.47)
T 12 : 5 ¢ '

where (2.47) follows from the fact that the average of theepmihts for any index
assignment i3 /2 (see the proof of Theorem 2.22) and that#fef k, the sumb,,(j, ) +

b.(j, k) is even2"~! times and od@"~! times asj ranges betweemand2” — 1. O

It can be seen from Theorem 2.23 and Theorem 2.24 that for B, the re-
duction in MSE obtained by using a channel optimized quantiecoder instead of one
obeying the centroid condition, i€(1 — 272")/3. For smalle, the MSE reduction is
thus small. For a randomly chosen index assignment how&kegrem 2.29 and Theo-
rem 2.30 show that channel optimized decoders reduce thagevdistortion by a factor
of two over decoders obeying the centroid condition, indelgat ofe, in the limit as
n — oo. Theorem 2.29 was stated in [8], and [5] contains a concisefptet D(4N)
be a random variable denoting the MSE of a channel unoptanizeform quantizer

with a randomly chosen index assignment.

Theorem 2.29. The average mean squared error of a channel unoptimizedmumif
guantizer with an index assignment chosen uniformly at camds
272 1 1—(2"+1)(1—e)"

RAN
e e T 6 -2

Since most index assignments are asymptotically bad, #veirage is bad as
well. More precisely, the next theorem shows that the asgtitgpaverage MSE of a
decoder optimized uniform quantizer with an arbitrary xdssignment converges to
1/12, consistent with Theorem 2.22. L& 4Y) be a random variable denoting the

MSE of a decoder optimized uniform quantizer with a randoatigsen index assign-
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ment.

Theorem 2.30.The average mean squared error of a decoder optimized umifpran-

tizer with an index assignment chosen uniformly at random is

272 11— (2"41)(1 — 2+ 24"
E D(RAN) = - )
Deo ] 2 1 12-2n

Proof. Let

o= ()= 3) (5= ) (@=ar -2,

By Lemma 2.21, the expected valuedf*4") (over all index assignments) is

E[D(RAN)]

coO
2n—1

= -2 Y BEO)

S g(w@n(m + Elpn()P)

-l ; (E (yn(j) - %) Fant i) (2.48)
_ 1_12 _ 2_n§E (yn(j) _ %)2] (2.49)
- - 22 (1= <cn<j> - %)

s (S5 [(Z (60~ %)) ~ (et - ;)]
b (1= (2+(1+6 2(1Z—|—05)n(1+52)n)

)2n —
@ - 1) —2)

£ (0 o)

i#] il

-9 <%) 3 (cn(j) _ %) (cn(l) _ %)] (2.50)
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- - 22 [(1 ~o (e - 3)

oo (S [(5) - (-]

- <2 (cn(j) _ %)2 S %n)
N ey (%(j)_gﬂ @51)

where (2.48) follows from Proposition 2.17 and (2.41), 8 tllows from the fact that

S5 (enf) — 3) = 0, (2.50) follows from (2.44), and (2.51) results from the com
putations following (2.44). Passing the sum oyénside, distributing the factor of "

over all terms, applying Lemma 2.18, and multiplying fhe- ¢)*" term through gives

E[DEAN]
1 (22" —1)(1 — €)™
12 12. 9220

on _ 1 12.2n  12.922n

(1—2e+2e3)" — (1 —¢€)™ ‘ 92n _ 1 92 _ 1
i {2(1 —+1-2(1—¢)" <(1 94 Qez)n] )

ey

() - (27|

(U (1) 252)
-1

1 2 —1] [2M(1-2e+ 28"
a ﬁ_{12-22n}{ o — 1 }
o2 11— (2" 1)(1 - 26+ 2€%)"
VST 1227

where (2.52) makes use of the computations following (2.44)
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Crimmins et al. [1] and McLaughlin, Neuhoff, and Ashley [3josved that for
everye and everyn the Natural Binary Code is optimal for a channel unoptimiaad
form quantizer. We next extend the proof in [3] to show thatdeerye and everyn the

Natural Binary Code is also optimal for a decoder optimizediarm quantizer.

Lemma 2.31. Let ., denote the2" x 2" matrix whose(i,j)"* elements are
q(m.(7)|mn(4)). For any index assignment,, there exists " x 2™ permutation matrix

P suchthai)? = PQi(NBC) Pt

Proof. Let P be the permutation matrix whose elements are

1 if m,(i) =y
Dij =
0 otherwise

for 0 < 4,57 < 2" — 1. Leta;; andb, ; respectively denote thg, ;)" elements of

QW(NBC) andPQﬂ_(NBC)Pt. Then
q(117) = @ij = beir )
or equivalently

(70 ()70 (J)) = G (i), ma (i) = iy

which impliesQ, = PQ_wso) P'. Thus@Q? = PQi(NBC) P! sinceP is orthogonal O

Theorem 2.32. The Natural Binary Code index assignment is optimal for aodec
optimized uniform quantizer, for every bit error probatyle > 0 and every quantizer

raten > 1.

Proof. Let ¢ = [c,(0), cn(1),..., (2" = )] andy = [,(0), yn(1), ..., yn(2" = 1)J*

denote the column vectors of cell centroids and codepaiespectively. Then Lemma
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2.21, Lemma 2.31, and the weighted centroid condition intimdy

1

Tn o —-n 2
ey = 5 -2y

1

— 2—n tM2
3 c@Q; c
1 -n

= § - 2 QtPQi(NBc)PtQ
1

= 5 2_n§tQ2(NBC)§
3 Tn
1 R

= 37 2_n§tQ7r(NBC)§ (2.53)

wherez = Plc, and WhereQﬂ(NBC) is the same as)_vso) but with ¢ replaced by
2¢(1 — €) € (0,1/2). McLaughlin, Neuhoff, and Ashley [3] showed that for every

e € (0,1/2), the quadratic form'Q_(~sc)z (and thus in particulaf@ﬂmmg) iS max-

T
imized for uniform sources and uniform quantizers satigfyp _, ¢, (i) = 0, when

m, = 79 shifting the support of a uniform source frof, 1] to [—1/2,1/2]

changes each term in (2.53) by a constant term, indepenfiém endex assignment.

ThusD(c’:;) is minimized whenr,, = mQNBC), and therefore the Natural Binary Code is
optimal for decoder optimized uniform quantizers forcadindn. O

This chapter, in full, is a reprint of the material as it apgea: Benjamin Farber
and Kenneth Zeger, “Quantizers with Uniform Encoders andrblel Optimized De-
coders,”IEEE Transactions on Information Thegmwol. 50, no. 1, pp. 62—77, January

2004. The dissertation author was the primary investigatthis paper.
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Chapter 3

Quantizers with Uniform Decoders and
Channel Optimized Encoders

Abstract

Scalar quantizers with uniform decoders and channel-opdnencoders
are studied for a uniform source ¢ 1] and binary symmetric channels.
Two families of affine index assignments are consideredconeplemented
natural code (CNC), introduced here, and the natural bicadg (NBC). It
is shown that the NBC never induces empty cells in the quanéncoder,
whereas the CNC can. Nevertheless, we show that the asyowhitibu-
tions of quantizer encoder cells for the NBC and the CNC avaleand are
uniform over a proper subset of the source’s support redtompty cells act
as a form of implicit channel coding. An effective channellewate associ-
ated with a quantizer designed for a noisy channel is defindccamputed
for the codes studied. By explicitly showing that the meanasgd error
of the CNC can be strictly smaller than that of the NBC, we alsmon-
strate that the NBC is sub-optimal for a large range of trassion rates
and bit error probabilities. This contrasts with the knovmtimality of the
NBC when either both the encoder and decoder are not chaptielined,

or when only the decoder is channel optimized.
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3.1 Introduction

One approach to improving the performance of a quantizétridwasmits across
a noisy channel is to design the quantizer's encoder aneéfder to specifically take
into account the statistics of the transmission channetebigary optimality conditions
for such channel-optimized encoders and decoders wera,gmeexample, in [2, 11,
12]. Alternatively, an explicit error control code can bescaded with the quantizer, at
the expense of added transmission rate. Additionally, iwéce of index assignment in
mapping source code words to channel code words can inctleagerformance of a
guantization system with a noisy channel. Examples of irasignments include the
natural binary code (NBC), the folded binary code, and they@ode.

Ideally, one seeks a complete theoretical understanditigeagtructure and per-
formance of a quantizer that transmits across a noisy chasame whose encoder and
decoder are channel optimized. Unfortunately, other ttmendptimality conditions
given in [11], virtually no other analytical results are knoregarding such quantiz-
ers. Quantizer design and performance with index assigtaiengeneral encoders
and decoders (i.e. not necessarily channel optimized) oasidered in [7, 16]. Exper-
imentally, it was observed in [4] and [5] that quantizershilioth channel-optimized
encoders and decoders can have empty cells, which serveoas affimplicit channel
coding. Some theoretical results are known, however, wieguaantizer has no channel
optimization, or when only the quantizer decoder is chanpémized.

For uniform scalar quantizers with neither channel-optediencoders nor de-
coders and with no explicit error control coding, formulas the mean squared error
with uniform sources were given in [8,9] for the NBC, the Grayle, and for randomly
chosen index assignments on a binary symmetric channel; dlke asserted (without
a published proof) the optimality of the NBC for the binaryreyetric channel. Crim-
mins et al. [1] proved the optimality of the NBC as asserte[8i®], and McLaughlin,
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Neuhoff, and Ashley [15] generalized this result to uniforector quantizers. Various
other analytical results on index assignments without nhkhaptimized encoders or
decoders have been given in [10,13, 14].

Quantizers with uniform encoders and channel-optimizezbders on binary
symmetric channels were studied in [3]. For such quantizexact descriptions of
the decoders were computed, and the asymptotic distritmitsd codepoints were de-
termined for various index assignments. Distortions welewated and compared to
those of quantizers without channel optimization. The pno@l5] of the optimality of
the NBC for quantizers with no channel optimization was edtal in [3] to show that
the NBC is also optimal for quantizers with uniform encodansl channel-optimized
decoders.

In the present paper, we examine quantizers with uniforrodiexs and channel-
optimized encoders operating over binary symmetric chianfreparticular, we investi-
gate a previously studied index assignment, namely the NiB&ddition, we introduce
a new affine index assignment which we call the complemerdadal code (CNC) and
which turns out to have a number of interesting properties.spécifically analyze the
entropy of the encoder output in such quantizers, the higbluéon distribution of their
encoding cells (i.e. the cell density function), and the msguared errors the quantiz-
ers achieve. We calculate a quantity we call the “effectivanmel code rate”, which
describes implicit channel coding, viewed in terms of thieagy of the encoder output.
We also show that the NBC optimality results of [1, 3, 15] do extend to quantizers
with uniform decoders and channel-optimized encodersadh the CNC is shown to
perform better than the NBC.

Our main results for quantizers with uniform decoders arahalel-optimized
encoders are the following. For a uniform sourcd@®r] and a binary symmetric chan-
nel with bit error probability € [0,1/2), we compute the effective channel code rates

and cell densities for the NBC and CNC. It is shown that the NBf&x assignment
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never induces empty cells (Corollary 3.3), and the cell derignction generated by
the NBC is the same as the point density function for quargiaéth uniform encoders
and channel-optimized decoders with the NBC (Theorem 3rbontrast it is shown
that the CNC can induce many empty cells (Corollary 3.8). elmv, the cell density
functions generated by the CNC and the NBC are both uniforen the same interval
(Theorem 3.10). We also show that the cell density functemegated by the CNC is the
same as the point density function for quantizers with umfencoders and channel-
optimized decoders with both the CNC and the NBC (Theorerh)3.Then we extend
a result in [8] by computing the mean squared error resulfiagn the NBC (Theo-
rem 3.14). As a comparison, we state the previously knowmragaared error formula
for channel unoptimized encoders with the NBC (Theorem)3.Eally we show that
the NBC is sub-optimal for quantizers with uniform decodansl channel-optimized
encoders for many bit error probabilities (Theorem 3.17).

We restrict attention in this paper to a uniform source®n]. However, it will
be apparent that the results can be generalized to any baumtdeval on the real line.

The paper is organized as follows. Section 3.2 gives defimstiand notation.
Sections 3.3 and 3.4, respectively, give results for the MB& CNC. Section 3.5 gives
distortion analysis. Appendices 3.7-3.10 contain the froball lemmas, and selected

theorems as well as various lemma statements.

3.2 Preliminaries

For any sefS of reals, letS denote its closure. If is an interval, let(S) denote

its length. Let) denote the empty set. Throughout this pageg™will mean logarithm

base two.
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A raten quantizeron [0, 1] is a mapping

Throughout this paper, all quantizers will be on the intefoal] and we will assume
n > 2. The real-valued quantitieg, (i) are called codepointsand the set
{yn(0),...,y.(2" — 1)} is called acodebook For a noiseless channel, the quantizer
Q is the composition of guantizer encodeand aquantizer decoderThese are respec-

tively mappings

Q. : [0,1] —{0,1,...,2" — 1}

Qi : {0,1,...,2" =1} — {yn(0),yn(1), ...,y (2" — 1)}

such thatQ,(:) = y,(¢) for all i. On a discrete, memoryless, noisy channel a quantizer
is a composition of the quantizer encoder, the channel,lEmduantizer decoder.
Without channel noise it is known that for an optimal quagrtizhe encode®,
is a surjective mapping. However, in the presence of chamisg, it is possible that in
an optimal quantizer the range ©f may contain fewer tha® points.

For eachi theith encodingcell is the set

If R.(i) = 0 we sayR,,(i) is anempty cell

A quantizer with empty cells can be thought of as implicitging channel cod-
ing to protect against channel noise. For example, if oniedidhe cells of a quantizer
were empty, and the other half were equal size, this couldibeght of as effectively
using one bit of error protection. More generally, the cdsoaf a rate: quantizer hav-

ing 2* equal size cells with én, k) block channel code can equivalently be viewed as a
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raten quantizer with2” cells,2* of which are nonempty. That is, for any input lying in
one of the2* nonempty cells, thé-bit index produced by the original quantizer encoder
is expanded ta bits, which is then used for transmission. A quantizer cao aitro-
duce redundancy by making some encoding cells smaller ttinmso This reduces the
entropy of the encoder output while maintaining the sanrestrassion rate. To quan-
tify the amount of natural error protection embedded in gaars designed for noisy
channels, we define thedfective channel code raté a quantizer as
= H(L(X))

n
where X is a real-valued source random variable @hdlenotes the Shannon entropy.
Then

0<r < log [{i : R (i) # 0}| <1
n

In particular, the effective channel code rate of a katgiantizer, having no empty cells,
cascaded with afn, k) block channel code (viewed as a rateuantizer) is at most
k/n, i.e., the rate of the channel code. For such a cascadedrsybtg denotes the rate

of the block channel code and if cell sizes are equal, then

Te = Tp.

In this paper, we compute the effective channel code rateeéin quantizers that
cannot be decomposed as cascades of (lower transmissergetntizers with block
channel codes.

A quantizer encoder is said to beiformif for eachi, the:th cell satisfies

Ru(i) D (127", (i + 1)27™).
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We say the quantizer decoder is uniform, if for eactneith codepoint satisfies

Ya i) = (z + %) 2,

Thenearest neighbocells of a rate: quantizer are the sets

T () = {x : |yn(0) — 2 <|ya(j) —xl, Vj # i}

for 0 < i < 2" — 1. A gquantizer’'s encoder is said to satisfy thearest neighbor
conditionif for eachi,

T,(i) C Ru(i) C T,(3).

That is, its encoding cells are the nearest neighbor cajsth@r with some boundary
points (which can be assigned arbitrarily).
For givenn, i, and real-valued source random varialilethecentroidof theith

cell of the quantize® is the conditional mean
cn(i) = E[X|X € R,(i)].
The quantizer decoder is said to satisfy tieatroid conditiorif the codepoints satisfy

Yn(i) = cn(i)

for all i. A quantizer isuniformif both the encoder and decoder are uniform. Itis known
that if a quantizer minimizes the mean squared error for argsource and a noiseless
channel, then it satisfies the nearest neighbor and certooiditions [6]. In particular,

if the source is uniform, then a uniform quantizer satisfltes mearest neighbor and
centroid conditions.

For a raten quantizer, anindex assignment,, is a permutation of the set
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{0,1,...,2" — 1}. Let .S, denote the set of ali’! such permutations. For a noisy chan-
nel, arandom variabl& < [0, 1] is quantized by transmitting the indéx= 7,,(Q.(X))
across the channel, receiving indékrom the channel, and then decoding the codepoint

yn(m1(J)) = Qu(m; 1 (J)). Themean squared errofMSE) is defined as
D=FE[(X — Qa(m, ' (1)))*] - (3.1)

The random indeX is a function of the source random variatie the randomness in
the channel, and the deterministic functi@ddsandr,,.
Assume a binary symmetric channel with bit error probapélitThroughout this

paper we use the notation:

Denote the probability that index was received, given that indexwas sent, by
pa(jli) = fn@D(1 — en=Hnld) for 0 < e < 1/2, whereH,,(i,7) is the Hamming
distance between-bit binary words: andj. Let ¢,(i|j) denote the probability that
index: was sent, given that indexwas received.

For a given sourc&, channelp,(-|-), index assignment,, and quantizer en-
coder, the quantizer decoder is said to satisfywheeghted centroid conditioif the

codepoints satisfy

)
B
|

-

y(g) = 2 en(D)gn(mn(i)mn()).

For a given sourceX, channelp,(-|-), index assignment,,, and quantizer decoder,

the quantizer encoder is said to satisfy tieighted nearest neighbor conditidithe
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encoding cells satisfy

W; C R,(i) C W, (3.2)

where

(@ = (7)) ?Pn (70 (5) 1700 (4))

Il
—
8

%)
i™F
© Ll

< Z_:(ﬂf—yn(j))zpn(ﬂn(j)lﬂn(k)% Vk#i}-

For a given quantizer encoder and index assignment, we sayudmtizer has a
channel-optimized decoddrit satisfies the weighted centroid condition. Similarfiyy
a given quantizer decoder and index assignment, we say tigiger has a&hannel-
optimized encodeif it satisfies the weighted nearest neighbor condition.s lkmown
that a minimum mean-squared error quantizer for a noisy reslamust have both a

channel-optimized encoder and decoder [11].

Lemma 3.1. A quantizer with a uniform decoder and channel-optimizezbder satis-

fies, for all,
Ro(i) = {2 €[0,1]: an(i, k) x> Bulisk), Yk £} (3.3)
where
anlish) = tjmmwnu)m(i)) ~ palma () ) 3.4
Bk = 2 <an<z',k> +2§ﬁ NERDIENG) —pn<wn<j>\wn<k>>J>(.3.5>

Lemma 3.1 implies that eacR, (i) is a (possibly empty) interval. Therefore, in this
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paper, when we describe quantizer encoding cells it suffccdescribe their closures.

For any set4, denote the indicator function of by

1 forze A
xa(r) = {
0 for x ¢ A.

For a given quantizer encoder, let

A= {i: Ry(i) #0}.

These are the indices of non-empty cells.
For eachn and each index assignment < S, define the functionyﬁ’,? :

[0,1] — [0, 00) by

For a sequence, € S, (for n = 1,2,...) of index assignments, if there exists a

measurable function such that

y(z) = lim 4 (x)

for almost allz € [0,1] and fol'y(a:) dx = 1, then we sayy is acell density function
with respect to{7,, }.
For eachn and each index assignment < S, define the functiomﬁrﬁ) :
[0,1] = [0, 00) by
2" —1

A () =
1=0

1
me)(x).

For a sequence, € S, (for n = 1,2,...) of index assignments, if there exists a
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measurable functioh such that

for almost allz € [0, 1] andfo1 Az)dr = 1, then we say is apoint density function
with respect to{m,, }.

The integrals/’~ and [ ) give the asymptotic fraction of encoding cells and
decoder codepoints, respectively, that appear in thevaiter, b] asn — oo.

Let adecoder-optimized uniform quantiz€0OUQ) denote a rate quantizer
with a uniform encoder of, 1] and a channel-optimized decoder, along with a uniform
source on0, 1], and a binary symmetric channel with bit error probability When
considering DOUQs, we impose the following monotonicitpstraint on the quantizer
encoder in order to be able to unambiguously refer to pdati¢cndex assignments: For
all s,t € [0,1], if s < ¢, thenQ.(s) < Q.(t). In other words, the encoding cells are
labeled from left to right.

Let anencoder-optimized uniform quantiz&EOUQ) denote a rate quantizer
with a uniform decoder and a channel-optimized encodengalaith a uniform source
on |0, 1], and a binary symmetric channel with bit error probabitityVhen considering
EOUQs, we impose the following monotonicity constraint e guantizer decoder
in order to be able to unambiguously refer to particular indssignments: For any
yn (1) @andy,,(5), if y.(i) < yn(4), thenQ; " (y. (7)) < Q' (y.(4))- In other words, the
codepoints are labeled in increasing order.

An alternative approach would be to view the quantizer eacad the compo-
sition T, - Q. and the quantizer decoder as the compositiyn =, !, by relaxing the
monotonicity assumption made above. This would removedigeaf index assignments
from the study of quantizers for noisy channels. Howeverretain these encoder and

decoder decompositions, as a convenient way to isolatdféetseof index assignments,
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given known quantizer encoders and decoders.
Let achannel unoptimized uniform quantizéenote a rate uniform quantizer
on [0, 1], along with a uniform source dn, 1], and a binary symmetric channel with bit

error probabilitye.

3.3 Natural Binary Code Index Assignment

For eachn, the natural binary code (NBC) is the index assignment defirye

aWNBO () =i for 0<i<2"—1.

n

Theorem 3.2. An EOUQ with the NBC index assignment has encoding cells duye

;

0,4 027"] for i=0
Ru(i)=Q [e+i02 ™ e+8(i+1)27"] for 1<i<2m—2
\ [1—6—52_”,1} for 1=2"—1.

Proof. The encoding cells satisfy (3.3) in Lemma 3.1, with

an (i, k)

= 2”—1]_ [P (TP ()TN PO (@) = pu (VPO () |7V (K))]

= Jz‘:i k)o (3.6)
Bali, k)

+ 2 72 [pa(r X FO ()| (@) = pa(m M E) (j)lﬂéNBC)(k))D

=0

— gnl {(i —R)O[L 4 26(2 — 1)] + (i — k)62 (3.7)
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where (3.6) follows from Lemma 3.20; and (3.7) follows froBf) and Lemma 3.21.

Thus,
Bnl(i, k)
an (i, k)

—e+6(+k+127" 0<ik<2" — 1. (3.8)

From (3.6), we have that, (i, k) > 0 if and only ifi > k, anda,,(i, k) < 0 if and only

if i < k. Therefore, (3.3) can be rewritten as

B (i, k)
an (i, k)

B (i, k)
an (i, k)’

En(i):{xe[o,l]:xz ,Vik<iandz < Vk>i}. (3.9)

By (3.8), the quantity% is increasing in both andk. Hence, ifl < i < 2™ — 1,
then (takingk = i — 1in (3.9))z € R, (i) if and only if

T > e+8(+(GE—1)+1)27"!

= €e+ii627".
Similarly, if 0 <4 < 2" — 2, then (takingk = i + 1in (3.9))x € R,,(i) if and only if

r < e+d0(i+(i+1)+1)27"!
= e+0(i+1)27" (3.10)
O

A consequence of the preceding theorem is that the NBC pesdnc empty
cells when the weighted nearest neighbor condition is usgdther with uniformly

spaced codepoints. This fact is stated as the followindtresu

Corollary 3.3. For all n and for alle € [0,1/2), an EOUQ with the NBC index assign-

ment has no empty cells.

Figures 3.1 and 3.2 illustrate the encoding cells of a3d&®©UQ with the NBC
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index assignment for bit error rat@05 and 0.25 respectively. Figure 3.3 plots the
encoding cell boundaries of a ra&a&OUQ with the NBC index assignment as a function

of bit error rate.

CNC
ms(i): 000 001 010 011 101 100 111 110

S R R | R R

y3(000)  y3(001)  y3(010)  y3(011)  w3(100)  y3(101)  w3(110)  ys(111)

NBC
ms(i): 000 001 010 011 100 101 110 111

0 1

L o | o | o | o | o | . | o o
y3(000)  y3(001)  ws(010)  y3(011)  y3(100)  ws(101)  ys(110)  ys(111)

Figure 3.1: Plot of the encoding cells of rate 3 EOUQs with@C and NBC index
assignments and a bit error rate 0.05.

CNC
m3(i): 001 011 101 111
0 1
L o o PR B o o —
y3(000)  y3(001)  y3(010)  ys(011)  ws(100)  ws(101)  y3(110)  ys(111)
NBC
m3(1): 000 001 010 011 100 101 110 111
0 1

(I SR A SN SR S N S

y3(000)  y3(001)  y3(010)  y3(011)  y3(100)  y3(101)  y3(110)  wys(111)

Figure 3.2: Plot of the encoding cells of rate 3 EOUQs with@C and NBC index
assignments and a bit error rate 0.25.

Theorem 3.4. An EOUQ with the NBC index assignment has an effective chande

rate given by

re = (1-217")(1—2¢) <1 — log(1 — 26))+26 + (1 ;26)21% log (E i ! ) )

n 1—2¢)2"
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Encoding Cell Boundaries

0 0.1 0.2 0.3 0.4 0.
Bit Error Probability

Figure 3.3: Plot of the encoding cells boundaries of a rat®88 with the NBC index
assignment as a function of bit error rate.

Proof. The definition ofr. implies

1 , 1
re=— %l(Rn(z)) log )

From Theorem 3.2,

(

e+02™" for 1=0

[(Rn(i)) =< 627" for 1<i<2"—2

\ €+ 027" for 1=2"—1.

Therefore,

5o 1 (e+027™) 1
re = (2" —2) - log ((52—_“) +2 - log <€+52_n)
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_ log & 2e¢ + 621" 1
_ __9l-n .
=(1-27"9 <1 n ) i n log (e+62—") '

O

As n — oo, the effective channel code rate given by Theorem 3.4 cgegetio
1 — 2e. Figure 3.5 plots the quantity. from Theorem 3.4 for rate = 4.

The following theorem shows that the cell density function & sequence of
EOUQs with the NBC is the same as the point density functiamdoin [3] for a se-
guence of DOUQs with the NBC.

Theorem 3.5. A sequence of EOUQs with the NBC index assignment has a osltyle

function given by

ﬁ fore<x<1l—e

v(z) =
0 else.

Proof. From Theorem 3.2,

;

e+ 027" for 1=0

I(Rn(i)) = 627" for 1<i<2m—2

\ €e+027" for i=2"—1.

Therefore, sincé\| = 2" by Corollary 3.3,

(

% for e+ <xr<l—e—4627"

(n) _
’yﬂ_’SZNBC) (x) - ﬁ fO'r' 0 S r < € + 62—71 or

l—e—-902"<z<l1

for e<z<1l—e

S

0 for 0<x<eorl—c<z<l

as n — oQ0.
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3.4 Complemented Natural Code Index Assignment

Let the complemented natural code (CNC) be the index assighdefined by

i for 0<i<27i—1
TNy =q i+ 1 for 271 <i<2"—2  and i even

i—1 for 21 4+1<i<2"—1 and i odd.

Note that the CNC is a linear index assignnigsince

N () =G,
wherei is ann-bit binary word,G,, is then x n identity matrix with an additional in
the upper right hand corner, and arithmetic is performedutm®l in the productG,,.
The CNC is closely related to the NBC. However, it inducey \diiferent encoding cell

boundaries for EOUQs, as shown by Theorem 3.7.

Lemma 3.6. For eachn, the polynomiab,,(¢) = —8¢3 + (4 — 2" 1)e? + (242" T)e — 1
restricted toe € (0, 1/2) has a unique root’. The polynomial is negative if and only if

¢ < ¢ . Furthermore¢’ is monotonic decreasing arg < (2/2 +2)~1.

The quantitye; defined in Lemma 3.6 will be frequently referenced throughou
the remainder of the papet;, plays an important role as a threshold value for the bit
error probability of a binary symmetric channel, beyondeftthe encoding regions and

empty cells of an EOUQ with the CNC index assignment chandeelravior. It can be

1Affine index assignments were studied in [13]. The NBC andy@ade are linear, and the folded
binary code is affine.
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shown, using the general solution to a cubic, that

o 2"+4 [\/§sm (arctan(T/U) +7r)  eos (arctan(T/U) +7r) B 1} +1

" 12 3 3 2

where
1

o = 9on—5 _ o <2n—2 + 1)3 and T — \/2n—4(2n—6 —0).

Theorem 3.7.The encoding cells of an EOUQ with the CNC index assignmergigen

as follows.

If n =2ande € [0,1/4), orif n > 3 ande € [0, ¢;), then



o

[ ,54_3-2”62
1
i I+ 2¢

CRE

(25 + w) 27" ((i + 1)) — 27;62) 2—":

1+ 2¢

:1/2, <(2"—1 -

(15 B0 o (g, 22E)

71

r [ n 2
0,<5—2;)2—“} fori=0

:(w - 2:;62) 9. <(i +1)5 + w) 2—”:

1+ 2¢
for1<i<2n!—3 iodd

for2 <i<2"t —2 i even

| n—1 _ - 2n€2 -n ; — on—1 __
(2 1)6 5 27" 1/2 fori=2 1

1)0 + 2"e(2 — 3¢) 6(25_ 36)) 2_"} fori=2""1
3. 2ne?

for2n 41 << 2" —3, i odd

) 27" ((i +1)8 + 72%(25_ 36)) 2—":

for2n=t 42 < < 2" — 2,7 even

(2 — 3
M) 9 1} fori=2"—1.

J

If n =2ande € [1/4,1/2), then

0,1/2] for i=1
(1/2,1] for i=2
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If n > 3 ande € [¢,1/2), then

fori=0ande<1/(2"/?%+2)

i on 2
(5 - ; ) 27" (46 4+ 6* + 2"“6)2_”_1] N[0,1] fori=1

_((21’ —2)6 462 +2"e) 27 (20 +2)6 4 62 + 2"“6)2—"—1]
for3<i<2"t -3, iodd

(20 — 4)5 + 62 + 27+1e)2n 1, 1/2} fori=2""1_1

1/2, (2" +2)0 + 1 — 4 + 2"+1e)2—"—1] fori =21

(2= 2)0+1 = 462 +27H1€) 2771, (20 + 2)6 + 1 — 4e? + 2+1e)2 1]
for2n=t 42 << 2" —4, i even
2me(2 —
{((2“1 —6)d+ 1 —4e* + 2" e)27" 62" —1)0 + %) 2—"} N[0, 1]

fori=2"—2
[(@n St @) 2, 1}

fori=2"—1ande<1/(2"% +2)

0 else.

Corollary 3.8. For an EOUQ with the CNC index assignment, the number of nptyem

cellsis

2m for e €0,€)
IAl=1q 277142 for ec e, 1/(2V% +2))
2" for e [1/(2"% +2),1/2) .
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If e € [¢f,1/(27/2 + 2)), then the indices of the empty cells are

{i:2<i<2"'—2 deven}U{i: 2" +1<i<2"—3 iodd}.

If e € [1/(27/2 + 2),1/2), then the indices of the empty cells are

{i:0<i<2"'—2 deven}U{i: 2" +1<i<2"—1,iodd}.

Encoding cell boundaries

0 0.1 0.2 0.3 0.4 0.
Bit Error Probability

Figure 3.4: Plot of the encoding cells boundaries of a rat®8 8 with the CNC index
assignment as a function of bit error rate.

Figures 3.1 and 3.2 illustrate the encoding cells of a3d&©UQ with the CNC
index assignment for bit error rat@)5 and 0.25 respectively. Figure 3.4 plots the
encoding cell boundaries of a r&a&0OUQ with the CNC index assignment as a function

of bit error rate.



74

Theorem 3.9. An EOUQ with the CNC index assignment has an effective chande

rate given as follows. Léet be the binary entropy function and let

pr=(1—2€)27" —
pe=(1—2€)27" +
ps=(1—2€)27" +

py=(1—2€)27" —

ps=(1—26)27"+27""1(1 —2¢)* +
ps = (1 —2€)217" —
pr=(1—2e)2" " +

1
Pg = 5(1 -2 (1 -

If n =2ande € [0,1/4), then

62

1—2e¢

2
1— 2
2¢(1 —¢)
1 —4e2
2¢(1 —¢)
1 —4e2

+e€

E2

1— 2¢

2711 — 2¢)?
27" (1 —2€)? + ¢

2¢) (n — 1 —log (1 — 2¢)) .

1 1—2¢ 2¢?
==(1+h — .
" 2<+ (2n—1 1—26))

If n =2ande € [1/4,1/2), thenr. = 1/2.

If n > 3 ande € [0,¢), then

Te = ——
n

2 B
(p1log p1 + palogps + (2% — 1)(pslog ps + palogpa)) -

If n > 3 ande € [¢5,1/(2"/% 4 2)), then

Te=——
n

2
(p11log p1 + ps log ps + pe log ps — ps) -
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If n > 3ande € [1/(2%/2 +2),1/2), then

2
(prlog pr — ps + ps log pe) -

Te=——
n

Asn — oo the effective channel code rate given by Theorem 3.9 corgalmy
1 —2¢, foralle € [0,1/2). Figure 3.5 plots the quantity. from Theorem 3.9 for rate

n = 4.

@)
I
)
> %

NBC
0.8 CNC .

e=1/6

1 — H(e)
0.2 4

Effective Channel Code Rate

0 ! ! !
0 0.1 0.2 0.3 0.4 0.

Bit Error Probability

Figure 3.5: Plot of the effective channel code ratef EOUQs with the NBC and the
CNC index assignments for rate= 4. The horizontal axis is the bit error probability
e of a binary symmetric channel. Also shown for comparisomédhannel’s capacity
1 — Hfe).

Corollary 3.8 shows that given a bit error probability> 0, for n sufficiently
large an EOUQ with the CNC has half the number of nonempty dingccells as one
with the NBC. The following theorem shows that despite thistf for a sequence of

EOUQs, the CNC and the NBC induce the same cell density fom¢tia Theorem 3.5).
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Theorem 3.10.A sequence of EOUQs with the CNC index assignment has a osityle

function given by

1
1—2¢

fore<x<1l—e
V(z) =
0 else.

Proof. For each: > 0 andn sufficiently large,

1
2n/2+2 <€

and therefore, by Corollary 3.8, the indices of the nonenaptis are
{i:1<i<2"'—1,io0dd}U{i:2""" <i<2"—2 iecven}.

Asn grows, the encoding cellg, (i) in Theorem 3.7 correspondingte= 271 —1, 271
do not affect the cell density function. At the same time, tight endpoint of the
encoding cell in Theorem 3.7 corresponding te 1 converges te and the left endpoint
of the encoding cell in Theorem 3.7 corresponding 2™ — 2 converges td — e. All
other encoding cells have lengit'~". Hence, in the limit a& — oo they uniformly

partition the intervale, 1 — €. O

For completeness we derive the point density function of &QAvith the CNC.
Analogous to the NBC, the cell density function in Theoret03s equal to the point

density function for a sequence of DOUQs with the CNC.

Theorem 3.11. A sequence of DOUQs with the CNC index assignment has a point

density function given by

L fore<r<l—ce¢

)\(.CE) _ 1—2¢

0 else.
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Proof. From [3], the codepoints of a DOUQ with the CNC index assignisatisfy

(i) = 3 (P52 (G 0)

(2" —1)e+6(i+¢€)+5 for i even

=27". (3.11)
(2" —1)e+d(i—€)+5 for i odd

where (3.11) follows from Lemma 3.24. Thus,

_ . 27(1 — 4€%) for i odd
yn(Z + 1) - yn(z) =
27(1 —2¢)? for i even
which implies the codepoints are uniformly distributed e timit asn — oo. Since
Yn(0) = e+27 "D (1-4€%) — casn — oo, andy, (2" —1) = 1—e—2" " (1-4¢?) —

1 — e asn — oo, the point density function is uniform d, 1 — ¢). O

3.5 Distortion Analysis

Let D(™) denote the end-to-end MSE of an EOUQ with index assignmgnt
Recall thatA = {i : R,(i) # 0}. Fori € A, define the quantities

I.(i) = argmin ¢,(j)
jeA
en(f)>en (i)
L(i) = argmax c¢,(j)
jea

cn(j)<en(?)
z,(1) = sup R,(i)

(I, andI; are defined when the argmin and argmax, respectively, edils), define

V = {i:1¢R,(i))}NA
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Il - VCmA

I,(i) and (i) are the indices of cells immediately to the right and lefspectively, of
the cell with index; V' is the set of indices of nonempty cells that don’t contgiand

I, is the index of the nonempty cell containiihg

Lemma 3.12. The mean squared error of a EOUQ with index assignmens

Pl
1 >
L gy e Z 22(1) - an(d, I(3)) — Z 3P (7 () [ (11))
ieV 7=
on 1
+272 % (G 4 52)pa(ma () Ima(1))-
7=0

The next two theorems give the mean squared errors for thewBGa channel
unoptimized uniform quantizer and with an EOUQ. Theoren3 8véas stated in [8] (see,
e.g. [13] for a proof). The results are given as a functiorhefquantizer rate and the
channel bit error probability. Let D(C’f;) denote the end-to-end MSE of an channel
unoptimized uniform quantizer with index assignmept

With no channel noise the MSE i52"/12. If a quantizer with the NBC is
designed for a noiseless channel but used on a noisy chameelTheorem 3.13 shows
that (for largen) roughlye/3 is added to the MSE. If a quantizer with the NBC and a
channel-optimized encoder is used on a noisy channel, theorém 3.14 shows that

(for largen) the MSE is reduced by roughly /3 from the channel unoptimized case.

Theorem 3.13.The mean squared error of a channel unoptimized uniform team
with the NBC index assignment is

2—2n
D(NBC) = 4

€
—(1 =272,
cu 12 3( )
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Theorem 3.14.The mean squared error of an EOUQ with the NBC index assighisien
2
NBC) _ n(NBC) _ € —-n —n+1
DB — DN >—§(1—2e)(1—2 )(1 =27,

Proof. For the NBC,p, (7,(j)|mn(7)) = pn(j|i) and Theorem 3.2 and Corollary 3.3
imply thatV = {0,1,...,2" — 2}, [.(i) =+ 1, andl; = 2" — 1. Hence, Lemma 3.12

gives

D;]ZBC) . <% . 2—n—1 + 2—2n—2)

2" —1 2" —1

= 27 ZO *pa(if2" = 1) + (27 —27") X_; ipa(il2" = 1)

+27" gzi(i) (i, i+ 1)
= 27 (5(4” -1+ %62(2" —1)(2" —2) +6(2" — 1)2)

+ (27 —27")(2" = 1)(1 —€) — 027" %i[e +6(GE+1)27")*  (3.12)
— o (5(4" — 1)+ %62(2" —1)(2" - 2) — (2" — 1)2)

— 2 {(2” —1)€® 4 (2" — 1)2e627" + (2" — 1)(2" — 2)ed2 ™

on _ 1)(92" — 9 2n+1 _ 22—2n
+ ( I )é 3)0 + (2" — 1)2522—2”} (3.13)
9-2n (27 _1)(2" — 2)(26% — &) + (22 — 1)e
(NBC) _
Do TE 3 o (3.14)

where the last three terms in (3.12) follow from Lemma 3.2émima 3.20, and (3.6)

and (3.10) respectively; and where (3.14) follows from 83 dfter arithmetic. O

Let D(™) denote the end-to-end MSE of a DOUQ with index assignment

For a givemn ande, an index assignment, € S, is said to beoptimal for an EOUQf



80

forall 7, € S,

b < D

and is said to beptimal for a DOUQIf for all 7], € .S,
D) < D)
DO — DO

In [3] it was shown that for all, and alle the NBC is optimal for a DOUQ. Theo-
rems 3.13 and 3.14 show that with the NBC, the reduction in MBfained by using a
channel-optimized quantizer encoder instead of one obdyim nearest neighbor con-

dition is

(€ — 26%) (2" — 1)(2" — 2)
3. 920 '

The next two theorems show, however, that the NBC is not agtion an EOUQ for all

n and alle.

Theorem 3.15.The mean squared error of an EOUQ with the CNC index assighisien

(

Di(n,e) for 0 <e<e

(CNC) _ 1
DEO - DQ(na 6) Jor €, <e< on/212

\ Ds(n,e€) for m <e<1/2

where
Dl(n, 6)
= ﬁ((l/@ (2% 4 (5/2))e — (22! — 15 2" + 4)é
+6(27 — 2" —4)® + (2" — 4)(2" — 2)et —12(2" — 4)65)
Dz(n, 6)

2—3n
= = (2" 3 [(2" = 3)(22" 4 10) — 27! 4 48]e
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— (2" = 6)(2" — 5)(2" — 4) — 3(2%" + 2""% — 48)]¢?
(2" — 4)(22 — 11+ 27 + 6)€® + 6(2" — 6)(2" — 4)et + 24(2" — 4)&)

D3 (TL, 6)
—3n

- 5 (2" F 327 — 3)(22 +10) — 27 Ye — [(2" — 6)(2" — 5)(2" — 4)

—3-2%"* +2(2" — 6)(2" — 5)(2" — 4)* + 12(2" — 5)(2" — 4)€’

+o4(2n — 4)e5>.
Lemma 3.16. On the interval0, 1/2], the polynomial
gn(€) = 4(2" — 4)e* +27(2" — 2)€® — 2(27" — 22 — 4)e® 4+ 2"(2" — 4)e — 1

has exactly one roat,, andg,(¢) < 0 if and only ife < ¢,. Furthermore2=2" < ¢, <

2-2ntL whenn > 4.

Note thatg, (272""*) — 2* —1 > (0 asn — oo, for anya > 0. Hence, the
bound or¥, can be strengthened 202" < ¢, < 2727+4, for arbitrarily smalle > 0 and
sufficiently largen. Thus,é, ~ 2727, for asymptotically large.

The following theorem shows that the quantéty defined in Lemma 3.16 is
a threshold value for the bit error probability of a binaryrsyetric channel, beyond
which the MSE of an EOUQ with the CNC index assignment is senalian with the
NBC, forn > 3. Lemma 3.16 then implies that the NBC is sub-optimal for gdar
range of transmission rates and bit error probabilities,(for all ¢ andn satisfying
e > 272+o() ‘whereo(1) — 0 asn — oo). In particular, for every > 0, the CNC
index assignment eventually outperforms the NBC for a largeugh transmission rate.

Figure 3.6 plots the quantitp ("5 — D(CNO) as a function of for raten = 3.
Theorem 3.17. DN < DWVBC) if and only ifn > 3 ande > ¢,.

Some intuition for why EOUQs with the CNC achieve lower MSEart those
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0.0025 T T T T

0.002

0.0015

EO

0.001

DSE]XBC) _ p(CNO)

0.0005

-0.0005 L L L L
0 0.1 0.2 0.3 0.4 0.5

Bit Error Probability

Figure 3.6: Plot of the difference in MSE achieved by EOUQthwine NBC index

assignment and CNC index assignment for rate- 3. The horizontal axis is the bit
error probabilitye of a binary symmetric channel. The quantityfrom Lemma 3.16 is

also shown.

with the NBC can be gained by examining the index generatetid¥"NC. For every

e > 0 and forn sufficiently large, we have

1
gy <€

which, by Corollary 3.8, implies the indices of the nonemgeiis in an EOUQ with the
CNC are

{i:1<i<2"'—1,io0dd}U{i:2"""' <i<2"—2 iecven}.

Corresponding to such nonempty cells, the encoder trasghyitthe definition of CNC)

only the odd integers, 3, ...,2" — 1. Hence, the encoder of an EOUQ with the CNC
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emulates the encoder of a rate- 1 EOUQ with the NBC, and then adds an extra bit
(carrying no information) before transmission over therste. Since the CNC uses
longer codewords than the NBC, the CNC codewords are expostniver channel
errors on average, while being penalized with a lower lef/glantizer resolution. This

tradeoff makes the CNC superior to the NBC, except for verglkhit error rates.
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Appendix

3.7 Lemmas and Proofs for Section 3.2

Lemma 3.18. For any index assignment, € S,, and for 0 <i < 2" — 1,

2" —1

3 (1 = &) HnmnOm @) Ha(me @e0) — 1,

J=0

Proof of Lemma 3.18It follows immediately since index assignments are pertnra.

O

Proof of Lemma 3.1Let i andk be two distinct integers betwe@nand2” — 1. Then

the inequality in (3.2) can be rewritten as

S 12 — 22 3) + 1200l () )
< Y16 20,0) 4 2 o))

—_

Sincer, is bijective and) _; p,,(j|i) = 1, Vj, cancellation of terms gives

2" —1

> |5+ 2 i)

2n
J=0

< P (0 (f) |70 (K))

2n . ) .
—2uj (7> +7)
< on 22n

j=
or equivalently,

2" —1

x Z J1n (T ()70 (1)) = Po (0 (5) |7 (K))]
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2m—1

> 27" (5 4 D) pa(mn(5) 7 (0) = pa (i (5) T (K)))-

i=0

3.8 Lemmas and Proofs for Section 3.3

The following lemma is easy to prove and is used in the probfemmas 3.20

and 3.21.
Lemma 3.19.
Hyq(i,54+2") = Hy(i,7)+1 for 0<i,j7<2"—1 (3.16)

Hy1(ij) = Hy(i— 2", 5)+1 for 0<j<2"—12"<i<2""—1 (3.17)

Hy1(i,7) = Hy(i — 27,5 —2") for 2" <i,j <2 —1. (3.18)

Lemma 3.20.1f 0 < ¢ < 2" — 1, then

2n—1

> ipa (7O (ENEO () = (2 = 1)e + 6. (3.19)
=0

Proof of Lemma 3.20We use induction on. The case of, = 1 is true since

Y4 (WgNBC)(]')\WT(lNBC)(Z‘)) = Pl(ﬂi)

1
ijl(j‘o) = €
=0

1
ijl(j‘l) = l-e
=0
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Now assume (3.19) is true farand consider two cases far+ 1.
If 0 <¢ < 2"—1,then using (3.15) and (3.16) to expregs: (j|i) in terms of

pn(j]7) and simplifying with Lemma 3.18 gives

on+1_1q 2" —1 2" —1
> ipen(l) = 1= ipalil)) +€ Y jpn(ili) + 2"
§=0 §=0 §=0
= (2" —1)e+is (3.20)

where (3.20) follows from the induction hypothesis.
If 2" <4 < 27t — 1, then using (3.17) and (3.18) to express(j|:) in terms

of p,(j]7) and simplifying with Lemma 3.18 gives

2ntl_g 2n—1 2n—1
D panGli) =€) ipali=2"+ (1 —=e) Y jpalili—2") +2"(1 - )
j=0 j=0 Jj=0
= (2" —1e+io (3.21)
where (3.21) follows from the induction hypothesis. O
Lemma3.21.1f 0 < i < 2" — 1, then
iy € 2¢?
> Ppu (TP ()| NEO (D)) = 5(4”—1)—1-?(2"—1)(2”—2)+i26(5(2”—1)+i2(52.
=0
(3.22)

Proof of Lemma 3.21We use induction on. The case of, = 1 is true since

Y4 (W(NBC)(]')W&NBC)(Z‘)) = pl(jli)

1
Zj2p1(j‘0> = €
=0

1
D iPmh) = 1-e
=0
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which satisfies the right hand side of (3.22). Now assume}§3s2true forn and con-
sider two cases fot + 1.

If 0 <¢ < 2" —1, then using (3.15) and (3.16) to expregs: (j|i) in terms of
pn(j]7) and simplifying with Lemma 3.18 gives

antl_g
Z 7 Pnta (J14)
j=0
2n—1 2n-1 2n—1

— (1= Ppalil) +€ > 2palili) + €2 Y dpalili) + 22
=0 =0 =0
2
= g(4"+1 - 1)+ 2%(2“+1 —1)(2"" — 2) +42e5(2" T — 1) +i%5%  (3.23)
where (3.23) follows from the induction hypothesis and Lear8120.
If 2" <4 < 27! —1, then using (3.17) and (3.18) to express(j|:) in terms
of p,(j]7) and simplifying with Lemma 3.18 gives
antl_q
Z j2pn+1(j|i)
j=0

2" —1 2" —1

=Y Ppalili—2")+ (1—€) > j°palili —2")
j=0 j=0

2" —1

+ (L= 2" > jpa(jli — 27) + 27 (1 — ¢)
§=0
€ ntl 2¢? n+1 n+1 . n+1 2 o2
= 5(4 —1)+ ?(2 —1)(2 —2) 4 1i2€6(2 — 1)+ (3.24)

where (3.24) follows from the induction hypothesis and Lear8120. O
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3.9 Lemmas and Proofs for Section 3.4

The following two lemmas are used in the proofs of Lemmas ar#3.26. Let

H,(i, j) = H(x{N(i), 7N (5)).

n

Lemma 3.22.

~

H,(i,7) = H,(i,j) for 0<d,j<2"1—1or 2"l <ij<2"—1 (3.25)

~

H,(i,7) = Hy(i,j+ 1) for 0<i<2" 1 —1,2"1<j<2"~2 and j even
(3.26)

~

H,(i,5) = Ho(i,j— 1) for 0<i<2v'—1,2"14+1<j<2"—1, and j odd
(3.27)

~

H,(i,7) = Huy(i,j +1) for 271 <i<2"—1,0<35 <21 —2 and j even
(3.28)

~

H,(i,7) = Hy(i,j — 1) for 2" 1 <i<2"—1,1<3j<2" ' —1, and j odd.

(3.29)
Proof of Lemma 3.22lt follows from the definition of the CNC. O
Lemma 3.23.1f 0 <i < 27! — 1, then
22 . o el —e¢ or 1 even
D (1= nC)eHn ) = (1=e) f (3.30)
j=on-1 € for 1 odd
J even
2l . » €2 or i even
> (1= D) = f (3.31)
j=on—141 e(1—¢€) foriodd

j odd
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andif2"—! < < 2" —1, then

22 o o e(l —e¢ or 1 even
Z (1-— e)”‘H”(”)eH"(W) = ( ) ] (3.32)
j=0 € for i odd
J even
an—lg 2 :
L. .. € or 1 even
D (11— Hnlia) = f (3.33)
=1 €(1 —e€) fori odd.
j odd
Proof of Lemma 3.23lt follows from the definition of the NBC. O
Lemma 3.24.1f 0 < ¢ < 2" — 1, then
2] (2" —1)e+6(i+€) for i even

o (FENGICNO)) =
ij " ) (2" = 1D)e+0(i—€) for i odd.

Proof of Lemma 3.24If 0 < i < 2"~! — 1, then using (3.25), (3.26), and (3.27) in

Lemma 3.22 to expregs, <7TnCNC)(j)| (CNC)( )) in terms ofe, n, andH,,(i, j) gives

2" —1

Z Jpn nCNC )‘W(CNC)(Z'))

on—1_1 2n—1

Z j n Hr(i,7) Hn (i,7) + Z j _1)(1_ )n—Hn(iJ)EHn(i,j)

] —9on— 1+1
j odd

2n -2
+ 57 (1) - e D)
j=2""1
j even
2" —1)e+6(i +¢€) for i even
B Je+d(i+e) f (3.34)
(2" —1)e+0(i—e€) for i odd

(3.35)

where (3.34) follows from Lemma 3.20 and (3.30) and (3.31)amma 3.23.
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If 271 <4 <27 — 1, then using (3.28), (3.29), and (3.25) in Lemma 3.22 to ex-
press

Pn (w,SCNC)(])\ (ONO)(; )) in terms ofe, n, andH,, (i, j) gives

2" —1

> ipa (VO ()E N (4))
j=0

an—1-1 2n—1_2
- Z (j = 1)(1 — ¢)n—Hn(0d) Hn(iod) 4 Z (j + 1)(1 — €)= Hnlid) Hnid)
j=1 Jj=0
j odd J even
2" —1
+ Z 1—6 n—Hn(i,5) Hn(ZJ)
] —on—1
2" —1)e+06(i +¢€) for @ even
( Je+0(i+e) (3.36)
(2" —1)e+0(i —€) for i odd

where (3.36) follows from Lemma 3.20 and (3.32) and (3.33)emma 3.23

O
The following lemma is used in the proof of Lemma 3.26
Lemma 3.25.1f 0 < i < 271 — 1, then
2" -2
Z ](1 _ E)H—Hn(i,j)EHn(i,j)
j:2n71
J even
2" le(1 — €?) — 262(1 — €) +16(1 — €)e  for i even
(1 =€) =21~ ) (1 ) .37
(2n 1 —1)e? + ide? + 2" 1€ for i odd
2" —1
J=2""14+1
J odd

(2" 4+ 1)e +ibe® + (2 = 2)€* for i even
(3.38)
2 1e(1 — €2) 4+ i6(1 — €)e for i odd
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andif2"—! < < 2" —1, then

on—1l_2
> e
§=0
J even
2 =1l —e) —e(1—€) + (i —2"7")d(1 —e)e fori even
(2n—1 _ 1)63 _ 62(1 _ 6) + (Z _ 2"_1)662 fO’I"?: odd
(3.39)
211
Z (1 — E)n—Hn(i,j)EHn(i,j)
j=1
j odd
(2n—1 _ 1)63 + €2(1 — )+ (i — 2”‘1)562 for i even

2Dl —e)+ (1 —¢e)+ (i — 27 H)5(1 — €)e  for i odd.
(3.40)

Proof of Lemma 3.25For each sumin (3.37)-(3.40) the first and last digits of thaity
expansions of andj are constant over all terms in the sum. Therefore, theirrdmnt
tion to the Hamming distanc#,, (i, j) is the same for each term in the sum. Hence,
by summing over the middle — 2 bits of j, the left hand sides of (3.37)-(3.40) are,

respectively,
(o2
Z (27 + 21 (1 — e)n—(Hn—Q(i/2,j)+1)€an2(i/2J)+1 for i even

j=0
an2_1

Z (2 + 27 1)(1 — ¢) Hn=2(=1)/2)42) Hn2((i=D/20)+2 for § odd,
. J=0

((2n2-1

Z (27 + 1+ 2”_1)(1 — e)"_(H"*(i/z’j)H)eH"*2(i/2’j)+2 for i even

an=2_1
> (@142 (1 — e DRI 202D for i odd,




$ 2j(1 — )22 20 ) a2 ) 241 for i

2(1 — )2 ((i=1=2""1)/2,)42) Hu o ((=1-2""D)/2042 fo

(on—2_1

Jj=0
n—2_1

\ J=0
The right hand sides of (3.37)-(3.40) then follow from Lem&n20.

Lemma 3.26.1f 0 <i < 27! — 1, then

2n 1
> Ppa (7O (RN (4))
j=0

€ _<227;_1> + on + 1_ + %(22n+1 —9.9n _ 14) _ E3(2n+1 _ 8)
+i0[2¢(2™ — 1) + 2€0] + 126>

€ -<227;_1) _2n+1- _‘_§(22n+1_3.2n_2)+2n+163

+16[2e(2" — 1) — 2€d] + 26>

\
andif2"—! << 2" —1, then

on 1
> P (TN G) N (4))
§=0

|(B5) —2 1)+ g@ 402 - 14) - 832 - )
+i0[2e(27 — 1) + 2¢6] + 262

e|(B5) +2m+ 1] @t — 2120 - 2) 4 3. 200
+i0[26(2" — 1) — 2e0] + 267
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even

odd,

2{: (27 + 1)(1 —-e)’""'(H”‘Q(("_TH)/Q’j)Jr’Q)EH”‘Q((14_2%1)/2’9')4“2 for i even

2{: (25 +1)(1 __E)n—(Hﬁ_Q«i—l—zn—U/QJ)+1)€Hﬁ_2«i—1—2n—w/2d)+1 for i odd.

for i even

for i odd

for i even

for i odd.
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Proof of Lemma 3.261f 0 < ¢ < 2"~ ! — 1, then using (3.25), (3.26), and (3.27) in

Lemma 3.22 to express, ( (ONO) (g)|w,SCNC)(i)) in terms ofe, n, and H,(i, j) and
simplifying with (3.30) and (3.31) from Lemma 3.23 gives

2" —1

Zj pn nCNC )‘,ﬂ_(C’NC’)( ))

2n—1

- Z §2(1 — E)H—Hn(i,j)eHn(ivj) +e

2" —1 2" —2
_9 Z (1 — E)n—Hn(i,j)EHn(i,j) . Z J(1— E)n_Hn(ivj)EHn(ivj)
j:2n—1+1 j:2n—1
j odd J even
4
€ (22n_1) +2n+1 _‘_§(22n+1_9_271_14)_63(271-1-1_8)
L for i even
+16[2e(2" — 1) + 26(5] + 0262
€ _<22?;_1) —on 4 1_ + %(22n+1 —3.9" _ 2) + 2n+1€3
L . for i odd
+16[2¢(2" — 1) — 2€8] + i%6*
(3.41)

where (3.41) follows from Lemma 3.21 and (3.37) and (3.38@mma 3.25.

If 2n—1 <4 <27 —1, then using (3.25), (3.28), and (3.29) in Lemma 3.22 to ex-
press

Pn (W£CNC>(]')\W£CNC> (2')) in terms ofe, n, and H,,(i, j) and simplifying with (3.32)

and (3.33) from Lemma 3.23 gives
2" —1

Zj pn nCNC )‘ﬂ_(CNC)( ))

2" —1
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2,”71_1 2n71_2
. 2 Z j(]. _ E)TL—Hn(ivj)EHn(iyj) _ Z j(l _ E)n_H’ﬂ(i’j)EHTb(iJ)
j=1 Jj=0
J odd J even

|(B5) —2 1)+ g@ 402 - 14) - 832 - )
for i even

+i0[2¢(2™ — 1) + 2€0] + %62

€ [(22?;_1> L 1} + %(22714—1 —921.92" — 2) +3. 2n+l€3
for i odd

+i5[2e(2" — 1) — 2¢6] + 2652
(3.42)

where (3.42) follows from Lemma 3.21 and (3.39) and (3.4Qemma 3.25. O

Proof of Lemma 3.6Since¢)’ < 0, ¢,(0) = —1, ¢,,(1/2) = 2", and¢, (1) = -3,

the cubic functionp,, has exactly one root (i.e) in (0,1/2), ¢, < 0 on|0,¢}), and

¢n > 00n (e, 1/2]. Furthermoreg), > €, since

Cbn-i-l(e) - ¢n(e) - 2n+1€(1 - E)a Ve.

The fact that
. 1

NS TVEN)

follows from the fact that

1 92n+1 5. 23n/2

on/2 4 9 o (2n/2+2)3

Proof of Theorem 3.7The encoding cells satisfy (3.3) in Lemma 3.1, with

an(i, k) = ij [Pa (O ()| SNO(0)) = pa(m O ()| (K))]
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d(i— k) for i, k even or i,k odd
= 0(i —k —2¢) fork even, i odd (3.43)
3(i — k +2¢) forieven, k odd

where (3.43) follows from Lemma 3.24. Let, (i, k) = B.(i,k)/a,(i, k) for i # k.
Note thatp, (i, k) is well defined because, (i, k) # 0 wheneverk # i, by (3.43). Also,
from (3.43), we have that, (i, k) > 0ifand only ifi > k, anda, (i, k) < 0 if and only
ifi <k,

Thus (3.3) can be rewritten as

R,(i)={z€[0,1]: x> p,(i, k), Vk <i and x < p,(i,k), Vk > i}

_ _ N < < i : .
{x €10,1]: Iilglxpn(@, k) <z< min P (1, k;)} . (3.44)

Therefore, the encoding cell with indéxs empty if and only if at least one of the

following conditions holds

N s |
max py (i, k) = min p, (i, k) (3.45)
L |
min p,, (i, k) < 0 (3.46)
max p,(i,k) > 1. (3.47)

k<i

For notational convenience, assumex pn(0,k) =0 andr?in pn(2" —1,k) = 1.
<z >1
We will examine four cases, corresponding to the parity &arelaf a cell's index
1.

Casel:ieven 0 <i<2"1_2
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Equations (3.5) and (3.43) and Lemma 3.26 imply

P, k)
(
e+ 27" i+ k4 1+2€)6 for 0<k<2"1 -2 k even
—n—1/; (1 —¢ -1
€+ 2 (t+k+142€)+ — p for 21 <k <2" -2 k even
/l_
R e+2_”_1(i+k+1)5+M for 1<k<2"!'—1 kodd
i —k+2¢ - - ’
\ e+ 27" Wi+ k+1)0 for 214+ 1<k<2"—1, k odd.

(3.48)

Equations (3.49) and (3.50) below follow from (3.48) and thet thatp, (i, k) is in-

creasing ink for k < ¢ andk > 1.

. o 2%(24 ),
1#£0
. . . 2"e?\
min p,(i,k) = ((i+1)0 — 2™, (3.50)
k>i )

For: # 0 theith encoding celR,,(¢) is nonempty if and only if the conditions in
(3.45)—(3.47) are each false. (3.49), (3.50), and Lemman®oy (3.45) is false if and
only if

<¢5 + w) 2 < ((i +1)5 — 2262) 9—n

1+ 2¢

or equivalently, if and only if

€<E€,. (3.51)
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(3.46) is false if and only if (3.50) is positive, or equivally,

1

€< 2(n/2)—(1/2)log(i+1) 4 9 (3.52)
Similarly, (3.47) is false if and only if (3.49) is less thanor equivalently
. 2”(1 — 62)
'S (3.53)

which is always true, sinc%_‘fj2 > 1 andi < 2". Lemma 3.6 implies that

. 1
“n < Q/D-(1/2)log(i+1) 2

fori > 0. Hence, ife < ¢, then (3.52) holds, and therefol&, (:) is nonempty for # 0
ifand only ife < €.

Fori = 0 the conditions in (3.45) and (3.46) are equivalent and tmeliton in
(3.47) is always false. Therefore, the encoding &l(0) is nonempty (from (3.46) and
(3.50)) if and only if

1

Case2:o0dd,1 <i<2" 1 -1
Equations (3.5) and (3.43) and Lemma 3.26 imply

pn(i> k)
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( e(1—e)

e+ 27 (i 4k 1)6 — - for 0<k<2v1 =2,k even

i —k — 2¢
e+27" i+ k+1) for 2"k <2 =2, keven
e+27" i+ k +6)0 for 1<k <271 =1, kodd
—n—1/; €(1—¢ -1
€+2 (i+k+6)0— — . for 2"t 4+ 1<k <2"—1, k odd.
\ 1 —
(3.55)
If 7+ £ 1, then from (3.55),
]_ _
max p,(i, k) = max { max e +2" " i+ k+1)5 — 6(76) ;
k<i k< 11—k — 2¢
e+2—"—1(¢+k+5)5)k | 2} (3.56)
<i5 _ 2’;62> 9-n fore<e
_ (3.57)

(20 —2)6 + 62 + 27T le)2™7 L fore > €.

Equation (3.57) was obtained by noting that in (3.56) the feem is greater than the
second term if and only if both = i — 1 (sincek is even) and (after some algebra)

¢(e) <0 (i.e.e < ¢ viaLemma 3.6). Ifi = 1, then from (3.55),

, 2\
ma pu . £) = pu(1.0) = (6 -z ) o (3.58)
Fori #£ 2" 1 —1,
min p (i, )
o . . —n—1/- . 6(1 —E)
= min min €+2 (t+k+1)0 FE—
2§kk<2”_1

e+27" it k+1)8 ,
k=2n—1
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6—1—2_”_1(@—1—/{:—1—5)5’ :

k=142
1 —
min et 2Ltk 0)s— L9 (3.59)
i<k 1 —k
2n—l41<k<2n—1
k odd
(416422 2 fore<e
_ (3.60)

((20 +2)6 + 02 + 2"He)27 1 for e > €.

Equation (3.60) was obtained by noting that in (3.59) thedttérm is less than the forth

term evaluated at any oddbetweer2”! + 1 and2” — 1; and the first term is less than
the third term if and only if bothk = i + 1 (sincek is even) and (after some algebra)
é(e) <0 (i.e.e < € viaLemma 3.6). Ifi = 2! — 1, then

min pn(Z> k)

k>i

= min e+ 2" i+ k+1)0 ,

k=2n—1
1 —
min et 24 k4 0)d— LT (3.61)
i<k 1 —k
2=l pi<k<2n—1
k odd

(3.62)

N —

Equation (3.62) was obtained by noting that in (3.61) th@sdderm evaluated at any
oddk betweer2"~! + 1 and2™ — 1 is always greater than the first term.

The:th encoding cellR, (i) is nonempty if and only if the conditions in (3.45)-
(3.47) are each false. Suppds€ ¢ < €. Then (3.57), (3.58), and (3.60) imply (3.45)
is false fori # 2"~ — 1 if and only if

_2"62 <54 2"e(2 +€)

5 T2 (3.63)
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which is always true. If = 27~! — 1, then (3.57) and (3.62) imply (3.45) is false if and
only if

one?

5 — ;

< 2" 11— §) = 2% (3.64)

which is always true. (3.60) and (3.62) imply (3.46) is alw#glse since]?in pniy k) >
>1
0, by inspection. (3.57) and (3.58) imply (3.47) is false itlamly if

i0? < 2"(1 — ¢)? (3.65)

which is always true. Hence, iéfc [0, ¢ ), thenR,, (i) is nonempty.
Suppose; < e < 1/2. (3.57) and (3.60) imply (3.45) is false (assuming 1
andi # 2! — 1) if and only if

(20 —2)0+ 6>+ 2" )27 1 < ((20 +2)0 + 6% + 2" e)27 ! (3.66)

which is always true. If = 27~ — 1, then (3.57) and (3.62) imply (3.45) is false if and
only if

M —0(4—-9) < 2" (3.67)
which is always true. If = 1, then (3.58) and (3.60) imply (3.45) is false if and only if
—2" e < 257 4+ 53 2" e (3.68)

which is always true. (3.60) and (3.62) imply (3.46) is alw#glse since]?in pnli, k) >
>1
0, by inspection. (3.57) implies (3.47) is false fog 1 if and only if

(20 —2)8 + 6% < 2"H(1 — ¢) (3.69)
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which is always true. If = 1, then (3.65) implies thatgfla_xpn(l, k) < 1 and hence
<z
(3.47) is false. Therefore, ifc [¢},1/2), thenR, (i) is nonempty.

Case3:ieven 21 <i<2"—2

Equations (3.5), (3.43), and (3.55) and Lemma 3.26 imply

pn(i, k)
( —n—1/; e(1—¢) -1
€+ 2 (1+k+142€)d — — ? for 0<k<2"'—2 keven
e+ 27" i+ k41426 for 21 <k <2"—2 keven
e+ 27" Wi+ k+1)6 for 1<k<2"'—1, kodd
e(1—¢)

91 4 k4 1)§ — —
T (4 k+1)0 = o

=1—pa(2"—1—14,2"—1—k). (3.70)

for 2»t 41 <k<2"—1, kodd

Equation (3.70) implies that

max p,(i,k) =1 —minp,(2" —1—14,2" — 1 — k)

k<i k<i
( 32n2
(i5+ 1+2€€> 27" for i #£2" 1 and e < €
=\ ((2i—2)0+1—4e+2" )2t for i#2"  and e > €,
1 ; n—1
| 3 for 1=2

(3.71)

where (3.71) follows from (3.60) and (3.62), and

=1- 2" —1—4,2"—1—
min pn (1, ) WAX i i, k)
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(

for e<e

<(i +1)0 + w) 27"

=9 ((204+2)0+1—4+2""e)2™ 1 for i#2"—2ande> €,

<(2"—1)5+w) 27" for i=2"—2ande> €

\

(3.72)

where (3.72) follows from (3.57) and (3.58).
Theith encoding cellr, (i) is nonempty if and only if the conditions in (3.45)-
(3.47) are each false. (3.70) implies (3.45) is false if anky d

min pp (2" —1—14,2" =1 = k) > max p,(2 i k)

< min p,(j, k) > max p,(j, k) for 1<j<2""'—1, j odd
k>j k<j

which is always true, as shown by (3.63), (3.64), (3.66)678. and (3.68). (3.70)
implies (3.46) is false if and only if

maxp,(2" —1—-4,2"-1-k) <1
k>i

<:>I£1axpn(j,k) <1 for 1<j<2™'—1, 4 odd
<J

which is always true, as shown by (3.65) and (3.69). (3.7@)ies (3.47) is false if and
only if

minp,(2" -1—-4,2"-1-%k) >0
k<i

— rl?inpn(j, EY>0 for 1<j<2"'—1,7odd
>J

which is always true, as shown by inspection of (3.60) an@2B3. Hence,R,,(7) is

nonempty.
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Case4:iodd 2" t+1<i<2"—1

Equations (3.5), (3.43), and (3.48) and Lemma 3.26 imply

pn(i, k)
e+27" i+ k+1)8 for 0<k<2"1 -2 keven
]_ _
e+2" i+ k+1)0+ % for 2" <E<2" -2 keven
i—k— 2
B —n—1/; (1 —¢) -1
€+ 2 (z+k+5)5+ﬁ for 1<k<2"'—1, kodd
i _
\6+2_"_1(i+k+5)5 for 2141 <k <2"—1, k odd
— 1 (2" =1 — i, 2" —1— k). (3.73)
Equation (3.73) implies that
Iilglxpn(z, k)=1- Iililzlpn(Q —1—-4,2"—-1-k) (3.74)
2"e(2 — 3
- (za + %) 9n (3.75)

where (3.75) follows from (3.50), and (assuming 2" — 1)

rgi?pn(z, k)=1- Iﬂff(p”@ —1—-4,2"—-1—-k) (3.76)
, 3-2m2\
- ((2 LR L ) 2 (3.77)

where (3.77) follows from (3.49).
Fori: # 2" — 1 theith encoding cell,R,(i), is nonempty if and only if the
conditions in (3.45)-(3.47) are each false. (3.74) andg@mplies (3.45) is false if and
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only if

min p,(2" —1—14,2" —1—k) > maxp,(2" —1—14,2" — 1 —k)
k<i k>

<= minp,(j, k) > maxp,(j,k) for 2<j<2"1 —2, jeven
k>j k<j

= e<e€, (3.78)
where (3.78) follows from (3.51). (3.76) implies (3.46) &de if and only if

Iilglxpn@ —1—-42"-1-k)<1

— rilaxpn(j, E)<1 for 2<j<2"'—2 jecven. (3.79)
<j

Equation (3.53) implies (3.79) is always true. (3.74) irapl{3.47) is false if and only if

minp, (2" —=1—-14,2" —=1—k) >0
k<i

— I]glinpn(j, E)Y>0 for 2<j<2"'—2 jeven. (3.80)
>j

Equation (3.52) implies that (3.80) holds if and only if

1
€ < M2 -(1/2)loa@ —1-i+1) o

(3.81)

Lemma 3.6 implies that’ is smaller than the right hand side of (3.81) fox 2" — 1.
Hence, ife < €, then (3.81) holds and thereforB,, (i) is nonempty fori # 2" — 1 if
and only ife < €.

Fori = 2"—1 the conditions in (3.45) and (3.47) are equivalent and tinelition

in (3.46) is always false. Therefore, the encoding €gJ(2" — 1) is nonempty (from
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(3.47) and (3.74)) if and only if
kg}lrllpn(Q —1-2"=-1),2"-1-k) > 0

<= minp,(0,k) > 0
k>0

e < ﬁ (3.82)
where (3.82) follows from (3.54). O
Proof of Theorem 3.9The definition ofr. implies
S > U(Ra(i)) log L (3.83)
n 2 (R (7)

Fori € A, Theorem 3.7 and Corollary 3.8 givéR,(:)) as follows. Ifn = 2 and
e €[0,1/4), then



If n >3 ande € [0,¢;), then

(

52" — €

>

2¢e(1—¢)

027" + 1—4¢2

2¢e(1—¢)
1—4€2

027" —

52‘"—1—%—1—6 for i=
\

If n > 3ande € [¢5,1/(27/2 4 2)), then

(

\

8]

027" = & for
827"+ 2712t e+ S for
§2t—n for
§21-n — g—n-142 for

If n > 3ande € [1/(27/? +2),1/2), then

(
921 4277152 ¢ for

§2t-n for

for

\ 521—n _ 2—n—152

for 1=0,2"—-1

for 1<i<2"'—3 iodd;and
2l 12 < <2 — 2, i even

for 2<i<2"!—2 ieven;and

n=l 4 1<§<2" =3, iodd

on—1 _ 1, on—1,
i=0,2"—1
i=1,2" —2

3<i<2mt —3 1odd;and

vl 42 < <2" — 4, i even

i=2"t 1, 2

i=1,2"—2

3<i<2nt — 3, iodd;and

2l 412 << 2" — 4, i even

i=2"1 -1, 27 L,

The result follows from (3.83) and routine algebra.

106
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3.10 Lemmas and Proofs for Section 3.5
Lemma 3.27. 2, (i) - ay, (2, 1,.(2)) = B, (3, I,(7)) .

Proof of Lemma 3.27Let 7 andj denote the indices of two adjacent, nonempty encod-
ing cells. Then for all € R,(i), the weighted nearest neighbor condition implies
thato, (i, 7))z > 3.(i,7). Assume, without loss of generality, that (i, j) < 0. Then
x < M forallz € R,(i). The weighted nearest neighbor condition also implies that
(7, )a: > f,(j,1) forall z € R, (), or equivalently thai: > 5"(“ s forall v € R, ()
becausev, (j, i) = —ax(i,j) > 0. Note, however, thafls — 5"(“ . Hence 22(:9)

n(i3) — on(hii Tan (4,)
must be the boundary betweé) (i) and R, (j), for otherwise they cannot be adjacent.

The lemma now follows from the definition of, (7). O

Proof of Lemma 3.12From (3.1), we have

2" —1

=D Palma(d)Imali )/ (z = yal7))* da. (3.84)

€N j=0 Rn (i)

Substitutingy,,(7) = (j + 1/2)27™ into (3.84), expanding the squared term, integrating

and then summing over constant terms, and expressing thi ireterms ofz,, (i) and

I;(7) gives
DL = -2 S — 2(0)] Y el ma(9)
i€A =0
£ 2 S [anli) — )] 3G+ () () (3.85)
1EA §=0

where (3.85) follows since each, (i) is an interval. Re-expressing the elements of
(3.85) which include/; (i) in terms of,.(i), collecting terms using the definitions of

ay, (i, k) andg, (i, k) in (3.4) and (3.5), respectively, and simplifying with Lerard.27
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gives
D)
EO
1 2" —1
= 3~ 27l g2 4 o Z 22(1) - ap (i, I ( Z JPn (T (J)|mn (1))
eV
2" —1
+27° % (7 4 7P )pa(ma () I (11))-
=0
O
Proof of Theorem 3.15Let p,,(j]i) = pn(ﬂﬁlCNc)(jﬂm(lCNc)(i)).

Caseli0<e<c¢€
Theorem 3.7 and Corollary 3.8 imply thet= {1,2,...,2" — 2}, [,(i) = ¢ + 1, and

I; = 2" — 1. Hence, using Lemmas 3.24 and 3.26 to evaluate the last tmg gu

Lemma 3.12 and (3.43) to simplify the first sum in Lemma 3.)2gi

CNC
DN
1
= 3= 27l 4 272 (972 27 [(2" — D)e + 5(2" — 1 — ¢)]
—2n 22n —1 n 62 2n+1 n n+1 _3
+2 € 3 +2"+1 +§(2 —21-2"—=2)+3-2""€

+ (2" = 1)6[2e(2" — 1) — 2¢6] + (2" — 1)252)

_9n Z 52+Z 5(1 4 2¢)

eV %
i even i odd
22 2 2n+1 2
= ———((1/4 2°" 2))e— (2" —15-2" +4
s 2g (/4 + 2+ (5/2)e = ( 5-2" + d)e
+6(27" — 2" —4)e’ 4 (2" — 4)(2" — 2)e* — 12(2" — 4)€’) (3.86)

= Di(n,e)
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where (3.86) follows from considerable arithmetic and ggfinom Theorem 3.7)

2n 2
<(2 +1)6 — ; ) 27" for 0<i<2n1 -2 jeven

2%e(2 — 3
((i +1)0 + %) 2" for 271 < i< 2" —2 jeven
: : 2"e(2+¢€)\ : :
() ((71—1-1)5—1-71_’_26 )2 for 1<i<2 3, i odd
1 f . 2n—1 1
— or 1= —
2
3.

2n2
<(i—|—1)5+ ¢ )2_" for 27141 << 2" —3, i odd.

1+ 2¢

\

Case 2575 <€ <1/2

Theorem 3.7 and Corollary 3.8 imply that

V={1,3,5...,2" 1 —1ju{avt 2nt 2 on g 2" — 4}
L(i))=i+2 for ie{i:ieV,i#2"1 -1}
L2t —1)=2""1

L =2"-2.

Hence, using Lemmas 3.24 and 3.26 to evaluate the last tws isubemma 3.12; using
(3.43) and Theorem 3.7 to simplify the first sum in Lemma 34 collecting terms

according to which power afthey contain gives

pevey — L5 g +9.27272 4 Z +6-27"—34- 2 ¢
50 3 3 3
P 277, —ntl _ o-2n+3y 3
+ 3 7-27" 452 5 )¢ + (2 2 )e
9—n 1_4€2+252 2(;) (3.87)
— Z. (1 . .
4 n

%
i#2n1 1
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Theorem 3.7 shows thaf (i) = 1 — 2, (2" — 3 — i) for 27! <4 < 2" — 4 andi even

when < e < 1/2. Therefore, using Theorem 3.7 to evaluatéi), the last term

L
2n/242

in (3.87) can be rewritten as

1 — 4¢2 an—1-3 2m—4
-n B 2. 2
2 ;2 Z_; 7 (1) + 'Z;lz
Zngd Z7::21)671
1 23
= | —— 3- 2_n_1 . 2—2n—2 2—3n
( 3" 3 *

+(1=7-27"+429.272"71 —5. 27" ) ¢
( 1+132n 21 22n+1+5 23n+3)2

2 43
- —-3.2° n+2 . 2—2n+2 -5. 2—3n+4 3
<3 Ty ‘

+

+( —n+2 9 2 2n+2+5 2 3n+4)€ + (2 2n+3 2—3n+5)€5 (388)

where (3.88) follows after considerable arithmetic. Sibishg (3.88) for the last term

in (3.87) and collecting terms gives

CNC
DM
2—3n
== (2" F3[(27 — 3)(22" 4+ 10) — 2

— (2" = 6)(2" = 5)(2" — 4)6 — 3 - 2*"]*+12(2" — 5)(2" — 4)e* + 24(2" — 4)65)

(3.89)

= Ds(n,e€).

Case 3¢ <e< 2n/2+2

Theorem 3.7 and Corollary 3.8 imply that

V ={0,1,3,5,...,2"t —1ju{ert2nt 2 on g 0 2" -2}
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Theorem 3.7 also shows thatie V' — {0, 2" — 2}, then the expressions fey (i) and
I,(i) are the same as the expressions:fd@¥) and/.(i) in Case 2. Hence, Lemma 3.12
gives

DICNC) = Dy(n,€) + 27" [22(0)0n (0, I,(0)) + 22(2" — 2)a (2" — 2, [,(2" — 2)) ]

EO

2" —1
+27 =27 Y [pa(il2" = 1) = (12" - 2)]
7=0
2n—1
270 ST 212" — 1) - a2 —2)]. (3.90)
j=0

Simplifying (3.90) with (3.4) and Theorem 3.7, using (3.48)kvaluatev,,, and using

Lemma 3.26 to calculate the sum oyémives

DN = Dy(n,€) — 27" [22(0)0% + (1 — 2,(0))6°] + (27" — 2776

EO
2

4o gty %(—30 2" 4 12) + (6 - 271 — 8)

+ 6[2¢(2" — 1) — 2(2" T — 3)ed] + (2" — 3)8?] . (3.91)

Theorem 3.7 implies

2—n
2,(0)=1— ?(2” — 1+ (2" 4+ 6)e+ (52" — 12)€” + (2" 4+ 8)¢?).

(3.92)
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Substituting (3.89) and (3.92) into (3.91) and performingsiderable arithmetic gives
D(EC;NC) = Dy(n,€).

O

Proof of Lemma 3.16Let N = 2". The proof is straightforward for the cadé= 4, so

assumeV > 8. Note that

gn(N7?) = 4N ' 2N 248N 34+ ON* - 2N ° 4N 7 - 16N"®

gn(2N7?) = 1-8N '8N 24+ 32N * 440N * — 16N>+ 64N~" — 256 N5,

We havey,(N~2) < 0since—4N'+8N 3 +9N~* < 0and—2N°+4N~" < 0, and
we havey,, (2N 2) > 0 for N > 8 since64N~—" — 256 N8 > 0, 40N 4 — 16 N5 > 0,
andl —8N~' —8N~2 > 0.

Thus, the functiory, has a root i N=2,2N~2) c (0,1/2) for N > 8, and it
has a root in0, 1/2) for N = 8 sincegs(0) = —1 < 0 andgs(1/2) = 8. The first three

derivatives ofg,, are:

g(e) = 16(N —4)e* +3N(N —2)e* — 4(N? —4N — 4)e+ N(N — 4)
g'(e) = 48(N —4)e® + 6N(N — 2)e — 4(N? — 4N — 4)

gi'(e) = 96(N —4)e+6N(N —2).

Sinceg” > 00on|0,1/2] andg”(1/2) = —5N? + 38N — 16 < 0, we must have
gr < 0onJ0,1/2], which impliesg,, = 0 at most once o0, 1/2]. Therefore, since
gn(0) = —1 < 0 andg,(1/2) = N?/8 > 0, the functiong, has exactly one root on
[0, 1/2], which implies thay,,(¢) < 0 on[0,1/2) if and only ife < é,. O

Note that the root, of g, could be found explicitly using the formula for the
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general solution to a quartic polynomial equation.

Proof of Theorem 3.17If n = 2, then Theorem 3.15 implies that the value/gf V)

: 1 L
is the same fob < € < ¢, ande;, < e < 55—, which gives

1 + 72¢ — 48¢?

1
0<e<-=

Dene) _ 192 for 0se<y
EO o 7 + 24¢ + 48¢2 for 1< <1
0 — —

192 1=°573

Theorem 3.14 gives

DINBC) _ 1+ 60e — 24€* + 48¢°
EO o ’

192
Therefore, fom = 2,
_ _ 2
€(1 — 2e — 4¢€?) for 0§e<1
D(CNC) . D(NBC) _ 16 4
BO BO (1 —2€)3 I L. 1
32 oY=y

Now letn > 3.

Caseli0<e<e,

Theorem 3.14 and Theorem 3.15 imply that

NBC CNC
Dl(so ) _DEEO )

27 ¢
— . 1 22n o 27’L+2 o 22n+1 o 27’L+3 o 8 2 22n o 27’L+1 3
e R Je— ( e+ )e

42— 16)64}

which (by Lemma 3.16) is positive if and onlydf> ¢€,,.
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Case 2i¢; <e< 2n/2+2

Theorem 3.14 and Theorem 3.15 imply that

D (JZBC) - D (%NC) 2¢! 2053 2 52
2 L 1-— — + 27" —2(1 271+ 2 .
T = (1 —€)e+ 57T & (1+6¢)] + (1 + 2¢)
(3.93)
Forn = 3, the right hand side of (3.93) is
—1 + 26€ — 44¢® — 83 2¢! € 1 —4e o3(€)

— =2 0 3.94
61 T ((1—2@24r 16 )+ or -0 399

where (3.94) follows fromps(¢) > 0 ande < 1/(2 + +/8) < 1/4. Forn > 4, the right

hand side of (3.93) can be lower bounded as:

e(1—¢€)+ %;—624 +27"7% 6% = 2(1 4 6e)] +277"(1 + 2¢)8°

>e— e+ 2" + 27" (=1 — 186 + 126* — 8€”) + 272" (1 — 26 — 4€” + 8¢”)
(3.95)

> 2 ! ¢’;(€ 2 +2"(1 —¢€) — 10 — (1 +2€)27""% — 2¢ (3.96)

> e27 "1 [24(1 = (1/6)) — 10 — (1 +2(1/6))27> — 2(1/6)] (3.97)

> ()

where (3.95) follows from?é%4 > 2¢* and simplifying; (3.96) follows by eliminating
all positive terms except, and then simplifying; and (3.97) follows from the fact that

— 1/6,

on(€) > 0 whene > ¢ (by Lemma 3.6), and the fact that< <

1 1
an/242 — 24/242

forall n > 4.

Case 3: <e<1/2

2n/2 2
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Theorem 3.14 and Theorem 3.15 imply that

DWNBC) _ DIONG) — 97ng? [e(1 —€) — 27" (1 + 18¢ — 28¢” + 8¢”) — 2776°

EO
> 272 [6(1 — ) — 92921 2—2”] (3.98)

>0 (3.99)

where (3.98) follows from the fact tha® < 1 andlog(1 + 18¢ — 28¢* + 8¢3) < 2.1
for 0 < e < 1/2;and (3.99) follows from the facts thafl — ¢) is monotone increasing
with e ande(1 — ¢) — 270! — 272" > (for ¢ = 575 andn > 3. O
This chapter, in full, has been submitted for publicationenjamin Farber and
Kenneth Zeger, “Quantizers with Uniform Decoders and Ckea@ptimized Encoders,”
IEEE Transactions on Information Theodpril 14, 2004. The dissertation author was

the primary investigator of this paper.
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Chapter 4

Quantization of Multiple Sources Using
Nonnegative Integer Bit Allocation

Abstract

Asymptotically optimal real-valued bit allocation amonget of quantiz-
ers for a finite collection of sources was derived in 1963 byaitpand
Schultheiss, and an algorithm for obtaining an optimal mgative integer-
valued bit allocation was given by Fox in 1966. We prove tf@ata given
bit budget, the set of optimal nonnegative integer-valug@lbbcations is
equal to the set of nonnegative integer-valued bit allocatiectors which
minimize the Euclidean distance to the optimal real-valb#ehllocation
vector of Huang and Schultheiss. We also give an algorithrfiiding op-
timal nonnegative integer-valued bit allocations. Theoatgm has lower
computational complexity than Fox’s algorithm, as the hitgpet grows.
Finally, we compare the performance of the Huang-Schudghsolution to
that of an optimal integer-valued bit allocation. Speclficave derive up-
per and lower bounds on the deviation of the mean-squared&sing op-
timal integer-valued bit allocation from the mean-squage@r using op-
timal real-valued bit allocation. It is shown that, for agytatically large

transmission rates, optimal integer-valued bit allogatido not necessarily

118
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achieve the same performance as that predicted by Huangtiseiss for

optimal real-valued bit allocations.

4.1 Introduction

The classical bit allocation problem for lossy source cgd#to determine the
individual rates of a finite collection of scalar quantizecsas to minimize the sum of
their distortions, subject to a constraint on the sum of tengjzer rates. Bit allocation
arises in applications such as speech, image, and videngdtihas been shown [1, 20]
that finding optimal integer bit allocations is NP-hard (as thumber of sources grows),
via reduction to the multiple choice knapsack problem.

Huang and Schultheiss [19] analytically solved the bitatoon problem when
the mean-squared error of each quantizer decreases exidiges its rate grows. The
results in [19] were generalized in [25] by finding optimahlrealued bit allocations
when the mean-squared error of each quantizer is a convekidarof its rate. Other
generalizations were given in [16] and [23]. Bit allocatias studied in [3], in the
context of trading off the total bit budget and the quantaratrror, a generalization of
the Lagrangian approach.

The formulaic solution given in [19] allows arbitrary readtued bit allocations.
However, applications generally impose integer-valuestamts on the rates used. In
practice, bit allocations may be obtained by using some @aatdrial optimization
method such as integer linear programming or dynamic progriag [10, 14, 15, 18,
29, 30, 33] or by optimizing with respect to the convex hulltbé quantizers’ rate-
versus-distortion curves [6, 7, 24,28, 31]. These techesggenerally ignore the Huang-
Schultheiss solution. Alternatively, a widely-used taglue is to explicitly use an opti-
mal real-valued bit allocation as a starting point and themé&in on an integer-valued

bit allocation that is close by. As noted in the textbook byske and Gray [13, p. 230-
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231]:

“In practice, ...if an integer valued allocation is need#dn each non-
integer allocatior; is adjusted to the nearest integer. These modifications
can lead to a violation of the allocation quofa, so that some incremental
adjustment is needed to achieve an allocation satisfyieggtiota. The
final integer valued selection can be made heuristicallyterAhtively, a
local optimization of a few candidate allocations that dose to the initial
solution obtained from [the Huang-Schultheiss soluticar) be performed

by simply computing the overall distortion for each cantidand selecting
the minimum. ... Any simple heuristic procedure, howevan be used to

perform this modification.”

In 1966, Fox [11] gave an algorithm for finding nonnegativieger-valued bit alloca-
tions. His algorithm is greedy in that at each step it allesaine bit to the quantizer
whose distortion will be reduced the most by receiving aneglsit. Fox proved this intu-
itive approach is optimal for any convex decreasing quantirstortion function. There
are many other algorithmic techniques in the literatureolmaining integer-valued bit
allocations. Some examples of these include [1,4,5,12226, 34].

In this paper we first prove that, for a given bit budget, the$eptimal nonneg-
ative integer-valued bit allocations is equal to the set@mfnegative integer-valued bit
allocation vectors which minimize the Euclidean distaracthe optimal real-valued bit-
allocation vector of Huang and Schultheiss. The proof of thsult yields an alternate
algorithm to that given by Fox for finding optimal nonnegatimteger-valued bit alloca-
tions. This algorithm uses asymptotically (as the bit budgews) less computational
complexity than Fox’s algorithm.

Despite the wealth of knowledge about bit allocation aliponis, there has been

no published theoretical analysis comparing the perfoomani optimal bit allocations
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with integer constraints to the performance obtained uiiegreal-valued allocations
due to Huang and Schultheiss.

We provide some such theoretical analysis. Specificallydemve upper and
lower bounds on the deviation of the mean-squared errogugitimal integer-valued
bit allocation from the mean-squared error using optimal-valued bit allocation. In-
formally speaking, we show that no matter what bit budgehissen, optimal integer-
valued bit allocation might be as much@s worse than optimal real-valued bit alloca-
tion, but never more tha26% worse.

Our main results are summarized in the following (for 2):

(i) Foranyk scalar sources and any bit budget, the set of optimal notimegateger-
valued bit allocations is the same as the set of nonnegatigger-valued bit al-
location vectors (with the same bit budget) which are closethe optimal real-

valued bit-allocation vector of Huang and Schultheiss.e@rem 4.17).

(i) Analgorithm is given for finding the set of optimal norgeive integer-valued bit
allocations from the Huang-Schultheiss optimal real-gdlbit allocation (Algo-

rithm 4.18).

(i)  — For anyk scalar sources, suppose the optimal real-valued bit aitocés
nonnegative integer valued for at leastmebit budget. Then there is a fixed
numbern < k such that for every bit budgéd®, an optimal integer-valued
bit allocation achieves the same performance as the opteakialued bit

allocation if and only ifB mod k£ = n (Theorem 4.22).

— For anyk scalar sources, suppose the optimal real-valued bit aitoces
neverinteger-valued for any bit budget. Then the ratio of the meguared
error due to optimal integer-valued bit allocation and treamsquared error
due to optimal real-valued bit allocation is bounded awawti over all bit

budgets (Theorem 4.22).
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(iv) There existk scalar sources, such that for all bit budgets, the meanrsd@aror
due to optimal integer-valued bit allocation is at le@&t greater than the mean-

squared error due to optimal real-valued bit allocatione@riem 4.24).

(v) For anyk scalar sources and for all bit budgets, the mean-squared due to
optimal integer-valued bit allocation is at m@sts greater than the mean-squared

error due to optimal real-valued bit allocation (Theore2B4.

Cases (i) and (ii) are first established for integer-valuédllncations and then
extended to such allocations with nonnegative componémtsase (i), the problem of
finding an optimal nonnegative integer-valued bit allamais reduced to first computing
a particular real-valued bit allocation for the same bit dpetgl and then performing a
(low complexity) nearest neighbor search in a certaindattising the real-valued bit
allocation vector as the input to the search procedure.dh efthe cases (iii), (iv), and
(v) we derive explicit bounds on the mean-squared errorlpepaid for using integer-
valued bit allocation rather than real-valued bit allocati

This paper is organized as follows. Section 4.2 gives defmst notation, and
some lemmas. Section 4.3 shows the equivalence of closesegative integer-valued
bit allocation and optimal nonnegative integer-valuedafiication. Section 4.4 char-
acterizes, for a given set of sources, the set of bit budgetwlich no penalty occurs
when using integer-valued bit allocation instead of redlsged bit allocation. Also, a
lower bound is given on the ratio of the mean-squared errongeaed by using op-
timal integer-valued bit allocation and optimal real-vedubit allocation. Section 4.5
presents an upper bound on the ratio of the mean-squaread aattieved by using opti-
mal integer-valued bit allocation and optimal real-valigdhllocation. The Appendix

contains proofs of lemmas.
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4.2 Preliminaries

Let X4, ..., X, be real-valued random variables (i.e. scalar sources)wvaitih
ancess?, ..., o%. Throughout this paper, we assume> 2 and0 < o7,...,0% < oc.
The sourcesXy, ..., X are scalar quantized with resolutiohs. . ., b, respectively,
measured in bits. The goal in bit allocation is to determireekt quantizer resolutions,
subject to a constraint on their sum, so as to minimize the giutine resulting mean-
squared errors.

Let R denote the reals and denote the integers. We will use the following

notation:

b:(bla"'7bk)

k
lu| = Zuz Vu € R”
i=1

k 1/k
(i)
=1

Ar(B) = {u e R* : |u| = B}
Ar(B) ={ueZF : |ul = B}

AF(B) ={ueZF:u;>0Vi, |u| = B}.

The vector will be called abit allocationand the integeB > 1 abit budget We say
thatb is anonnegative bit allocatioif b; > 0 for all i. Ag(B), Ar(B), andA; (B) are,
respectively, the sets of all real-valued, integer-val@d nonnegative integer-valued
bit allocationsh with bit budgetsB. Bit allocations inA;(B) and. A} (B) are said to be
integer bit allocations We use the notatio® mod k to represent the unique integer
satisfyingk | (B —x) and0 < x < k— 1. If the components of two vectors are the same

but ordered differently, then each vector is said to lpeenutationof the other vector.
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We will assume the mean-squared error ofdequantizer is equal to
d; = hio?47b (4.1)

whereh; is a quantity dependent on the distributionof, but independent of;. It

is known that (4.1) is satisfied for asymptotically optimeakr quantization [13], in

h; = (1/12) (/ | fx o 1/3)3

where fx, denotes the probability density function &f,. Also, uniform quantizers

which case

satisfy (4.1), but with a different constalnt Many useful quantizers have distortions of
the formin (4.1), as the distortiaf in (4.1) often represents a reasonable approximation
even for non-asymptotic bit rates.

The total mean-squared error (MSE) resulting from the latcaltiond is

We will also assume thdt; = h for all 7. It is straightforward to generalize our results
to the case wheré is a weighted combination of thé’s and where not all thé,’s are
equal.

For anyk scalar sources and for each bit budgetet

k
aor(B) = argmin Z ho?4~b
bGAR(B) i=1

k
dor = Y hopd=or B,
=1

We call a,,.(B) the optimal real-valued bit allocatiorand d,,, the MSE achieved by
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a.-(B). In 1963, Huang and Schultheiss [19] derived the optimah megolution real-
valued bit allocation for the multiple source quantizatmoblem. Their result, stated

in the following lemma, shows that,. (B) is unique.

Lemma 4.1. For any k scalar sources and for each bit budget

B 1 2 2
aOT(B):E(l,...,l)—Fi (logz%,...,lo&%)

dy = khgd=B/F,

Lemma 4.1 implies that the components of the bit allocatigi3) are posi-
tive for a sufficiently large bit budgeB; however,a,,.(B) need not be an integer bit

allocation for any particular bit budget. The next lemmddek immediately from

Lemma4.1.

Lemma 4.2. For anyk scalar sources, for each bit budgBt and for any bit allocation

b € Ag(B), the mean-squared error resulting franis

k
d = hgdP/k .3 gleer(B)-:

=1
For anyk scalar sources and for each bit budgetet

k
. 2 —b;
dy; = min ho;4™"

beA;(B) i—1

k
An(B) = {b € Ai(B): Y ho?d ™ = }
=1

k
+ — i 24 —bi
d,; = min ho;4™"

beAT (B)

k
AH(B) = {b € AF(B): Y ho?4h = d;} .
=1
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By Lemma 4.1, these equations are equivalent to

dyi = hgd=B/EN " glaor(B)=b
,Juin, hg Z

A(B) = {" € A(B) : bt P o - d} “2
=1

df = min h 4~B/k 4(aor(B)=b
% beEAT (B g Z

i=1

AZ(B) _ {b c A}F(B) . hg4—B/kZ4(aor(B)—b)i — dg;} )

We call A,;(B) the set ofoptimal integer bit allocationgnd d,; the MSE achieved
by any bit allocation inA,;(B). The setAd’.(B) and the scalad/, are the analogous
quantities for nonnegative bit allocations. In order tolgma A’ (B) andd;, we will

o?

first obtain results aboud,;(B) andd,.

4.2.1 Lattice Tools

We next introduce some notation and terminology relatectiickes that will
be useful throughout the paper. We exploit certain factmftattice theory to estab-
lish bit allocation results, specifically Theorems 4.24 drizb. Most of the following
definitions and notation are adapted from [8].

For anyw € R™, denote a sdf C R™ translated by the vectar by

F't+w={u+w:uel}.
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For anyk > 1, definé the following lattice:
Ay = {u € ZF : |u| = 0}.

The latticeA,_; is useful for analyzing bit allocations farscalar sources since it con-
sists of points withk integer coordinates which sum to zero. Bok j < k, define the

(k 4+ 1)-dimensional vector

4 1 4 4 4 .
C(/{?,j):k—ﬂ(—j,...,—j,[f—i-l—j,...,k‘—i-l—jj). (4.3)

-~

~—
k+1—j J

Note that/c(k, j)| = 0 for all j andk.

Let ||w| denote the Euclidean norm ef. For anyk > 1 andw € R**!, define
Oy (w) = {u €Ay ||w— ul| = min ||w — UH}
vEAL
i.e., the closest lattice points iky, to w.
Lemma 4.3. For anyw, y € RF!,
{ue Ap+y:||w—ul|= min ||w—v]|} = Pop(w —y) +v.
vENL+Y
Denote the/oronoi cellassociated with any pointin the latticeA, by

V(y) = {u e R flu —yll < flu—wl, Yw e A}

Let
H = {ueR" :|u|=0}.

lUsually denotedd;, in the literature. We use alternate notation to avoid cdofusvith sets of bit
allocations.
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The latticeA\,, is a subset aR*+! and also a subset of tikedimensional hyperplarig*.

Define the quantity

Vily) =V (y) N H"

4.3 Closest Integer Bit Allocation

In this section, we first demonstrate the equivalence ofesiositeger bit allo-
cation and optimal integer bit allocation. Then, we exterid e€quivalence to the case
where the bit allocations must have nonnegative integepoorents. Finally, we obtain
an algorithm for finding optimal nonnegative integer bibaltions.

For anyk scalar sources and for each bit bud@etet

Aci(B) = {b € Ai(B) : [|b— ap(B)| = min |[|b— aor(B)H}

beA;(B)

k
D. = {Z ho?4™% : b € Aci(B)}

=1

A= ACZ(B) - aor(B)

A%(B) = {b € Af(B):||b—ao(B)|| = min ||b— aor(B)H}
beAf (B)
k
Dt = {Z ho?47% 1 b e A;;(B)} :
i=1

For a given bit budgeB, A.;(B) is the set of closest integer bit allocations, with re-
spect to Euclidean distance, to the optimal real-valuedalbtation. Note that each

b € A.(B) is, in general, different from a bit allocation obtained hydiing the closest
integer to each componentaf. (B), since such a component-wise closest bit allocation
might result in using either more or less th&rbits. The setA is a translate ofd.;(B)

and is a function of?, .. ., o7 and B, although we will notationally omit these depen-
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dencies. A’ (B) andD;}. are the analogous quantities.t;(B) and D, respectively,
for nonnegative bit allocations.
The following lemma will be used to prove Lemmas 4.5 and 43&8pllary 4.11,

and Theorem 4.25. Define the quantities

1 o2 o2
=~ |log, -, ... log, ~£ ) —c(k—1,Bmod k
I 2(0g29, ,ogQQ) c(k —1, B mod k)

and note that, € H*L,
Lemma 4.4. For anyk scalar sources with variances, . . ., o2 and for each bit budget
B,

A=y (p) — p.

Furthermore, Mg = V}._1(0) for all B.

The next lemma states that the smallest distance (in thedeadl sense) that a
closest integer bit allocation can be to the optimal redlie@ bit allocation vector must

occur when the bit budget is at most the number of sources.

Lemma 4.5. For any k scalar sources,

inf ||w|| = min ||Jw].
weEA wEA
B>1 1<B<k

4.3.1 An Algorithm for Finding A (B)

The following theorem is adapted from [9, p. 230-231] and mdmately yields

an algorithm for finding closest integer bit allocation st (the components of the
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resulting bit allocation vectors need not all be nonnegatior allu € R, define

r(u) = [u+(1/2)]

p(u) =u—r(u).

The quantity-(u) is a closest integer to.

Theorem 4.6. Let B be a bit budgeth = (r(a,.(B)1), . .., m(a.(B)x)), andt = |b] —
B € Z. LetZ,, denote the set of all permutatiofis, . .., i) of {1, ..., k} such that

1

—5 < plaor(B)y) < -+ < plac(B);,) <

DN | —

and let

R-i-

b —1if je{i,... i
= bEAI(B)iﬂ(’h,m,’ik)GIksuchthaﬂ)j{ K J € {in 3

bj lf.] S {it—i-l?“‘aik}

A~

bj +1if j € {lhyerr, - in}

=¢be Ar(B) : A(iy,...,ix) € Iy such that; =
bj lfj € {il>---aik+t}

Then

{b} ift=0
Ai(B)=¢ Rt ift>0
R~ ift <O.
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Proof. For anyw € ZF,

10r(B) = B < llaur(B) = w]] .

Suppose = 0. Thenb € A;(B) C Z*. Thus,bis a point in4;(3) of minimum
distance tou,,(B). This means that € A.(B). Sincer(u) is a closest integer to
u and sincer breaks ties by rounding upward, any other integer bit atlooa with
minimum distance from,,.(B) must satisfy|b| < |a.,(B)|. Thus,b ¢ A;(B) and
henceA,;(B) = {b}.

Suppose # 0 and let

RT if t>0
R if t<O.

It can be seen that every elementfis a bit allocationb € A;(B) which minimizes
the difference betweef,,.(B) — b and||a., (B) — b||. Since||a,(B) — b|| does not

depend on such we have
R C{be A;(B) : ||ae(B) = b|| < ||ao-(B) —b'|] V' € A;(B)} = Au(B).

To finish the proof, we will show thatl;(B) C R. Letb € A.(B). For anyi

andj, the following identity holds:

[(b: — 1) = aor(B)i]* + [(bj + 1) — aor(B);]* — [bi — aor(B)i]* — [bj — aor(B);]?

= 2[1 + aor(B)i - bl + bj - CLOT(B)]']. (44)

Suppose there exists asuch thab, — a,.(B); > 1. Then there must exista

such that; — a,.(B),; < 0, since)_, b, = >, a,(B); = B. But then the right-hand
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side of (4.4) would be negative which would imply A.;(B), since subtracting from

b; and addingl to b; would result in an integer bit allocation closer thato a,, (B).

A similar contradiction results in the case whéye- a,,.(B); < —1. Thus, for every
i, we must have,; € {|a-(B)i], [aor(B):]}- Sinceb; € {laor(B)i], [aor(B)i]} we

conclude thatb; — b;| < 1 for all i.

Now, suppose > 0. Then there exists at least ohsuch that); = by — 1 =
laor(B)i] < a.-(B);. For eachy, it cannot be the case thiat= ?)j +1=[ax(B);] >
aor(B),, for otherwise the right-hand side of (4.4) would be positivhich would imply
that the Euclidean distance betwédeanda,,.(B) can be reduced by addirigo b; and
subtractingl from b;, which violates the fact thdt € A ;(B). Thus, for alli, we have
b —b; € {0, 1}. To minimize the distance betweémnda,, (B), thet components ob
for whichb; — b; = 1 must be those components with the smallest valug$«f.(B);).
Thusb € R*.

A similar argument shows thatif< 0, then for alli, we have; — b; € {0, —1};
this then implies that the components ob for which b; — b; = —1 must be those

components with the largest valuesidf,.(B);), i.e.,b € R™. In summaryp € R. O

Note that in practiced.;(B) will usually consist of a single bit allocation, al-
though in principle it can contain more than one bit allomadi

We note that Guo and Meng [17] gave a similar algorithm to thmtlied by
Theorem 4.6. Instead of rounding each component of the H@ahgltheiss solution
a.-(B) to the nearest integer, they round each component down toettiest integer
from below. Then, they addddbit at a time to the rounded components, based on which
components were rounded down the most. The technique idiptien our Theorem 4.6
uses the same idea, but also adds bits to components whielrevgrded up too far. The
authors of [17] did not claim that their resulting bit allticen gave a closest integer bit

allocation. They did, however, assert that their resulbiit@llocation was optimal; but,
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in fact, their proof was not valid. They attempted to showt Hualing bits, one at a time,
in the manner they described was optimal among all ways tddddo the rounded bit
allocation. However, their proof did not eliminate the pbagy of adding more than
two bits to multiple components of the rounded bit allocatiblor did they rule out the
possibility of subtracting extra bits from some componentsrder to add even more
bits to other components. We believe their algorithm is @tleorrect, despite the lack
of proof.

Wintz and Kurtenbach [32, p. 656] also gave a similar alpaomitfor obtain-
ing integer-valued bit allocations. Their technique wasoend the components of the
Huang-Schultheiss solution to the nearest integer, amdatié or subtract bits to certain
components until the bit budget was satisfied. Howeverr ttt@ice of which compo-
nents to adjust up or down was based on the magnitudes of theparents, rather than
how much they were initially truncated. The authors of [3@jenthat their technique is
suboptimal.

The algorithm in [17] assumes the Huang-Schultheiss swiltas nonnegative
components, as does the algorithm implied by our Theorem Béwever, in Sec-
tion 4.3.3, we generalize the result of Theorem 4.6 to givalgarithm for finding opti-
mal nonnegative integer bit allocations without any sucuagptions about the Huang-

Schultheiss solution.

4.3.2 Equivalence of Closest Integer Bit Allocations and

Optimal Integer Bit Allocations

In this subsection, we allow bit allocations to have negatemponents. In
Section 4.3.3 we will add the nonnegativity constraint. fie&t two technical lemmas

are used to prove Lemma 4.9.

Lemma 4.7. For anyk scalar sources and for each bit budgetlet 5 € A be such that
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B; € (—1/2,1/2] for some;.

If 3; < —1/2, then

If 5; > 1/2, then

6@' = _p(a'or(B)i) +1
Bj = —plao(B);)

P(aor(B>i> > p(aor(B)j>‘

Lemma 4.8. For any k scalar sources and for each bit budget let

t= T(CLOT(B)l) +--- 4 T(CLOT(B)k) - B.

Then for anys € A and for alls,

(=1/2,1/2] ift=0

Bied (-=1,1/2] ift>0

(=1/2,1) ift<0.

For each andj, define ak-dimensional vectoo (7, j) whose components are

1 ifl=i

wli,jh=9 =1 ifl=j (4.5)

0 otherwise
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Lemma 4.9. For any k scalar sources, for each bit budgBt and for anyb € A.;(B),

let 5 = b — a,.(B). Then for alli, 7,

By — B < 1.
If ﬂj —0; = 1, then
b+ w(i,j) € Au(B). (4.6)

The following theorem establishes that for each bit budgetclosest integer bit

allocations and the optimal integer bit allocations arestiime collections.

Theorem 4.10.For anyk scalar sources and for each bit budget

ACZ(B) = AOZ(B)

Dci - {doi}'

Proof. First, we show thatd.;(B) C A,(B). Letb € A;(B) andb € A.(B), and let
d andd denote the resulting MSEs, respectively. It suffices to stiatd > d.

Define

77+:{l1b1—61>0}

n_:{libl—gl<0}
and consider any sequence of integer bit allocation vectors

b=0v0 .. ™ =1 (4.7
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such that for eacin = 0,...,n — 1 there exists an € n* and aj € 5~ such that
B ™ = w(i, ). (4.8)

Such a sequence is guaranteed to exist gijce |b|. For eachn, letd™ be the MSE
achieved by(™ . To establiski > d, we will show that™ is monotonic nondecreasing
inm.

The construction of the sequencg&?,...,b™ implies that for each

(b(m) — b(O))Z, > ()

(bm) — b(O))j <0
wherei € n* and; € n~ are defined by (4.8), and are functionsof Thus,
(bm) — b(O))j < (b™ — b)),

Let
B = pm _ q,.(B).

Then,
O - <1 from Lemma 4.9
and therefore for eachh = 0,...,n — 1, we get

ﬂ](-o) o ﬁi(o) _ (b(m) _ b(o))i <1- (b(m) _ b(o))j
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or equivalently (by the definition o$(®)
(B0 — e (B)) = (0 = b, =1 <~ — e (B)); — (1) — 50, (4.9)

Canceling terms in (4.9) and raisirgto the remaining quantity on each side of the

inequality gives
(m) _q

41 < g8 (4.10)

or equivalently

I e e GRS BRI L)
m m )
=4 [from (4.8)
which implies
: (m) i ()
d™ = hga=B/k. 24—61 < hgd~B/k. 24— Y gom) ffrom Lemma 4.2

=1 =1

(4.11)

Thusd™ is monotonic and therefore we have shavn(B) C A,;(B). The fact that
D.; = {d,;} then immediately follows.

Next, we show thatl,;(B) C A.(B). Letb € A,;(B). SinceA,;(B) C A;(B),
a decomposition as in (4.7) still holds. Our goal is to stiow A.;(B), which will be
accomplished by showing™ € A.;(B). By the optimality ofb, we must havel < d,
which by the monotonicity off™ impliesd™ = d(°). Hence, equality holds in (4.11)

and therefore also in (4.10), which implies for each=0,...,n — 1 that

g g = 1. 4.12)
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Now, we use induction to shotf™ e A.;(B). Them = 0 case holds sinc&? = b ¢
A.(B). Now suppose for alin < I (wherel > 1) thatb(™ € A.(B). Then we can
apply Lemma 4.9 to (4.12) in the case= [, and use (4.8) to obtai'*!) ¢ A.(B).

O

Corollary 4.11. The components of every elementdy)(B) tend to infinity as the bit

budget grows without bound.

Proof of Lemma 4.11By Lemma 4.1, the components @f.(B) grow without bound
asB — oo. By Lemma 4.4 A is a subset of/;,_;(0), which is known to be a bounded
convex polytope [8, p. 461-462]. Thus, Bs— oo, for everyb € A.(B), the com-
ponents ofb also must grow without bound. The result follows from Theoré.10.

O

4.3.3 Equivalence of Closest Nonnegative Integer Bit All@tions

and Optimal Nonnegative Integer Bit Allocations

The problem of finding nonnegative bit allocations was asiskd by Segall
[25], but his solution did not assure integer-valued quamtiesolutions. Fox [11] gave
a greedy algorithm for finding nonnegative integer bit alib@ns by allocating one bit
at a time to a set of quantizers. His algorithm is optimal foy aonvex decreasing
distortion function, and in particular, it is optimal fordlistortion function we assume
in (4.1).

In this section, we prove (in Theorem 4.17) that optimal regative integer bit
allocations are equivalent to closest nonnegative integetlocations. Our proof leads
to an alternate algorithm for finding optimal nonnegativieger bit allocations. The
algorithm is faster than Fox’s algorithm (as the bit budgei).

First we introduce some useful notation and then establiisHémmas that will

be used to prove Theorem 4.17.
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For any bit budgeB and any nonempty se&t C {1,2,...,k}, define a vector

ao-(B,S) € R* whose components are

2
93

B .1 ..
2 4+ zlog, - ifz €S8
aor(Ba S)z - 151 2 082 9(5)
0 otherwise

where
1/18]
9(8) = (H o} > :
€S

Lemma 4.1 shows that th&|-dimensional vector obtained by extracting the coordmate
of a,.(B, S), corresponding to the elementsfis the optimal real-valued bit allocation
for the quantizers corresponding to the elements$ ofFor any given nonempty set

Sc{l,....k} let

01(b) = [|b — anr(B, 9)||

k
O3(b) = hgd=BIEY " 4leor(B5)=0)

i=1

and for any sef’ c Z* and any functiory : T — R, let

QT f) = {b €T f(b) = minf(lS)} :

beT

Define the quantities

Zh={ueZr :uj=0Vj¢S}
Ar(B,S) ={u€Zk:|ul =B}
AT (B,S) = {u € Ai(B,S) : u; > 0Vi}
Ai(B, S) = Q(A(B, S), 01)
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.A:Z(B,S) = Q(A}-(B> S)>82)

For a given bit budge3, A.;(B,S) is the set of closest integer bit allocations to
a.r(B,S), and A%(B,S) is the set of closest nonnegative integer bit allocations to

aor(B, 5).
Lemma4.12.1f Q(W, f) C V. C W, thenQ(W, ) = Q(V, f).

The following lemma shows that to find a closest integer bibcation to
a.-(B, S), one can assume without loss of generality that zeros astdddn bit al-

location vector components corresponding to integersmet i

Lemma 4.13. For each bit budgeB and for any nonempty sétc {1,2,...,k},

Aci(B’ S) = Q(AI(B)’HI)

Lemma 4.14. For any k scalar sources, for each bit budg8t and for any nonempty
setS C {1,2,...,k}, ifa, (B, S) is nonnegative, then every bit allocationity; (B, S)

iS nonnegative.

Lemma 4.15. Consider k& scalar sources with bit budgeB and a nonempty set
S c{1,2,...,k}. If AL(B) C A((B,S), thenA%(B) = A%(B,S). If AL(B) C
Ar(B,S), thenAl(B) = A%(B,S).

Lemma 4.16. Considerk scalar sources with bit budgét. Supposed’.(B), A%(B) C
A;(B,S) and there exists an € S C {1,2,...,k} such thata,.(B,S); < 0. Then
bi=0forallb e A%(B) U A%L(B).

The following theorem shows that optimal nonnegative iatdgt allocation is

equivalent to closest nonnegative integer bit allocatlarother words, minimizing the
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distortion among all nonnegative integer bit allocationgquivalent to finding which
nonnegative integer bit allocation vectors are closesticliean distance to the Huang-
Schultheiss real-valued bit-allocation vector. This,umt can be accomplished with
a nearest neighbor search in a lattice. Following Theoreiii, 4ve give an efficient

algorithm for finding optimal nonnegative integer bit abidion vectors.
Theorem 4.17.For anyk scalar sources and for each bit budget

A5(B) = AL(B)

D = {d}}.
Proof. Let S(® = {1,..., k} and consider the sequence of bit allocations
or(B, S, ..., (B, S™)
where

St — fi e (. q,.(B, S™); > 0}

andn is the smallest nonnegative integer such that3, S™); > 0 for all i. Such an

integern exists since the following hold:
e |S(M| > 1 for all m.
e If |[S™)] =1, thena,, (B, S™); > 0 for all 4.
e |S(™) | is monotone decreasing in.

We will show that bothA’,(B) and A%, (B) are equal tad.;(B, S™). The fact that
D} = {d}} then follows from the definition oD.
Note that for anym > 0, if A%L(B), AL(B) c A;(B,S™), then

(by Lemma 4.16) any optimal or closest nonnegative integeallocationb must sat-



142

isfy b; = 0 fori ¢ S(™+1), and therefored’ (B), A% (B) c A;(B, S™+V). Thus, since
A%(B), AL(B) C Ai(B) = A;(B, S) we obtain by induction that

A%(B), A5(B) C Ai(B,S™). (4.13)
Now using (4.13) and Lemma 4.15 we have

A%(B) = AX(B, 5™) (4.14)

AL(B) = AL(B, S™). (4.15)

Since a,,.(B, S™) is nonnegative by definition, Lemma 4.14 implies that each

A.i(B, S™) is nonnegative, i.e.
A(B,S™) c Af(B,S™). (4.16)

From (4.16) and the fact that} (B, S™) c A;(B, S™), we can apply Lemma 4.12
with W = A;(B,S™), V. = Af(B,S™), andf = 6, to obtain A.;(B,S™) =
A% (B, S™). Thus, we have

AL(B) = Au(B, S™) [from (4.14).
Now consider a set of sourcéﬁ, ce X, with variances

B(k—]5™))

47 s if § e S0

o

52 = ¢ 9(St)
4=B/k if i ¢ S,

2
7

Lemma 4.1 shows that,,(B,S™) is the optimal real-valued bit allocation for
X1, ..., X, (mimicking the argument from the proof of Lemma 4.14). There, by
Lemma 4.13,4.;(B, S™) is the set of closest integer bit allocations (without reiqgi
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any zero components) fot;, ..., X,. Hence, by Theorem 4.10.(B,S™) is also

the set of optimal integer bit allocations faf, . . ., X,. Thus,
Aui(B,S"™) = Q(A;(B), ;) [from (4.2) (4.17)
C A5 (B,S™) [from (4.16),(4.17)
- .A](B)

Now applying Lemma 4.12 withV’ = A;(B), V = A} (B, S™), andf = 6, gives
Q(A(B),6) = A%(B,S™).
Therefore, we have
AL(B) = Au(B,S™) [from (4.15),(4.17)

O

The proof of Theorem 4.17 yields an alternative proceduréh&d given by
Fox [11] for finding optimal nonnegative integer bit allocais. The main idea is to
remove any negative components in the Huang-Schulthedds/atied solution and
then re-compute the Huang-Schultheiss solution for the\dng quantizers, iteratively
repeating this procedure until no negative componentsiremghen, the set of clos-
est integer-valued vectors (with the same bit budget) tadbalting nonnegative real-

valued vector is computed as the output of the algorithm.

Algorithm 4.18. (Procedure to findA(B) and A% (B)):
For any k scalar sources and for each bit budget the following procedure generates

a set of bit allocations which is both the séf(B) and the setd’.(B).

e Step 1SetS ={1,2,...,k}.
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e Step 2 Computen,,.(B,S) andletJ = {i € S : a,.(B, S); > 0}.
e Step 3If J = S go to Step 4. Otherwise, sét= J and go to Step 2.

e Step 4 Seta,,(B) equal toa,, (B, S) in Theorem 4.6 and then compute;(5).
SetAl(B) = A%(B) = A.(B).
Remark:
We briefly remark on the computational complexity of the alipon above as a function
of the bit budge, for a fixedk. When there exists a unique closest nonnegative integer
bit allocation, the computational complexity of the alglon reduces to the complexity
of determiningA.;(B). The complexity of this lattice search is known to be consitan
B (e.g. see [9, p. 231]). In contrast, Fox’s algorithm has dexity linear in B. Thus

for large B, Algorithm 4.18 is faster than Fox’s algorithm.

4.4 Distortion Penalty for Integer Bit Allocations

In this section and in Section 4.5 all sources will be assutodthve optimal
real-valued solutions with nonnegative components. Iti@dar, the following defini-
tion is only meaningful when,,.(B); > 0 for all <.

For anyk scalar sources and for each bit budgetet

We call p* the distortion penaltyresulting from optimal integer bit allocation.

For anyb € A,;,(B), we have
1 k
p% = - D 4leer(B)=0n from (4.2), Lemma 41 (4.18)
=1

Also, clearlyp® > 1.
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Theorem 4.19.For anyk scalar sources with varianceg, . . ., o7 and a bit budgeB,

the following three statements are equivalent:
(i) p* =1.
(i) The optimal real-valued bit allocation is an integett lallocation.
(i) Llog, % + Bmedk € 7, v,

Proof. If a,.(B) is an integer bit allocation, them,.(B) € A.(B), sop® = 1, i.e.
(i1) = (7). Conversely, suppog€’ = 1. Then, for anyp € A,;(B), by (4.18) and the

arithmetic-geometric mean inequality, we have
1< "
1= =Y 4ot > g glaorB)=bh = gi(B5-5) — 4.19
k i=1 B ( )

so the inequality in (4.19) is, in fact, equality. Thus,(B); — b; is a constant for all
i, which must equal zero sinde,,.(B)| = [b|. This provesi) = (i7). Lemma 4.1
and the equivalence df) and (ii) imply: p°° = 1 if and only if for all ; the quantity

5 log, "g—Q + £ is an integer. Theft) <> (i) follows from

110 af+B_ 110 Uf+Bmodk N B — Bmod k
g &2 T T2 k k ‘

Lemma 4.20. For anyw € Ag(0),
e VA I VAC T

k
D WRE
=1
41wl (g, 1)q-lwlly/TEED).
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For anyb € Agr(B), if w = b — a,-(B), then Lemma 4.20 gives bounds on the
sum in Lemma 4.2. Moreover, both the upper and lower boundemma 4.20 are
functions only oft and||w||, both bounds are monotone increasing wijthl|, and as

|w|| — 0 the bounds become tight.

Lemma 4.21.For anyk scalar sources, for each bit budgBt and for any bit allocation

b € A;(B), the mean-squared erraf resulting fromb satisfies

hgdB/% . <4—||b—am-<B>||\/<k:—1>/k (k- 1)4Hb—aor(B)II\/l/(kr(kr—l)))

<d<

hgd~ B/ . <4Hb—aor(B)H\/(k—l)/k + (k- 1)4—Hb—aor(B)|I\/1/(k(k—1))) ‘
For anyk scalar sources, define

d=min min ||b— ax(B)].
BZI bGAo'L(B)

0 is the minimum distance, fdrfixed sources, between an optimal integer bit allocation
and the optimal real-valued bit allocation vector, ovehitlbudgets. The quantity is
well defined by Lemma 4.5 and Theorem 4.10.

The following theorem shows that eithey, (B) € A,;(B) for all bit budgetsB
congruent to some constant modéloor elsea,,.(B) is never an element od,,(B), in
which case the distortion penalty resulting from optimé&tger bit allocation is bounded

away from1 for all bit budgets.
Theorem 4.22.Considerk scalar sources.

(i) If 6 = 0, then there exists a nonnegative integex k£ — 1 such that for each bit

budgetB, the following holds:

p” =1 ifand onlyif B mod k = n.
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(i) If & > 0, then for each bit budgédB, the following holds:

poi Z

<4—6«/(k—1)/k: 4k — 1)4&/1/(16(16—1))) <1

Sl

Proof. Suppose = 0. Then there exists a bit budgBtsuch thatu,,(B) € Ai(B).
Theorem 4.19 implies, for each bit buddggtthatp® = 1if and onlyifa,,.(B) € A;(B).
Letn = B modk. We show that,,(B) € A;(B) if and only if B mod k = n.

Suppose,.(B) € A;(B). Then, for each, the quantities,.(B); anda,,(B); are both

integers, so

- B 1 o? B 1 o?
Aor(B); — aor(B); = (E + —log, ;) - (? + 5 log, ?) [from Lemma 4.1

which impliesB mod k& = n. Now suppose&3 mod k& = n. This implies there exists an

integerm such thatB = B + km. Hence, for each,

B 1 2
aor(B); = m + 5 log, % [from Lemma 4.1

2
1 o;

— + E + — ] 24
= m + aor (B); [from Lemma 4.1
< Gor(B) € Ar(B + km) [from a,,(B) € A(B)]

= A;(B).
Now supposé > 0. Then for each bit budgd® and for anyb € A,;(B),

16— ao(B)]| > 6 > 0. (4.20)
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Define a functiorf : [0,00) — (0, c0) by
flu) = 47V EDE L (o 1)qeV/ T EED),

For each bit budgeB and for eveny € A,;(B),

o do;
"G,
> hgfl_B/k fllb = aor(B)]) [from Lemma 4.21
= %f(“b — aor(B)]]) [from Lemma 4.1
> %f(é) [from (4.20) and the monotonicity off
>1

[from the arithmetic-geometric mean inequdlity

4.4.1 Lower Bound on Worst Case Distortion Penalty

for Integer Bit Allocations

For any particular set of sources, the distortion obtained by using optimal
integer-valued bit allocation may be larger than the diginmpredicted by optimal real-
valued bit allocation. Theorem 4.24 below illustrates houchhworse integer-valued

bit allocation can be compared to real-valued bit allogatio

Let
1
= —k,—k+2,....,k—2k).
Yk 2k5+2< ) + 2, ) ) )
Lemma 4.23.If the variancesr?, . . ., o2 of k scalar sources satisfy

1 o? o2
— (log, =1, ..., log, =% | = v_
2(0g2g> aog2g) Ve—1
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then for each bit budge® and for any € A,;(B), the vectob—a,, (B) is a permutation

of yj_1.

Theorem 4.24.For eachk, there existc scalar sources, such that for any bit budget,

the distortion penalty resulting from optimal integer bitogation satisfies

3.9(k-1/k
k(4 — 46=1/F) ~

o1

1.

The distortion penalty in Theorem 4.24 is monotone increasiith £ and is

bounded as:

2 .
1.06%¥§p°’§ 3

~ 1.08
4In2

where the lower bound is attained /at= 2 and the upper bound is approached as
k — oo. Thus, the theorem guarantees that for some sources, thesgaared error
due to optimal integer-valued bit allocation is at leé&t greater (and as much &%;
greater for largé) than the mean-squared error due to optimal real-valueadlbdation.
We do not claim this is the largest possible distortion pgnalrather, it demonstrates

thatp®® can be bounded away froim

Proof. Leta > 0 be arbitrary. For each< k, consider a scalar source whose variance
is given by

Uz'2 — q4E-1)i

Then

1 o? o2
— (log, =, ..., log, £ | = ~_
2(0g2g7 aog2g) Yk—1

and Lemma 4.23 implies that for each bit budgeand for anyb € A,;(B), the vector
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b — a,.(B) is a permutation of;._;. Hence, for eact®,

k
Z ~(n-) [from (4.18)

1
1

wl»—‘
i

T

A 1(—(k=1)+2i)/2k]

0
kk’l

24 i/k (4.21)

o(k=1)/k 1 _ (4—1/k>k
k 1—4-1/k
3. 9(k=1/k
T k(4 — 4G-D/Ry

| =

)

Applying the arithmetic-geometric mean inequality to .8ivesp® > 1. O

We note that for the sources used in the proof of Theorem th4pwer bound

in Theorem 4.24 is greater than that given in case (ii) of Teeo4.22, for allk.

4.5 Upper Bound on Distortion Penalty
for Integer Bit Allocations

Lemma 4.8 and Theorem 4.10 imply that each component of aiyalinteger
bit allocationb differs from the corresponding component of the optimal-vadued bit
allocation by less than. Hence, using (4.2) and Lemma 4.1, one easily obtains the

bound

k
hgd B/ES " gloor (B0
i =1
= < 4.
P khg—B/F
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In the following theorem we give a tighter upper bound on tistadtion penalty re-
sulting from optimal integer bit allocation. The bound does depend on the source

distribution or the bit budget.

Theorem 4.25.For eachk > 2, for any k scalar sources, and for any bit budget, the

distortion penalty resulting from optimal integer bit adiation is upper bounded as

wherer = £ [% — —L7].

The upper bound opf’ in Theorem 4.25 is tight since, for arbitraay> 0, if

a?:all_c(k_l’l”)i 1< <k
and the bit budgeB is a multiple ofk, then by Theorem 4.6, Theorem 4.10, and (4.18)
we havep” = 47 (1 — 7). For allk > 2, the upper bound op” in Theorem 4.25

satisfies

37 3
1.25 <47 (1 — — —— =12 4.22
b= < 4) RRIEIN: 6 (4.22)

where the lower bound in (4.22) is attainedcat 2 andk = 4 and the upper bound in
(4.22) is approached d&s— oo. Thus, Theorem 4.25 guarantees that for arscalar
sources and for all bit budgets, the mean-squared erroodygtimal integer-valued bit
allocation is at mos26% greater than the mean-squared error due to optimal reaédal
bit allocation.

Figure 4.1 compares the upper bound in Theorem 4.25 withishertion penalty

from Theorem 4.24.
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Proof. We show that

.....

where, for a fixed:, the suprema are taken over all possibliples of sources and over
all bit budgets.
Define a mapping : R* — R by

flu) =3 a7

Then we have

......

1

= —sup sup Z glaorB)=b)i p e A,i(B) [from (4.18)
k B o7, Uﬁ i=1
1 k

= —sup sup » 4l vhe Ay(B) [from Theorem 4.10
k B of,..07 i=1
1 k

= —sup sup » 47" Yu e A [from the definition ofA]
kB 050} =1
1 N

= —sup sup f(u) [from the definition ofAM/ ]
k B ueMp
1

=7 sup f(u) [from Lemma 4.4

u€Vi_1(0)

1 k

= — max 4etk=13)i (4.23)
k o<j<k—1 —

~ max 4 (13 [from (4.3)
0<j<k—1 4k

where (4.23) follows from the fact that the convex functfgmestricted to the closed and

bounded polytop&}._,(0), achieves a global maximum (e.g., see [27, Theorem 6.12 on
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p. 154]) on the polytope’s set of vertices, which consistalbfoordinate permutations
of ec(k —1,0),...,c(k— 1,k —1)[8, p. 461-462].
Forj =0,...,k— 1, define

g(j) = 40/* (1 - %]) |

Sinceg(j) > 0 if and only if j < 4k/3, the functiong must attain it's maximum when

j < 4k/3. Inthe rang® < j < 4k/3, the ratio

9(j+1): e (4 1
9(5) ! (1 %—J)

is greater than if and only if

4k 1
N W RSV

4k 1

SOy attains is maximum whep= [5* — — 1. O
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bound on the distortion penalty from Theorem 4.25.
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Appendix

Proof of Lemma 4.3.

{u eENg+y:|w—ul :verg\l;lﬁl-wa_UH}

=y+{ueAk:||w—(U+y)H=1{giAr;Hw—(v+y)||}

=dp(w—y)+y.

O

Proof of Lemma 4.4First, note that for each > 1 and for anyu € H*, the symmetry
of A, implies that
u € Vi(0) ifand only if —u € V4(0). (4.24)

Also, note that sincé\,_; consists of all vectors with: integer coordinates

which sum to), and since

B
E(l,...,l)%—c(k—l,Bmodk) e A/(B)
k
it follows that
B
Ai(B) =AM 1+ —(1,...,1)+c(k—1,Bmod k). (4.25)
kS ——

k

Now, Lemma 4.3 and (4.25) imply that

Aci(B) = &4 (aor(B) -

B
k(l,...,l)—l—c(kl,Bmodk}])

k

+—(1,...,1) 4+ ¢(k—1,Bmod k).

N—_——
k

> &
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Thus, Lemma 4.1 gives
A=y (p) — p
Sincey € Vi (w) for all w € @, (1), we have that for eactr € ®;,_; (1)

| —wl|| < |lp—y Vy € Aj—1 (4.26)

= —w) — (y —w)| Vy € Ag_i. (4.27)

Sincew € A,_1, we havey — w € A, forall y € A,_;. Thus, by (4.24) and the
definition of V,_1(0), (4.26)—(4.27) implyw — i € Vi,_1(0). Hence, A C V;_1(0), and
thereforeMp C V;._1(0).

Now, for anyv € V,,_1(0) and for arbitrary. > 0, setting

2 _ 4ac(k — 1, Bmod k); — v;

Ui:

forl <i < kresultsin

. 1/k
(19"

=1
1 o2 o2
~log, =L, ... log, £ | = ¢(k — 1, Bmod k) —
2 <Og2 g ) ) Og2 g ) C( 9 mo ) v
and therefore

A= <I>k_1(—v) + .

Sincev € V}._1(0), by (4.24), we also havev € V}._1(0). Hence0 € &;_;(—v), and
thusv € A. So,V;_1(0) C Mg and thereforé\/p = V;._1(0). O
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Proof of Lemma 4.5From (4.3) we have
{c(k—1,Bmodk): B>1} ={c(k—1,Bmod k):1< B <k}.

Lemmas 4.3 and 4.4 imply that for eaéh) any element of\ is the difference between
the vector(1/2) (logy(0?/g), . .., logy(02/g)) and a point (not necessarily unigque) clos-

est to it from the sed,_; + ¢(k — 1, B mod k). Hence,

Uac | A

B>1 1<B<k

so, in fact, these two unions are equal. The result therviglfoom the fact that for each

B, the setA is finite. O

Proof of Lemma 4.7Lett andZ, be defined as in Theorem 4.6 andilet 3+a,,.(B) €
A.i(B). Then for alli,

B; = bi — r(aer(B);) — plae(B);) [from the definitions op andr] (4.28)
<

—% < p(aor(B)i) % [from the definitions op andr] (4.29)
{0,—1} ift>0

b; — r(ax-(B);) € [from Theorem 4.6 (4.30)
{0,1} ift<0

Sincef; € (—1/2,1/2], we have

—— < b; —r(an(B);) — plax(B);) < [from (4.28)  (4.31)

1
>
by — 1(aor(B);) = 0

B; = —plae(B);) [from (4.28),(4.32)

[from (4.29),(4.30),(4.31)  (4.32)
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Suppose’; < —1/2. Then

by — r(ao-(B);) = Bi + plao-(B);) [from (4.28)
<=5+ plaw(B))
<0 [from (4.29) (4.33)
b; — r(aor(B);) = —1 [from (4.30),(4.33) (4.34)
61’ = _p(aor(B)i) —1 [from (428)’(434D

By (4.32), (4.34), the fact thate A.;(B), and Theorem 4.6, there exigts, .. ., i) €
T, suchthat € {i1,...,0}, j € {itt1,- .., ik}, andp(an(B);) < plao-(B);).
Suppose’; > 1/2. Then

b = r(aor(B)i) = Bi + plaor(B):) [from (4.28)
> % + p(ao(B):)
>0 [from (4.29) (4.35)
bi —r(ae(B)i) =1 [from (4.30),(4.35) (4.36)
Bi = —plaor(B):) + 1 [from (4.28),(4.36)

By (4.32), (4.36), the fact thate A.;(B), and Theorem 4.6, there exigts, .. ., i) €

T suchthat € {igyir1,-.-50}, J € {i1, .., lkpe ), @ndp(ao (B);) > plas-(B);). O

Proof of Lemma 4.8Let b andZ,, be defined as in Theorem 4.6 ¢I£= 0, then the result
follows from Theorem 4.6 and the definitions&fandr(-).

Suppose > 0 and leth = 3 + a,,(B) € A.(B). By Theorem 4.6, there exists
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(i1,...,1%) € Iy such that

b, —1 if je{iy,... i
b={ J € tiny- i} (4.37)
bj if j S {it+1, c ,Zk}

Subtracting,,. (B) from both sides of (4.37) gives

5 { bi —1—an(B); if j€{i,... it}
"l b —an(B), i € i i)
_ { —plaor(B)j) —1 if j € {ir,... i}

N —pan(B),) i G fin i)

Since—1/2 < pla(B);) < 1/2, we have—p(a,.(B);) € (=1/2,1/2] C (-1,1/2).
Thus, it suffices to show that(a,(B);) < 0 for j € {iy,....4%}, since then
—pla(B);) — 1 € (~1,-1/2].

Let n denote the number of components @f (B) such thatp(a,.(B);) <
0. Since the subscripts are ordered by increasing value pfa,,(B);), we have

plae(B);) < 0forj e {iy,...,i,}. Hence, it suffices to show< n. We have

The result then follows by symmetry for< 0. O

Proof of Lemma 4.9Since 5 € A, Lemma 4.8 givess;, 3; € (—1,1). Itis easy to
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verify that3; — 3; < 1in the following three cases:

L] ﬁi,ﬁj € [0, 1)
o 5 €(~1,1), 3 € (—1,0]
e 3 €[-1/2,0],5; €[0,1/2].

The inequality also holds fo¥; € (—1, —1/2) andg; € [0,1/2] since
B; —1=—plax(B);) =1 < —p(ap(B);) —1 = 05; [from Lemma 4.7
and it holds forg; € (—1/2,0] andg; € (1/2,1) since
B; —1=—play(B);) < —plax(B);) = G [from Lemma 4.7.

Finally, Lemma 4.8 implies that it cannot be the case that (—1,—1/2] andj; €
(1/2,1). Thus,3; — ; < 1 for all i andj.

Letb = b+ w(i,j) and supposg, — 5; = 1. Then

bi=0b;+1= ﬁz+ 1 —|—CL07«(B)1 - ﬂj +a07‘(B>i

l;j =b;—1=0;—14an(B); = 5 + au(B);.

Hence,
by — ao(B), = G, ifl=j

05, otherwise

Therefore||b — a.,(B)|| = |||, which by the definition of\, impliesb € A.(B). O
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Proof of Lemma 4.12AssumeQ(W, f) c V. Cc W. If b € Q(W, f), then

f(®) = min £ () [from b € Q(W, f)]
< min f(b) fromV c W]

beV
< f(b) [fromb e V]

and thereforé € Q(V, f). Thus,Q(W, ) C Q(V, f).
If b€ Q(V, f), then

f£(b) = min £(b) [fromb € Q(V, f)]
beV
< min £(b) [from Q(W, f) C V]
beQ(W.f)
= min f(b) [from the definition of) (W, f)]
beW
< f(b) [frombeV C W]
and thereforé € Q(W, f). Thus,Q(V, f) C Q(W, f). O

Proof of Lemma 4.13Supposé € Q(A;(B),6,). For anyi andj, the following iden-
tity holds:

[(bi = 1) — a,r(B, S)i]2 +[(bj + 1) — aor (B, S)j]2
— [bi = a0 (B, 8)i]* = [bj — aor(B, 5);]?

=2[1+ an(B,S)i — bi +b; — a,- (B, S);]. (4.38)

Now, suppose there exists asuch thab; — a,.(B,S); > 1. Then there must exist a
such that; — a,,.(B,S); < 0, sinced b, = >, a.,(B,S), = B. But then the right-
hand side of (4.38) would be negative which would imply Q(.A;(B), 6,), since
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subtractingl from b; and addingl to b; would result in an integer bit allocation closer
thanb to a,,.(B, S). A similar contradiction results in the case whére- a,,.(B, S); <
—1. Thus, for every, we must havé; € {|ao. (B, S):|, [ao-(B, S):]}.

The definition ofa,,(B,.S) then impliesh; = 0 for all i ¢ S. Thus,b €
Ar(B, S), and therefor&)(A;(B),0:) C A;(B,S). Now applying Lemma 4.12 with

W = A[(B),V =A/(B,S),andf = 6, givesQ(A;(B),0,) = A.(B,S). O
Proof of Lemma 4.14Consider a set of sourcés,, . .., X, with variancesy, ..., 67
given by

)

o2 BUISD
A2{ mél [S] leGS

(o
4Bk if ¢ S

The geometric mean of the variances is

o2 B(k—|SI) HE B/k YR
_ ? . k -
() (1
€S ¢S
1/k
[1 /

| ies BG:-—Is)) TEEINT
GRS <4 )
1/k
g(S)s1  pu-isn —p0-isp\ 1/k s
- <9(S)5'.4 k () [from g(S) = (TLics 07) ]
~ 1.

Therefore, substituting the variances and their geometeian into Lemma 4.1 gives

B 1. &2
aOT(B)Z- = E + 5 10g2 T
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2
9i

B 1 < . .
157 31022 575 ifiesS

0 otherwise

= CLOT(B, S)z

Hence,a,, (B, S) is the optimal real-valued bit allocation fdi‘l, . ,Xk. Thus, by
Lemma 4.13,4.,(B, S) is the set of closest integer bit allocations for, ..., X (re-

gardless ofY). Let

t = |[(r(ao(B,S)), .- r(ao(B,S)))| — B
and forb € A.(B, S), let

B=0b—a,(B,S) € Au(B,S) — an(B,9).
Then Lemma 4.8 implies that for all

(=1/2,1/2] ift=0
e (=1,1/2] ift>0 (4.39)
(=1/2,1) ift<0.

Combining the fact that,,.(B, S); > 0 for all ¢ with (4.39) gives); > 0 for all . O

Proof of Lemma 4.15Let

_(Bl=IS) 1y g
m‘( H[S] +21g2g<s>)‘

Then for alli € S,
aor(B)i +m = (B, S);. (4.40)
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Supposed’(B) c A;(B,S). Since every vector ipd}.( B) is nonnegative, we

have

AL(B) C A[(B,S)

C Af(B). (4.41)

From (4.41), we can apply Lemma 4.12 with = Af(B), V = A} (B, S) and f(b) =
|b — a.-(B)|| to obtain

AL(B) = QA (B, S),[Ib—au(B)]). (4.42)
Foranyb € A/ (B, S),
16— aor(B)|I?
= ao(B)il> + Y _ |bi — ao(B)i] fromb;, =0V i ¢ 9] (4.43)
¢S ies
= Z ‘aor(B)i‘z + Z Im +b; — (m + aor(B)i)‘z
i¢S i€S
= aor(B)il* + 18] - m* + Y " 2m (b; — ao(B, S):) + (bi — aor(B, S);)?
i¢S icS
[from (4.40)
= aoe(B)il> +1S|-m* + > (b — ao,(B, S),)?
¢S ies

[from > b => " a,(B,S); =

€S €S

(4.44)

:Z‘aor( )‘2+|S| m—i—ZV) aorBS>‘

i¢S
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[fromb; = a,.(B,S); =0V i ¢S]
(4.45)

- Z |aor(B)i|2 +1S|- m? + ||b — aor (B, S)||* . (4.46)
i¢S

Equations (4.43)—(4.46) show that the quantifies ., (B)| and||b—a,, (B, S)

| differ
by a constant which is independentiofHence, among all bit allocations i} (B, S),
we see that is of minimal distance from,,.(B, S) if and only if b is of minimal distance
from a,.(B), i.e. A5(B, S) = Q(AF (B, S), b — a.(B)||). Thus, by (4.42), we have
AL(B) = AL(B,S).

Now, to show the second part of the lemma, suppéséB) C A;(B,S). Since

every vector ind’,(B) is nonnegative, we have

Ay (B) C A[(B,S)

c Af(B). (4.47)

From (4.47), we can apply Lemma 4.12 with = A; (B),V = A (B, S), andf(b) =

d to obtain
A5(B) = Q (A[ (B, 5),d). (4.48)
Foranyb € A/ (B, S),
k
d = hgd™ Pk " glaer(B)70) [from Lemma 4.2
=1
= hgd™P/F.N " grer Bl g pga =Bk N g (e (B) ) [fromb; =0V i ¢ S]
i¢S =
_ hg4—B/k . Z 4aOT(B)i + hg4—B/k . Z4—m+(m+aor(B)i)—bi
i¢s =

= hgd PIFN " 40 B g pgaBRmm N Sy leer(BS)70[from (4.40)
i¢S i€S
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— hgd Pl g
i¢S

+ hg4 —B/k)— <Z Alaor(B,S)— + Z Alaor(B,S)— Z plaor(B,S)~ )

ieS i¢S i¢S
= hgd™P/F N " (400 Bl 47m) 447 0y(b) [from a, (B, S); = b =0Vi ¢S]
i¢S
which is an affine function of,(b), with coefficients which are independentofThere-
fore, among all bit allocations i} (B, S), we see that minimizest, () if and only if
b minimizesd, i.e. A%(B,S) = Q(A} (B, S),d). Thus, by (4.48), we havd};(B) =
AL(B, S). O

Proof of Lemma 4.16We prove that for alb € A;(B, S), if b; > 0, thenb ¢ A% (B) U
AL (B).

Letb € A;(B,S) satisfyb; > 0. By Lemma 4.15, we know thatl’,(B) =
A%(B,S) and A%(B) = A(B,S). We will show thatb ¢ A%L(B,S) andb ¢
AL(B,S). In particular, we demonstrate that there exists S such that adding
bit to b; and subtracting bit from b; reduces bot#, (b) andf,(b), i.e., the originab
chosen could not have been an optimal nor a closest nonvegateger bit allocation.

Suppose
aor(B,S); —b; > apr(B,S); — b — 1 VI € S. (4.49)
Then we get

(|S| - 1)<aor(B7 S)Z - bz)

= Zaor(B7 S)Z —

les
1#i
> (aor(B,S) = b — 1) [from (4.49)

leS
12
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= (B—ao(B,5);) = (B—=b) = (IS|=1) [from> b = an(B,S), = B]

les les

= —(an(B,8); — b;) — (|S] - 1)

which implies

|S](1 = b; + anr (B, S);) > 1

a contradiction, sincé; > 1 anda,,.(B,S); < 0. Therefore, (4.49) is false, so there

existsj € S such thatj # ¢ and
CLOT(B,S>Z'—bZ‘ <CL0T(B,S)j—bj—1. (450)

Multiplying each side of (4.50) by-2 and addinga,,.(B, S); — b;)?
+ (a0 (B, S); — b;)? to each side gives

(aor(B> S) b) (a'or(B S) b)+(aor(B> S)] _bj)2

> (aor (B, S); — b:)* — 2(apr (B, S); — bj) + 2+ (ap (B, S); — b;)?
or equivalently
(aor(B, S)i — bi)2 + (aor (B, S)j - bj)2
> (CLOT(B, S)Z — bz)2 + Q(CLOT(B, S)z — bz) +1

+ (a0 (B, 8); = bj)* = 2(ao (B, 8); — bj) +1

= (aor(B7 S)Z - (bz - 1))2 + (aor(Ba S)] - (b] + 1))2

Thus, subtracting bit from b, and addind bit to b, reduce®, (b). Some algebra shows

that the inequality in (4.50) is equivalent to

Aoor(B,S)i=bi 4 paor(B,8)j=bj - paor(B,S)i=(bi=1) | gaor(B,5);=(bj+1)
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from which it follows thatf,(b) can be reduced by addirigbit to b; and subtracting

bit from b;. O
Proof of Lemma 4.20The proof is trivial for||w| = 0, so assuméjw| > 0. We
determine the extrema of .
D a4 (4.51)
=1
subject to the constraints
k
Z w; =0 (4.52)
=1
k
Z w? = a®. (4.53)

i=1

Define a Lagrangiad associated with multipliers; and\, by:

k k k
J = 24_1“ +)\1 Zwl + )\2 (ng — a2> .
=1 =1 =1
The extrema of/ must satisfy (forl < i < k):

oJ

0

Suppose\, > 0. Then% is monotone increasing in; and approachesoco asw; —
+oo. Thus, exactly oney; satisfies (4.54) for each and thereforev; = w; for all 7, j.
So, by (4.52) it follows thaty; = 0 for all ¢, contradicting|w|| > 0.

Thus we can assume < 0. Since%_ is strictly concave, (4.54) can have at
most two solutions. It cannot be the case that (4.54) hasamysolution, for otherwise
(4.52) would again imply that; = 0 for all 4, contradicting||w|| > 0. So (4.54) has

exactly two solutions and by (4.52) these two solutions rbaestf different signs.
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Thus, the extrema of must lie in the set
P=PU---UP,_,

wherePF; is the set of all(’;.) component-wise permutations of the vector

a<k(kj_j))l/2, <k]])<kjj)L,_l . (4.55)

The constant factor in (4.55) ensures that the elementssatisfy (4.52) and (4.53).

Summing both sides of (4.54) oveand solving for)\; yields

k
A = HT Z (4.56)

From (4.54), we obtain
(ln 4)4_wi — )\1 = 2)\2’(1)@

which when squared, summed oveand simplified using (4.53) and (4.56) gives

1/2

k 2
Ay = —1“72 [Z 16~ (Z 4—“’1) ] . (4.57)

Now, for any component; of anyw € P;, using (4.55), (4.56), and (4.57) gives

— (111 4)4_1% + )\1 + 2)\2’(1)@

1/2
. /

k k 2
—(In4)4v +ln—42 ' 72“’;1“2 {216“’2 — % (erwl‘) ]

=1 =1

= —(In4)4™" + 1%4 (j4a (k=)D 4 (| — j)a~e a’/(k(k—j)))
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Ind [ — , _____
Y an {]16av<k—ﬂ>/<kﬂ> + (k= j)16-VITRG=)
1 — = . . 2]1/2
- <j4“\/(k—ﬂ)/(kﬂ) + (VD) }
(1n4)4—wz+ : <4a\/<k DIED 4 ( _j)4—a\/j/<k<k—j)>>

_ wilnd Jj(k - j) 4oV _ 4o/ 57000
k

a

=0 (4.58)

where (4.58) follows by considering the cases = —a+/(k —j)/(kj) andw; =
a\/j/(k(k —j)). Hence everyw € P satisfies (4.54), and therefore is the set of
solutions to (4.54) subject to the constraints in (4.52) @n83).

Substituting an arbitrary element € P (i.e. an extremum of/) into (4.51)

24% \/kj /(k35) +( ) —ay/j/(k(k—3j))
— j4|lw||\/ (k=3)/ (ki) (k — j)4—|\w|\\/j/(k(k—j)) [from (4_53}. (4.59)

To complete the proof it suffices to show that (4.59) is desirgpin j. This
implies (4.51) is upper bounded by (4.59) wher= 1 and lower bounded by (4.59)
whenj =k — 1.

Note that if the right-hand side of (4.59) is viewed as a eurdus function of,

then its derivative with respect fois

lwll/ =3 () oo (—E "
T 1o (1) |

L+ [|wl n2 <j(’fk—j))l/2]

— g llwll/3/(k(k=37))
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which is negative if and only if <||wH In2\/k/(j(k— j))) > 0, where
fu) =1+u—(1—u)e*.
Sincef(0) = f/(0) = 0 and " (u) = 4ue* > 0 for all u > 0, we havef(u) > 0 for all

u > 0. O

Proof of Lemma 4.21The result follows from Lemma 4.2 and Lemma 4.20 with=

b— ay(B). O

Proof of Lemma 4.23For any vector, and any permutation of the positive integers
less than or equal to the dimensionwgflet 7(u) denote the component-wise permu-
tation of u according torr. First observe tha®, (m(v:)) = {0} for any k and any
permutationr of {1,...,k + 1}. To see this, note that for any € A; \ {0}, since

|()s| < 1/2 for all i, we have

|(m())i — wi| > [(7(yk))i| if w; #0

|(7T('7k>>z - wz’| = \(W(%))Z\ if w; =0

which implies

17 () = wl[ > [l ()

and therefore

ou(x(00)) = {u € Au o) = ull = mip ) = ol | = (0}

Now observe that;,_; — c¢(k — 1, j) is the left-cyclic shift ofy,_; by j positions,

for anyj, since

Vk—1 — C<k - 17])
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1 | |
=g (— (k=D 42 ~(k=1)+2j+2,... k-1,

—(k=1),...,—(k—=1)+2j—4,—(k—1)+2j — 2).

In particular, for each bit budgéd?, Theorem 4.10 and Lemma 4.4 imply that for every
be A, (B),

b— a.(B) € @k_l(%_l —c(k — 1, Bmod k)) — (%—1 —¢(k — 1, Bmod k))

=dp (%—1) - V-1

={—%-1}

where~,_; denotesy,_; left-cyclic shifted byB mod £ positions. Since the compo-
nents ofy,_; are the same as those 6fy,_, so are the components efj;,_;. Thus,

—A,_1 IS @ permutation ofy,_. O

This chapter, in full, has been submitted for publication Benjamin Farber
and Kenneth Zeger, “Quantization of Multiple Sources UsWannegative Integer Bit
Allocation,” IEEE Transactions on Information Thegriylay 2005. The dissertation

author was the primary investigator of this paper.
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Chapter 5

Conclusion

In this dissertation we have presented work on two imponpaoiblems having
to do with scalar quantization. This study raises some extditteresting problems and
ideas. We, therefore, conclude by discussing pertineensiins of our work.

Chapter 2 deals exclusively with scalar quantization. Hexeone can also ap-
ply the weighted centroid condition to vector quantizeratkrs. A challenging aspect
of generalizing Chapter 2 tb > 2 dimensions is how to define a uniform quantizer en-
coder with a reasonabledimensional analog of the assumption that the encodirg cel
are ordered from left to right. With a well definéddimensional analog of a decoder

optimized uniform quantizer, one can tackle the same questhat Chapter 2 answers:

1. For a given source, is there an optimal family of indexgssients for all trans-

mission rates and all bit error probabilities?
2. Are most index assignments asymptotically bad?

3. What do the point density functions look like for diffetdamilies of index as-

signments?

Similarly, with a reasonable definition ofkadimensional uniform quantizer de-

coder, one can generalize the notion of an encoder optinoizéorm quantizer ta > 2
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dimensions. Extending the work in Chapter 3 to higher dinwersscould then involve

answering questions such as:

1. Is the Natural Binary Code index assignment still subrogkfor a large range of

transmission rates and bit error probabilities?

2. How many empty cells do particular families of index assignts induce in the

guantizer encoder?

3. What do the cell density functions look like for partiaufamilies of index as-

signments?

Another extension of the work in Chapter 3 would be to char@® the occurrence
of empty cells and compute the expected mean squared ereor @ficoder optimized
uniform quantizer with an index assignment chosen unifgrmrandom.

Both Chapters 2 and 3 restrict index assignments to be a patiotuoperation
on the input to the channel and the inverse permutation tperan the output of the
channel. A relaxed notion of index assignments would natiirecthe permutation on
the output of the channel to be the inverse of the permutaticthe input to the channel.
Both Chapters 2 and 3 also consider only binary symmetriorodla. An interesting and
challenging problem would be to consider any of the mainltesu Chapters 2 and 3
in the context of a different channel and/or a relaxed natibindex assignments.

One other interesting problem stemming from Chapters 2 ardhdw well
scalar quantizers can perform, and how they are structuteshvoth the quantizer
encoder and decoder are optimized to the channel stafisécgvhen both the weighted
centroid condition and the weighted nearest neighbor ¢mmdare satisfied). We found
this to be a very difficult problem analytically, even forately small rate quantizers.
One approach is to simplify the source so there are a finitdoenf possible quantizer

encoders and decoders. This can be done by assuming the sonsists of a discrete
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random variable. Perhaps by making progress in this siraglifase, one could gain
understanding for the case of a continuous source randaabler

In Chapter 4 we assumed an individual quantizer with tadéehieves a mean
squared error (MSE) proportional 40°. However, we suspect our results might gener-
alize to the case when the MSE is instead proportional tokitrary decreasing convex
function ofb. Two main issues must be resolved in order to make such aajeraion.
First of all, the optimal real-valued bit allocation derivBy Huang and Schultheiss [1]
must be generalized. Since their solution guarantees a@igtimal real-valued bit al-
location, any generalization of their work would hopefully the same. Secondly, one
would need to find a way of relating the MSE achieved by an etdgt allocation to
its component-wise difference from the generalized notioain optimal real-valued bit
allocation. Without such a relation, one cannot show thade$t integer bit allocations
are the same as optimal integer bit allocations. We religthigriact to analyze the MSE

of optimal integer bit allocations.
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