Achievable Rate Regions for Network Coding

Randall Dougherty, Chris Freiling, and Kenneth Zeger

Abstract—Determining the achievable rate region for networks using routing, linear coding, or non-linear coding is thought to be a difficult task in general, and few are known. We describe the achievable rate regions for four interesting networks (completely for three and partially for the fourth). In addition to the known matrix-computation method for proving outer bounds for linear coding, we present a new method which yields actual characteristic-dependent linear rank inequalities from which the desired bounds follow immediately.

I. INTRODUCTION

In this paper, a network is a directed acyclic multigraph $G = (V, E)$, some of whose nodes are information sources or receivers (e.g. see [22]). Associated with the sources are n generated messages, where the i^{th} source message is assumed to be a vector of k_i arbitrary elements of a fixed finite alphabet, A_i, of size at least 2. At any node in the network, each out-edge carries a vector of n alphabet symbols which is a function (called an edge function) of the vectors of symbols carried on the in-edges to the node, and of the node’s message vectors if it is a source. Each network edge is allowed to be used at most once (i.e. at most n symbols can travel across each edge). It is assumed that every network edge is reachable by some source message. Associated with each receiver are one or more demands; each demand is a network message. Each receiver has decoding functions which map the receiver’s inputs to vectors of symbols in an attempt to produce the messages demanded at the receiver. The goal is for each receiver to deduce its demanded messages from its in-edges and source messages by having information propagate from the sources through the network.

A (k_1, \ldots, k_m, n) fractional code is a collection of edge functions, one for each edge in the network, and decoding functions, one for each demand of each node in the network. A (k_1, \ldots, k_m, n) fractional solution is a (k_1, \ldots, k_m, n) fractional code which results in every receiver being able to compute its demands via its decoding functions, for all possible assignments of length-k_i vectors over the alphabet to the i^{th} source message, for all i.

Special codes of interest include linear codes, where the edge functions and decoding functions simply copy specified input components to output components. Special networks of interest include multicast networks, where there is only one source node and every receiver demands all of the source messages, and multiple-unicast networks, where each network message is generated by exactly one source node and is demanded by exactly one receiver node.

For each i, the ratio k_i/n can be thought of as the rate at which source i injects data into the network. If a network has a (k_1, \ldots, k_m, n) fractional solution over some alphabet, then we say that $(k_1/n, \ldots, k_m/n)$ is an achievable rate vector, and we define the achievable rate region of the network as the following convex hull

$$S = \text{CHULL}(\{r \in \mathbb{Q}^m : r \text{ is an achievable rate vector}\})$$

where Q is the set of all rational numbers. Every vector in the achievable rate region can be effectively achieved by time-sharing between two achievable points (since it is a convex combination of those achievable points).

Determining the achievable rate region of an arbitrary network appears to be a formidable task. Alternatively, certain scalar quantities that reveal information about the achievable rates are typically studied. For any (k_1, \ldots, k_m, n) fractional solution, we call the scalar quantity

$$\frac{1}{m} \left(\frac{k_1}{n} + \cdots + \frac{k_m}{n} \right)$$

an achievable average rate of the network. We define the average coding capacity of a network to be the supremum of all achievable average rates, namely

$$C_{\text{average}} = \sup \{ \frac{1}{m} \sum_{i=1}^{m} r_i : (r_1, \ldots, r_m) \in S \}.$$

Similarly, for any (k_1, \ldots, k_m, n) fractional solution, we call the scalar quantity

$$\min\left(\frac{k_1}{n}, \ldots, \frac{k_m}{n}\right)$$

an achievable uniform rate of the network. We define the uniform coding capacity of a network to be the supremum of all achievable uniform rates, namely

$$C_{\text{uniform}} = \sup \{ \min(r_1, \ldots, r_m) : (r_1, \ldots, r_m) \in S \}.$$

1 If an edge function for an out-edge of a node depends only on the symbols of a single in-edge of that node, then, without loss of generality, we assume that the out-edge simply carries the same vector of symbols (i.e. routes the vector) as the in-edge it depends on.

2 There is some variation in the definition and terminology in the literature. Some authors use the term “capacity region” or “rate region”. Alternative definitions of the region have been defined as the topological closure of S or without the convex hull.
Note that for any \(r \in S \) and \(r' \in \mathbb{R}^m \), if each component of \(r' \) is nonnegative, rational, and less than or equal to the corresponding component of \(r \), then \(r' \in S \). In particular, if \((r_1, \ldots, r_m) \in S \) and

\[
r_i = \min_{1 \leq j \leq m} r_j
\]

then \((r_1, r_2, \ldots, r_t) \in S\), which implies

\[
C_{\text{uniform}} = \sup \{ r_i : (r_1, \ldots, r_m) \in S, \quad r_1 = \cdots = r_m \}.
\]

In other words, all messages can be restricted to having the same dimension \(k_1 = \cdots = k_m \) when considering \(C_{\text{uniform}} \). Also, note that

\[
C_{\text{uniform}} \leq C_{\text{average}}.
\]

The quantities \(C_{\text{average}} \) and \(C_{\text{uniform}} \) are attained by points on the boundary of \(S \). It is known that not every network has a uniform coding capacity which is an achievable uniform rate [7].

If a network’s edge functions are restricted to purely routing functions, then we write the capacities as \(C_{\text{routing}} \) and \(C_{\text{uniform}} \), and refer to them as the average routing capacity and uniform routing capacity, respectively. Likewise, for solutions using only linear edge functions, we write \(C_{\text{linear}} \) and \(C_{\text{uniform}} \), and refer to them as the average linear capacity and uniform linear capacity, respectively.

Given random variables \(x_1, \ldots, x_i \) and \(y_1, \ldots, y_j \), we write

\[
x_1, \ldots, x_i \rightarrow y_1, \ldots, y_j
\]

to mean that \(y_1, \ldots, y_j \) are deterministic functions of \(x_1, \ldots, x_i \). We say that \(x_1, \ldots, x_i \) yield \(y_1, \ldots, y_j \).

In this paper, we study four specific networks, namely the Generalized Butterfly network, the Fano network, the non-Fano network, and the Vamos network. The last three of these networks were shown to be matroidal in [8] and various capacities of these networks have been computed. However, the full achievable rate regions of these networks have not been previously determined, to the best of our knowledge. These particular networks were chosen to demonstrate that a wide variety of techniques can be useful for determining these achievable rate regions. Some other work on achievable rates and capacities has been done in [5], [15], [21]. We note that the derivations presented in this paper were often quite challenging, even though in hindsight they may appear neat and concise. We hope that some intuition can be learned from the derivations present herein.

The Generalized Butterfly network (studied in Section II and illustrated in Figure 1) has the same topology as the usual Butterfly network [2], but instead of one source at each of nodes \(v_1 \) and \(v_2 \), there are two sources at each of these nodes. For each of the source nodes, one of its source messages is demanded by receiver \(v_5 \) and the other by receiver \(v_6 \). The usual Butterfly network is the special case when messages \(a \) and \(d \) do not exist (or are just not demanded by any receiver).

A large majority of network coding publications mention in some context the Butterfly network, so it plays an important role in the field.

The Fano network (studied in Section III and illustrated in Figure 2) and the non-Fano network (studied in Section V and illustrated in Figure 6) were used in [7] as components of a larger network to demonstrate the unachievability of network coding capacity. Specifically, in [7] the Fano network was shown to be solvable if and only if the alphabet size is a power of 2 and the non-Fano network was shown to be solvable if and only if the alphabet size is odd. In [9], the Fano and non-Fano networks were used to build a solvable multicast network whose reverse (i.e. all edge directions change, and sources and receivers exchange roles) was not solvable, in contrast to the case of linear solvability, where reversals of linearly solvable multicast networks were previously known to be linearly solvable [16], [17], [20]. In [6], the Fano and non-Fano networks were used to construct a network which disproved a previously published conjecture asserting that all solvable networks are vector linearly solvable over some finite field and some vector dimension.

The Vamos network (studied in Section VII and illustrated in Figure 10) was used in [8] to demonstrate that non-Shannon-type information inequalities could yield upper bounds on network coding capacity which are tighter than the tightest possible bound theoretically achievable using only Shannon-type information inequalities. Here we completely determine the routing and linear rate regions for the Vamos network, but only give partial results for the non-linear rate region (which indicate that it could be quite complicated).

Finally, we present a new method for proving bounds on achievable rate regions for linear coding, which actually produces explicit linear rank inequalities which directly imply the desired bounds.

II. Generalized Butterfly network

Theorem II.1. The achievable rate regions for either linear or non-linear coding are the same for the Generalized Butterfly network and are equal to the closed polytope in \(\mathbb{R}^4 \) whose faces lie on the 9 planes:

\[
\begin{align*}
ra &= 0 \\
rb &= 0 \\
rc &= 0 \\
r d &= 0 \\
r b &= 1 \\
rc &= 1 \\
ra + rb + rc &= 2 \\
rb + rc + rd &= 2 \\
ra + rb + rc + rd &= 3
\end{align*}
\]

and whose vertices are the 14 points:

\[
\begin{align*}
(0, 0, 0, 0) & \quad (0, 0, 0, 2) & \quad (2, 0, 0, 0) & \quad (0, 1, 0, 0) \\
(0, 0, 1, 0) & \quad (2, 0, 0, 1) & \quad (1, 0, 0, 2) & \quad (0, 0, 1, 1) \\
(1, 1, 0, 0) & \quad (1, 0, 1, 1) & \quad (1, 1, 0, 1) & \quad (0, 1, 1, 0) \\
(0, 1, 0, 1) & \quad (1, 0, 1, 0) &
\end{align*}
\]
uniformly distributed over a random variable whose components are independent and identically distributed. The message dimensions are given by k_a, k_b, k_c, and k_d, and the edge dimensions by n. Let each source be a random variable whose components are independent and uniformly distributed over A. Then the solution must satisfy the following inequalities:

\begin{align}
 k_a &\geq 0 \\
 k_b &\geq 0 \\
 k_c &\geq 0 \\
 k_d &\geq 0 \\
 k_a + k_b + k_c = H(a, b, c) &\leq H(x, y|d) \\
 k_b + k_c + k_d = H(b, c, d) &\leq H(y, z|a) \\
 k_a + k_b + k_c + k_d = H(a, b, c, d) &\leq 3n.
\end{align}

(1)–(4) are trivial; (5) follows because

\[
 c, d, y \rightarrow y, z \rightarrow b, d
\]

(at node v_6), and therefore $a, c, d, y \rightarrow a, b, c, d$ and thus $H(a, b, c, d) = H(a, c, d, y)$; similarly for (6); (7) follows because $x, y \rightarrow a, c$ (at node v_2), $c, d, y \rightarrow b, d$ (at node v_6), and therefore

\[
 d, x, y \rightarrow a, c, d, y \rightarrow a, b, c, d
\]

and thus $H(a, b, c, d) = H(d, x, y)$; similarly for (8); (9) follows because $x, y, z \rightarrow a, b, c, d$ (at nodes v_3 and v_6). Dividing each inequality in (1)–(9) by n gives the 9 bounding hyperplanes stated in the theorem.

Let

\[
 r_a = k_a/n \\
 r_b = k_b/n \\
 r_c = k_c/n \\
 r_d = k_d/n
\]

and let P denote the polytope in \mathbb{R}^4 consisting of all 4-tuples (r_a, r_b, r_c, r_d) satisfying (1)–(9). Then (1)–(4) and (9) ensure that P is bounded. One can easily calculate that each point in \mathbb{R}^4 that satisfies some independent set of four of the inequalities (1)–(9) with equality and also satisfies the remaining five inequalities must be one of the 14 points stated in the theorem. Now we show that all 14 such points do indeed lie in the achievable rate region, and therefore their convex hull equals the achievable rate region. The following 5 points are achieved by taking $n = 1$ with the following codes over any field (where, if $k_a = 2$, the two components of a are denoted a_1 and a_2):

\[
 (2, 0, 0, 1): \quad x = a_1, \quad y = a_2, \quad z = d \\
 (1, 0, 0, 2): \quad x = a, \quad y = d_1, \quad z = d_2 \\
 (1, 0, 1, 1): \quad x = a, \quad y = c, \quad z = d \\
 (1, 1, 0, 1): \quad x = a, \quad y = b, \quad z = d \\
 (0, 1, 1, 0): \quad x = b, \quad y = b + c, \quad z = c
\]
and the remaining 9 points are achieved by fixing certain messages to be 0.

Since the above codes are all linear, the achievable rate regions for linear and non-linear codes are the same. By (9), we have $C_{\text{average}} \leq 3/4$, and this upper bound is achievable by routing using the code given above for the point $(2,0,0,1)$, namely taking $x = a_1, y = a_2,$ and $z = d$. By (8), we have $C_{\text{routing}} \leq 2/3$; since

$$
(2/3)(1,1,1,1) = (1/3)(1,0,1,1)
+ (1/3)(1,1,0,1)
+ (1/3)(0,1,1,0)
$$

the upper bound of $2/3$ is achievable by a convex combination of the linear codes given above for the points $(1,0,1,1)$, $(1,1,0,1)$, and $(0,1,1,0)$, as follows. Take $k = 2$ and $n = 3$ and use the (linear) code determined by:

$$
x = (a_1, a_2, b_2)
y = (c_1, b_1, b_2 + c_2)
z = (d_1, d_2, c_2).
$$

By (10), we have $C_{\text{routing}} \leq 1/2$, and this upper bound is achievable, for example, by taking a convex combination of codes that achieve $(1,0,1,0)$ and $(0,1,0,1)$, as follows. Take $k = 1$ and $n = 2$ and use the routing code determined by:

$$
x = (0, a)
y = (b, c)
z = (d, 0).
$$

The capacity $C_{\text{routing}} = 3/4$ follows immediately from the proof of Theorem II.1.

III. Fano network

![Fano network](image)

Theorem II.2. The achievable rate region for routing for the Generalized Butterfly network is the closed polytope in \mathbb{R}^4 bounded by the 9 planes in Theorem II.1 together with the plane

$$
r_b + r_c = 1
$$

and whose vertices are the 13 points:

$$
(0,0,0,0) \quad (0,0,0,2) \quad (2,0,0,0) \quad (0,1,0,0) \\
(0,1,0,1) \quad (0,0,1,0) \quad (2,0,0,1) \quad (1,0,0,2) \\
(0,0,1,1) \quad (1,0,1,0) \quad (1,1,0,0) \quad (1,0,1,1) \\
(1,1,0,1).
$$

Furthermore, the routing capacities are given by:

$$
C_{\text{routing}}^{\text{uniform}} = 1/2 \\
C_{\text{routing}}^{\text{average}} = 3/4.
$$

Proof: With routing, in addition to the inequalities (1)–(9), a solution must also satisfy

$$
k_b + k_c \leq n
$$

since all of the components of messages b and c must be carried by the edge labeled y. One can show that each point in \mathbb{R}^4 that satisfies with equality some independent set of four of the inequalities (1)–(9) and (10) and also satisfies the remaining six inequalities must be one of the 13 points stated in this theorem (i.e. 13 of the 14 points stated in Theorem II.1 by excluding the point $(0,1,1,0)$). The proof of Theorem II.1 showed that all vertices of \mathcal{P} except $(0,1,1,0)$ were achievable using routing.

Theorem III.1. The achievable rate regions for either linear coding over any finite field alphabet of even characteristic or non-linear coding are the same for the Fano network and are equal to the closed polyhedron in \mathbb{R}^3 whose faces lie on the
7 planes (see Figure 3):
\[r_a = 0\]
\[r_b = 0\]
\[r_c = 0\]
\[r_a = 1\]
\[r_c = 1\]
\[r_b + r_c = 2\]
\[r_a + r_b = 2\]

and whose vertices are the 8 points:
\[(0, 0, 0) \quad (0, 0, 1) \quad (1, 0, 0) \quad (0, 2, 0)\]
\[(0, 1, 1) \quad (1, 0, 1) \quad (1, 1, 0) \quad (1, 1, 1)\].

Proof: Consider a network solution over an alphabet \(\mathcal{A}\) and denote the source message dimensions by \(k_a, k_b,\) and \(k_c,\) and the edge dimensions by \(n.\) Let each source be a random variable whose components are independent and uniformly distributed over \(\mathcal{A}\). Then the solution must satisfy the following inequalities:
\[k_a \geq 0\] (11)
\[k_b \geq 0\] (12)
\[k_c \geq 0\] (13)
\[k_a = H(a) = H(z|b, c) \leq H(z) \leq n\] (14)
\[k_c = H(c) = H(y|a, b) \leq H(y) \leq n\] (15)
\[k_b + k_c = H(b, c) = H(x, z|a) \leq H(x, z) \leq 2n\] (16)
\[k_a + k_b = H(a, b) = H(x, z|c) \leq H(x, z) \leq 2n.\] (17)

(11)–(13) are trivial; (14) follows because
\[z, b, c \rightarrow z, y \rightarrow a\]
(at node \(v_{14}\)) so \(z, b, c \rightarrow a, b, c\) and thus \(H(z, b, c) = H(a, b, c);\) (15) follows because
\[a, b, y \rightarrow a, w, y \rightarrow a, x \rightarrow c\]
(at node \(v_{12}\)) so \(a, b, y \rightarrow a, b, c\) and thus \(H(a, b, y) = H(a, b, c);\) (16) follows because
\[a, x, z \rightarrow a, b, c\]
(at nodes \(v_{12}\) and \(v_{13}\)) and thus \(H(a, x, z) = H(a, b, x);\) (17) follows from: \(x, z \rightarrow b\) (at node \(v_{13}\)), \(b, c \rightarrow y\) (at node \(v_5\)),
\[x, z, c \rightarrow z, b, c \rightarrow y, z, b, c \rightarrow a, b, c\]
so \(H(x, z, c) = H(a, b, c).\) Dividing each inequality in (11)–(17) by \(n\) gives the 7 bounding planes stated in the theorem.

Let \(r_a = k_a/n, r_b = k_b/n,\) and \(r_c = k_c/n,\) and let \(\mathcal{P}\) denote the polygon in \(\mathbb{R}^3\) consisting of all 3-tuples \((r_a, r_b, r_c)\) satisfying (11)–(17). Then \(\mathcal{P}\) is bounded by (11)–(17). One can easily calculate that each point in \(\mathbb{R}^3\) that satisfies some set of three of the inequalities (11)–(17) with equality and also satisfies the remaining four inequalities must be one of the 8 points stated in the theorem. Now we show that all 8 such points do indeed lie in \(\mathcal{P}\). The following 5 points are seen to lie in \(\mathcal{P}\) by taking \(n = 1\) and the following codes over any even-characteristic finite field:
\[(0, 1, 1) : x = y = c, w = z = b\]
\[(1, 0, 1) : x = y = c, w = z = a\]
\[(1, 1, 0) : x = y = b, w = z = a\]
\[(0, 2, 0) : x = y = b_1, w = z = b_2\]
\[(1, 1, 1) : w = a + b, y = b + c, x = a + c, z = a + b + c\]
and the remaining 3 points are achieved by fixing certain messages to be 0 (note that the codes for \((0, 1, 1), (1, 0, 1),\) and \((1, 1, 0)\) can be obtained from the linear code for \((1, 1, 1)\) but we gave routing solutions for them here).
Since the above codes are all linear, the achievable rate regions for linear and non-linear codes are the same. ■

It was shown in [6] that for the Fano network, \(C_{\text{average}} = C_{\text{uniform}} = 1\) and \(C_{\text{linear}} = 1\) for all even-characteristic fields and \(C_{\text{uniform}} = 4/5\) for all odd-characteristic fields. The calculation of \(C_{\text{uniform}} = 4/5\) in [6] required a rather involved computation. We now extend that computation to give the following theorem.

Fig. 3. The achievable coding rate region for the Fano network is a 7-sided polyhedron with 8 vertices.
Theorem III.2. The achievable rate region for linear coding over any finite field alphabet of odd characteristic for the Fano network is equal to the closed polyhedron in \mathbb{R}^3 whose faces lie on the 8 planes (see Figure 4):

$$
\begin{align*}
\begin{array}{c}
(0, 0, 0) \\
(0, 0, 1) \\
(0, 1, 1) \\
(2/3, 2/3, 1) \\
(1, 0, 0) \\
(0, 2, 0) \\
(1, 0, 1) \\
(0, 0, 1) \\
(0, 0, 0)
\end{array}
\end{align*}
$$

and whose vertices are the 10 points:

$$
\begin{align*}
(0, 0, 0) & \quad (0, 0, 1) & \quad (1, 0, 0) & \quad (0, 2, 0) \\
(1, 1, 0) & \quad (1, 0, 1) & \quad (2/3, 2/3, 1) & \quad (1, 2/3, 2/3) & \quad (4/5, 4/5, 4/5). \\
\end{align*}
$$

Proof: In addition to satisfying the conditions (11)–(17), the solution must satisfy the following inequalities:

$$
\begin{align*}
k_a + 2k_b + 2k_c & \leq 4n \\
2k_a + k_b + 2k_c & \leq 4n \\
2k_a + 2k_b + k_c & \leq 4n
\end{align*}
$$

The proofs of these inequalities are given in Section IV, and an alternate proof of (19) is given in Section A.

A straightforward argument as in previous theorems shows that the vertices of the (bounded) region specified by inequalities (11)–(15) and (18)–(20) (inequalities (16) and (17) are now redundant) are the ten vertices listed in the theorem. For the first seven of these, the codes given in Theorem III.1 work here as well; the remaining points are attained by the following three codes (the last of which was given in [6]):

$$
\begin{align*}
(1, 2/3, 2/3): & \quad n = 3, \\
& \quad w = (a_1 + b_1, a_2 + b_2, a_3) \\
& \quad x = (a_1 - c_1, a_2 - c_2, a_2 + b_2) \\
& \quad y = (b_1 + c_1, b_2 + c_2, b_1) \\
& \quad z = (a_1 + b_1 - c_1, a_2 + b_2 + c_2, a_3)
\end{align*}
$$

$$
\begin{align*}
(2/3, 2/3, 1): & \quad n = 3, \\
& \quad w = (a_1 + b_1, a_2 + b_2, a_3) \\
& \quad x = (a_1 - c_1, a_2 - c_2, c_1) \\
& \quad y = (b_1 + c_1, b_2 + c_2, c_3) \\
& \quad z = (a_1 + b_1 - c_1, a_2 - b_2 - c_2, c_1)
\end{align*}
$$

Fig. 4. The achievable linear coding rate region over even-characteristic finite fields for the Fano network is a 8-sided polyhedron with 8 vertices.

Theorem III.3. The achievable rate region for routing for the Fano network is the closed polyhedron in \mathbb{R}^3 whose faces lie on the 6 planes (see Figure 5):

$$
\begin{align*}
\begin{array}{c}
(0, 0, 0) \\
(0, 0, 1) \\
(1, 0, 0) \\
(0, 2, 0) \\
(0, 1, 1) \\
(1, 1, 0)
\end{array}
\end{align*}
$$

and whose vertices are the 7 points:

$$
\begin{align*}
(4/5, 4/5, 4/5): & \quad n = 5, \\
w & = (a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4, b_1 + b_4) \\
x & = (c_1 + a_1, c_2 + a_2, c_3 - a_3, c_4 - a_4, a_3 + b_3) \\
y & = (c_1 - b_1, c_2 - b_2, c_3 + b_3, c_4 + b_4, b_2) \\
z & = (a_1 + b_1 + c_1, a_2 + b_2 + c_2, a_3 + b_3 + c_3, \\
& \quad a_4 + b_4 + c_4, b_1 + b_4 + c_4).
\end{align*}
$$

\[
\begin{array}{c}
A \\
\bullet
\end{array}
\]
Proof: With routing, in addition to the inequalities (11)–(17), a solution must also satisfy

\[k_a + k_b + k_c \leq 2n \]

since all of the components of messages \(a, b, \) and \(c \) must be carried by the edges labeled \(x \) and \(z \). One can easily check that the extreme points of the new region with the inequality (21) added are the 7 points stated in this theorem (i.e., the points stated in Theorem III.1 excluding the point \((1,1,1)\)); see figure 5. The proof of Theorem III.1 showed that all vertices of \(\mathcal{P} \) other than \((1,1,1)\) were achievable using routing.

We will do this by following and extending the arguments from Section IV of [6], with minor modifications needed because we now have separate source message dimensions \(k_a, k_b, k_c \) instead of a single message dimension \(k \).

These arguments are built up step-by-step, starting from a proof that (in this case) the network is not scalar-linear solvable over a field of odd characteristic. This is extended to a proof that the network is not vector-linear solvable (with \(k_a = k_b = k_c = n \)) over such a field; arguments involving division of scalar network coefficients turn into arguments involving matrices, so, as in section II of [6], one first has to show that the relevant matrices are invertible.

When one proceeds to the case where the \(k \)’s can differ from \(n \), the matrices are no longer completely invertible; one has to extract as large a part of them as possible that is invertible. Constructing the achievable rate region becomes an iterative process. Given the bounds produced so far, one determines the extreme points (corners) of the resulting region and tries to find linear network codes attaining these points; if such an attempt fails, the reason for that failure can lead to an improvement in the matrix argument and hence a new bounding inequality. The iteration continues until, it is hoped, success is attained because all of the current extreme points have been achieved. Here we will just give the final result of that iteration.

We already have the bounds \(k_a \leq n \) and \(k_c \leq n \) (but we do not necessarily have \(k_b \leq n \)). Therefore, we can think of the length-\(n \) symbol vectors \(w \) and \(z \) (referred to in [6] as \(e_{13,17} \) and \(e_{22,30} \)) as coming in two parts, one of length \(k_a \) and one of length \(\delta_a = n - k_a \). Similarly, we can think of the symbol vectors \(x \) and \(y \) (referred to in [6] as \(e_{21,29} \) and \(e_{14,18} \)) as coming in two parts, one of length \(k_b \) and one of length \(\delta_c = n - k_c \). In order to consider what happens to these parts separately, we decompose each of the transition matrices \(M_i \) from [6] in the form

\[
M_i = \begin{bmatrix}
R_i & S_i \\
T_i & U_i
\end{bmatrix}
\]

where the submatrices \(R_i, S_i, T_i, U_i \) are of appropriate sizes (or are omitted altogether if appropriate). For instance, for \(i = 2 \) we have that \(R_2 \) is \(k_a \times k_b \), \(T_2 \) is \(\delta_a \times k_b \), and \(S_2 \) and \(U_2 \) are omitted; for \(i = 5 \) we have that \(R_5 \) is \(k_c \times k_a \), \(S_5 \) is \(k_c \times \delta_a \), \(T_5 \) is \(\delta_c \times k_a \), and \(U_5 \) is \(\delta_c \times \delta_a \).

We can now follow the arguments on pages 2752–2755 of [6] and verify that they apply in this new context with no further changes. In particular, the following formulas from pages 2754 and 2755 of [6] still hold:

\[
(U_7 + T_8S_5)T_2b + T_8R_5R_2b, \quad T_3b \rightarrow
\]

\[
(I + R_8R_5)T_2b + (S_7 + R_8S_5)T_2b
\]

(25)

and

\[
T_5a + T_3R_2b + U_5T_2b + U_5T_3b,
\]

\[
a + R_2b + S_7T_2b - R_8S_5a,
\]

\[
U_7T_2b - T_8R_5a
\]

\[
\rightarrow b.
\]

(26)

Fig. 5. The achievable routing rate region for the Fano network is a 6-sided polyhedron with 7 vertices.

IV. PROOFS OF REMAINING BOUNDS FOR THE FANO NETWORK

For the case of linear coding over a finite field of odd characteristic, we want to prove the bounds:

\[
k_a + 2k_b + 2k_c \leq 4n
\]

(22)

\[
2k_a + k_b + 2k_c \leq 4n
\]

(23)

\[
2k_a + 2k_b + k_c \leq 4n.
\]

(24)
Since the field has odd characteristic, we can let
\[a' = a + 2^{-1}R_2b \]
and then rewrite (26) in the following form:
\[
T_5a' + 2^{-1}T_5R_2b + U_5T_2b + U_6T_3b, \\
(I - R_8R_5)a' + 2^{-1}((I + R_8R_5)R_2b \\
+ (S_7 + R_8S_5)T_2b + (S_7 - R_8S_5)T_3b), \\
U_7T_2b + 2^{-1}T_8R_5R_2b - T_8R_5a' \rightarrow b.
\]
(27)

Note that \(a' \) has \(k_a \) independent components and is independent of \(b \), just like \(a \), because \(a', b \rightarrow a, b \).

The three vectors on the left-hand side of (26) have respective dimensions \(\delta_c, k_a, \) and \(\delta_a \); these add up to \(2n - k_c \).
From these vectors we can compute all of \(b \) by (26), and then we can also reconstruct some information about \(a \), namely \((I - R_8R_5)a \) from the second of the three vectors and \(T_8R_5a \) from the third vector. (We can also get \(T_5a \) from the first vector, but this will not be used below.) This gives a total of
\[
k_b + \text{rank}
\begin{bmatrix}
I - R_8R_5 \\
T_8R_5
\end{bmatrix}
\]
independent components reconstructed from these three vectors, so we must have
\[
k_b + \text{rank}
\begin{bmatrix}
I - R_8R_5 \\
T_8R_5
\end{bmatrix} \leq 2n - k_c.
\]
(28)

Now, using (28), we see that
\[
T_2b, T_3b, T_8R_5R_2b \rightarrow (I + R_8R_5)R_2b.
\]
(29)

But we can add \((I + R_8R_5)R_2b\) and \((I - R_8R_5)R_2b\) to get \(2R_2b\), which yields \(R_2b\) because the field has odd characteristic. And (26) implies
\[
a, T_2b, T_3b, R_2b \rightarrow a, b.
\]
(30)

Putting these together, we get
\[
a, T_2b, T_3b, \begin{bmatrix}
I - R_8R_5 \\
T_8R_5
\end{bmatrix} R_2b \rightarrow a, b.
\]

Now, using (28) and the known sizes of the vectors \(a, T_2b, \) and \(T_3b \), we get the inequality
\[
k_a + n - k_a + n - k_c + 2n - k_c - k_b \geq k_a + k_b,
\]
which reduces to (22).

Using (25) and (27) together, we get
\[
a', T_2b, T_3b, T_8R_5R_2b, T_5R_2b \rightarrow a', b \rightarrow a, b,
\]
yielding the inequality
\[
k_a + n - k_a + n - k_c + n - k_a + n - k_c \geq k_a + k_b,
\]
which is (23).

For the remaining inequality (24), we will use the following fact: if \(M \) is a \(k \times k \) matrix and \(N \) is an \(r \times k \) matrix, then
\[
\text{rank}
\begin{bmatrix}
M \\
N
\end{bmatrix}
+ \text{rank}
\begin{bmatrix}
M - I \\
N
\end{bmatrix}
+ \text{rank}
\begin{bmatrix}
M + I \\
N
\end{bmatrix}
\geq 2k + \text{rank}(N).
\]
(31)

Since \(1 \neq -1 \) in a field of odd characteristic, (31) is a special case of:

Lemma IV.1. If \(M \) is a \(k \times k \) matrix and \(N \) is an \(r \times k \) matrix, and the scalars \(\lambda_1, \ldots, \lambda_t \) are distinct, then
\[
\sum_{i=1}^{t} \text{rank}
\begin{bmatrix}
M - \lambda_i I \\
N
\end{bmatrix} \geq (t - 1)k + \text{rank}(N).
\]
(32)

We thank Nghi Nguyen for supplying the following clean proof of this result.

Proof: Let \(E_i \) be the null space of \(M - \lambda_i I \), and let \(E \) be the null space of \(N \). Then
\[
\text{rank}
\begin{bmatrix}
M - \lambda_i I \\
N
\end{bmatrix} = k - \dim(E_i \cap E)
\]
and
\[
\text{rank}(N) = k - \dim(E).
\]

So (32) is equivalent to
\[
tk - \sum_{i} \dim(E_i \cap E) \geq tk - \dim(E)
\]
and hence to
\[
\sum_{i} \dim(E_i \cap E) \leq \dim(E),
\]
and the latter inequality is true because the subspaces \((E_i \cap E)\) are linearly independent in \(E \). (If \(v \in E \) is the sum of vectors \(v_i \in E_i \cap E \) for \(1 \leq i \leq t \), then we can recover the vectors \(v_i \) from \(v \) using formulas such as
\[
(\lambda_1 - \lambda_2) \ldots (\lambda_1 - \lambda_t)v_1 = (M - \lambda_2 I) \ldots (M - \lambda_t I)v.
\]

\[\blacksquare \]

Now, we have
\[
\text{rank}
\begin{bmatrix}
R_8R_5 - I \\
T_8R_5
\end{bmatrix} \leq 2n - k_c - k_b
\]
from (28). Since
\[
\begin{bmatrix}
R_8R_5 \\
T_8R_5
\end{bmatrix} = \begin{bmatrix}
R_8 \\
T_8
\end{bmatrix}R_5,
\]
we have
\[
\text{rank}
\begin{bmatrix}
R_8R_5 \\
T_8R_5
\end{bmatrix} \leq \text{rank}(R_5) \leq k_c.
\]
Now, as stated on page 2756 of [6], we can find a matrix \(Q\) such that
\[
\text{rank} \left(\begin{bmatrix} I + R_k R_5 \\ T_k R_5 \\ Q \end{bmatrix} \right) = k_a
\]
and
\[
\text{rank}(Q) = k_a - \text{rank} \left(\begin{bmatrix} I + R_k R_5 \\ T_k R_5 \end{bmatrix} \right).
\]
so
\[
\text{rank} \left(\begin{bmatrix} I + R_k R_5 \\ T_k R_5 \end{bmatrix} \right) = k_a - \text{rank}(Q).
\]
Substituting these facts into (31) gives
\[
2n - k_c - k_b + k_c + k_a - \text{rank}(Q) \\
\geq 2k_a + \text{rank}(T_k R_5).
\]
But (33) implies that
\[
\begin{bmatrix} I + R_k R_5 \\ T_k R_5 \\ Q \end{bmatrix} R_2 b \rightarrow R_2 b;
\]
combining this with (29) and (30) yields
\[
T_2 b, T_3 b, T_5 R_5 R_2 b, Q R_2 b \rightarrow b.
\]
Using this with the bound on \(\text{rank}(T_k R_5)\) obtained from (34), we get
\[
n - k_a + n - k_c + 2n - k_a - k_b - \text{rank}(Q) + \text{rank}(Q) \\
\geq k_b,
\]
which reduces to the desired inequality (24).

V. NON-FANO NETWORK

Theorem V.1. The achievable rate region for either linear coding over any finite field alphabet of odd characteristic or non-linear coding are the same for the non-Fano network and are equal to the closed cube in \(\mathbb{R}^3\) whose faces lie on the 6 planes (see Figure 7):
\[
\begin{align*}
r_a &= 0 \\
r_b &= 0 \\
r_c &= 0 \\
r_a &= 1 \\
r_b &= 1 \\
r_c &= 1
\end{align*}
\]
and whose vertices are the 8 points:
\[
\begin{align*}
(0, 0, 0) & \quad (0, 0, 1) & \quad (1, 0, 0) & \quad (0, 1, 0) \\
(0, 1, 1) & \quad (1, 0, 1) & \quad (1, 1, 0) & \quad (1, 1, 1)
\end{align*}
\]

Proof: Consider a network solution over an alphabet \(\mathcal{A}\) and denote the source message dimensions by \(k_a\), \(k_b\), and \(k_c\), and the edge dimensions by \(n\). Let each source be a random variable whose components are independent and uniformly distributed over \(\mathcal{A}\). Then the solution must satisfy the following inequalities:
\[
\begin{align*}
k_a &\geq 0 \\
k_b &\geq 0 \\
k_c &\geq 0 \\
k_a &= H(a) = H(z|b, c) \leq H(z) \leq n \\
k_b &= H(b) = H(z|a, c) \leq H(z) \leq n \\
k_c &= H(c) = H(z|a, b) \leq H(z) \leq n.
\end{align*}
\]
(36)–(38) are trivial; (39) follows because
\[
z, b, c \rightarrow z, y \rightarrow a
\]
(at node \(v_1\)), so \(z, b, c \rightarrow a, b, c\) and thus \(H(a, b, c) = H(z, b, c)\). (40) follows because
\[
z, a, c \rightarrow z, x \rightarrow b
\]
(at node \(v_1\)), so \(z, a, c \rightarrow a, b, c\) and thus \(H(a, b, c) = H(z, a, c) = H(z, b, c)\). (41) follows because
\[
z, w, z \rightarrow z, y \rightarrow a
\]
(at node \(v_1\)), so \(z, a, c \rightarrow a, b, c\) and thus \(H(a, b, c) = H(z, a, c) = H(z, b, c)\).
\[H(z, a, c). \] (41) follows because
\[z, a, b \rightarrow z, w \rightarrow c \]
(at node \(v_{12}\), so \(z, a, b \rightarrow a, b, c\) and thus \(H(a, b, c) = H(z, a, b)\)). Dividing each inequality in (36)–(41) by \(n\) gives the 8 bounding planes stated in the theorem.

Let \(r_a = k_a/n, r_b = k_b/n,\) and \(r_c = k_c/n,\) and let \(P\) denote the polyhedron in \(\mathbb{R}^3\) consisting of all 3-tuples \((r_a, r_b, r_c)\) satisfying (36)–(41). Then \(P\) is simply the unit cube shown in Figure 7, and its extreme points are the 8 points stated in the theorem. To show that the 8 points lie in the achievable rate region, let \(n = k_a = k_b = k_c = 1\) and use the following linear code for \((1, 1, 1)\) over any odd-characteristic finite field:
\[w = a + b, \ y = b + c, \ x = a + c, \ z = a + b + c \]
where node \(v_{15}\) can recover its demand via
\[c = (w - y + x) \cdot 2^{-1}. \]

The other 7 points are obtained by setting certain messages to 0 in the code for \((1, 1, 1)\). Since the above codes are all linear, the achievable rate regions for linear and non-linear codes are the same.

Theorem V.2. The achievable rate region for linear coding over any finite field alphabet of even characteristic for the non-Fano network is equal to the closed polyhedron in \(\mathbb{R}^3\) whose faces lie on the 7 planes (see Figure 8):
\[r_a = 0, \ r_b = 0, \ r_c = 0, \ r_a = 1, \ r_b = 1, \ r_c = 1, \ r_a + r_b + r_c = 5/2 \]
and whose vertices are the 10 points:
\[
\begin{align*}
(0, 0, 0) & \quad (0, 0, 1) & \quad (1, 0, 0) & \quad (0, 1, 0) \\
(0, 1, 1) & \quad (1, 0, 1) & \quad (1, 1, 0) \\
(1, 1, 1/2) & \quad (1, 1/2, 1) & \quad (1/2, 1, 1).
\end{align*}
\]

Proof: The six inequalities from Theorem V.1 still apply here; the proof that the additional inequality
\[2k_a + 2k_b + 2k_c \leq 5n \]
must also hold in the case of even-characteristic finite fields is given in Section VI (and another proof is given in Section B).

The new inequality (42) cuts down the achievable rate region to the polyhedron shown in Figure 8, whose extreme points are the 10 points listed in the theorem. The point \((1, 1, 1/2)\) is achieved by the following code with \(n = k_a = k_b = 2\) and \(k_c = 1\), which works over any finite field:
\[w = (a_1, b_1) \]
\[y = (b_1 + c, b_2) \]
\[x = (a_1 + c, a_2) \]
\[z = (a_1 + b_1 + c, a_2 + b_2). \]

The other two new extreme points are achieved by permuting the variables in the above code.

Note that both the uniform capacity and average capacity are 5/6 for the non-Fano network, for any even-characteristic finite field.

![Figure 7](image)

Theorem V.3. The achievable rate region for routing for the non-Fano network is the closed tetrahedron in \(\mathbb{R}^3\) whose faces lie on the 4 planes (see Figure 9):
\[r_a = 0, \ r_b = 0, \ r_c = 0, \ r_a + r_b + r_c = 1 \]
and whose vertices are the 4 points:
\[(0, 0, 0), \ (0, 0, 1), \ (1, 0, 0), \ (0, 1, 0).\]
(0,0,1) (1,0,1) (1/2,1,1) (0,1,1) (0,0,0) (1,0,0) (1,1,0) (1,1/2,1) (0,1,0) (1,1,1/2)

Fig. 8. The achievable linear coding rate region over even-characteristic finite fields for the non-Fano network is a 7-sided polyhedron with 10 vertices.

Proof: In addition to satisfying (36)–(41), a routing solution must also satisfy

\[k_a + k_b + k_c \leq n \]

(43)

since the edge labeled \(z \) must carry all 3 messages \(a, b, \) and \(c \). The inequality (43) makes the inequalities (39)–(41) redundant, and, in fact, the vertices of the polygon determined by (36)–(38) and (43) are the 4 listed in the theorem. These are achievable using the following routing codes:

\[
\begin{align*}
(0,0,1): & \quad y = z = c \\
(1,0,0): & \quad z = a \\
(0,1,0): & \quad z = b.
\end{align*}
\]

VI. PROOF OF REMAINING BOUND FOR THE NON-FANO NETWORK

For the case of linear coding over a finite field of characteristic 2, we want to prove the bound:

\[2k_a + 2k_b + 2k_c \leq 5n \]

(44)

We will again do this by following the arguments from Section IV of [6], with minor modifications. (Those arguments were for a different network which was two copies of the non-Fano network with one demand node merged, but a number of them concentrated on just the left half of that network and hence will be directly applicable to the non-Fano network.)

The ideas behind the proof are basically the same as in section IV, although the specific linear algebra techniques that ended up being needed were somewhat different.

The matrices \(M_1 \) through \(M_{15} \) will be the same as they are on pages 2756–2757 of [6]; they label a part of the network there which is identical to the non-Fano network. Again here, instead of one value \(\delta = n - k \) we have three values

\[
\begin{align*}
\delta_a &= n - k_a \\
\delta_b &= n - k_b \\
\delta_c &= n - k_c.
\end{align*}
\]

When we talk about thinking of an edge vector as one part of length \(k \) followed by one part of length \(n - k \), we will use \(k = k_c \) here; so, for instance, \(R_7 \) is a \(k_c \times k_a \) matrix, while \(R_9 \) is \(k_c \times k_c \).

Now follow the argument from pages 2756–2757 of [6] as written, except that \(L \) is just the five vectors

\[
\begin{align*}
M_3a + M_4c, \\
M_5b + M_6c, \\
Q_{13}(M_7a + M_9c), \\
Q_{15}(M_8b + M_9c), \\
Q_{10}(M_1a + M_2b)
\end{align*}
\]

without any "corresponding five objects" from the other side. The same argument then yields \(L \rightarrow a, b, c \). Since \(M_{15}M_7 = I_{k_a} \), we have \(\text{rank}(M_{15}) \geq k_a \) and hence \(\text{rank}(Q_{15}) \leq \delta_a \);
similarly, \(\text{rank}(Q_{13}) \leq \delta_b \). Therefore, following the computation on page 2757 of [6], we find that \(L \) has only

\[
n + n + [\delta_a + \delta_b - (k_c - \alpha)] + [n - \alpha] = 2n + \delta_a + \delta_b + \delta_c
\]

independent entries. Therefore,

\[
2n + \delta_a + \delta_b + \delta_c \geq k_a + k_b + k_c,
\]

so

\[
2k_a + 2k_b + 2k_c \leq 5n.
\]

VII. VÁMOS NETWORK

![Vámos network diagram](image)

Theorem VII.1. The achievable rate region for routing for the Vámos network is the polytope in \(\mathbb{R}^4 \) whose faces lie on the planes:

\[
\begin{align*}
r_a &= 0 \\
r_b &= 0 \\
r_c &= 0 \\
r_d &= 0 \\
2r_a + r_b + 2r_d &= 2 \\
r_a + r_b + r_c + 2r_d &= 2
\end{align*}
\]

and whose vertices are the points

\[
\begin{align*}
(0, 0, 0, 0) & \quad (1, 0, 0, 0) & \quad (0, 0, 0, 1) \\
(1, 0, 1, 0) & \quad (0, 2, 0, 0) & \quad (0, 0, 2, 0)
\end{align*}
\]

Proof:

The first 4 planes are trivial.

Now, notice that in a routing solution, \(y \) must carry all of \(a \) and \(d \) in order to meet the demands at nodes \(v_{10} \) and \(v_{12} \), respectively. Thus, \(x \) must carry all of \(a \) and \(d \) too. Also, \(x \) and \(y \) together must carry all of \(b \) in order to meet the demand at node \(v_9 \). In summary, \(x \) and \(y \) together must carry at least 2 copies of \(a \), 2 copies of \(d \), and one copy of \(b \). This implies

\[
2k_a + 2k_b + 2k_d \leq 2n
\]

and therefore

\[
2r_a + r_b + 2r_d \leq 2.
\]

Similarly, \(w \) must carry all of \(d \) in order to meet the demand at node \(v_{12} \), and \(w \) and \(y \) together must carry all of \(b \) and \(c \) in order to meet the demands at nodes \(v_{11} \) and \(v_{13} \). Since \(y \) must carry all of \(a \) and \(d \), we conclude that \(w \) and \(y \) together must carry at least one copy of \(a \), one copy of \(b \), one copy of \(c \), and two copies of \(d \). This implies

\[
k_a + k_b + k_c + 2k_d \leq 2n
\]

and therefore

\[
r_a + r_b + r_c + 2r_d \leq 2.
\]

It is easy to check that the vertices of the polytope bounded by the 6 planes listed in the theorem are the 6 vertices listed in the theorem. Each of the 6 vertices can be achieved as follows:

- (0000) trivially;
- (1000) with \(x = y = z = a \);
- (0001) with \(w = x = y = z = d \);
- (1010) with \(w = c \) and \(x = y = z = a \);
- (0200) with \(w = x = b_1 \) and \(y = z = b_2 \);
- (0020) with \(w = x = c_1 \) and \(y = z = c_2 \).

The following theorem uses only Shannon-type information inequalities to obtain a polytopal outer bound in \(\mathbb{R}^4 \) to the achievable rate region.

Theorem VII.2. The achievable rate region for the Vámos network lies inside the polytope in \(\mathbb{R}^4 \) whose faces lie on the
and whose vertices are the points:

\[
\begin{align*}
(0, 2, 0, 1) & \quad (0, 2, 0, 0) & \quad (1, 1, 1, 0) & \quad (1, 1, 0, 0) \\
(1, 1, 0, 1) & \quad (1, 0, 0, 1) & \quad (0, 0, 0, 1) & \quad (0, 0, 0, 0) \\
(1, 0, 0, 0) & \quad (1, 0, 1, 1) & \quad (0, 0, 1, 1) & \quad (0, 1, 1, 1) \\
(1, 0, 2, 0) & \quad (0, 2, 0, 0) & \quad (1, 1, 1, 1).
\end{align*}
\]

Proof: Consider a network solution over an alphabet \(\mathcal{A}\) and denote the source message dimensions by \(k_a, k_b, k_c, \text{ and } k_d\), and the edge dimensions by \(n\). Let each source be a random variable whose components are independent and uniformly distributed over \(\mathcal{A}\). Then the solution must satisfy the following inequalities:

\[
\begin{align*}
k_a & \geq 0 \quad (45) \\
k_b & \geq 0 \quad (46) \\
k_c & \geq 0 \quad (47) \\
k_d & \geq 0 \quad (48) \\
k_a &= H(a) \leq H(z|b, c, d) \leq n \quad (49) \\
k_d &= H(d) \leq H(y|a, b, c) \leq n \quad (50) \\
k_b + k_c &= H(b, c) \leq H(w, z|a, d) \\
& \leq H(w, z) \leq 2n \quad (51) \\
k_a + k_b &= H(a, b) \leq H(x, z|c, d) \\
& \leq H(y, z) \leq 2n \quad (52) \\
k_c + k_d &= H(c, d) \leq H(w, y|a, b) \\
& \leq H(w, y) \leq 2n. \quad (53)
\end{align*}
\]

(45)–(48), (50) are trivial; (49) follows because \(b, c, d, z \rightarrow a\); (51) follows because \(a, b, c, y \rightarrow d\); (52) follows because \(a, d, w, z \rightarrow b, c\); (53) follows because \(w, y, a, b \rightarrow c, d\). Dividing each inequality in (45)–(53) by \(n\) gives the 9 bounding hyperplanes stated in the theorem.

Let

\[
\begin{align*}
r_a &= k_a/n \\
r_b &= k_b/n \\
r_c &= k_c/n \\
r_d &= k_d/n
\end{align*}
\]

and let \(P\) denote the polytope in \(\mathbb{R}^4\) consisting of all 4-tuples \((r_a, r_b, r_c, r_d)\) satisfying (1)–(9). Then (45)–(48) and (52)–(53) ensure that \(P\) is bounded. One can easily calculate that each point in \(\mathbb{R}^4\) that satisfies some independent set of four of the inequalities (45)–(53) with equality and also satisfies the remaining five inequalities must be one of the 15 points stated in the theorem.

For further bounds, we use the following result from [10]:

Suppose that \(A, B, C, \text{ and } D\) are random variables and we have an information inequality of the form

\[
\begin{align*}
& a_1 I(A; B) \\
& \leq a_2 I(A; B|C) + a_3 I(A; C|B) + a_4 I(B; C|A) \\
& + a_5 I(A; B|D) + a_6 I(A; D|B) + a_7 I(B; D|A) \\
& + a_8 I(C; D) + a_9 I(C; D|A) + a_{10} I(C; D|B).
\end{align*}
\]

Then we get the following bound on the Vamos message and edge entropies:

\[
\begin{align*}
& (a_2 + a_3 + a_4) H(a) \\
& + (a_2 + a_3 + a_5 + a_9 + a_{10}) H(b) \\
& + (a_5 + a_7 + a_9 + a_{10}) H(c) \\
& + (a_5 + a_6 + a_7) H(d) \\
& + (a_2 - a_1 - a_7) I(c; y) \\
& + (a_4 + a_7 - a_{10}) I(b; x) \\
& \leq (a_5 + a_6 + a_7 + a_8 + a_9 + a_{10}) H(w) \\
& + (a_2 + a_3 + a_4 + a_7) H(x) \\
& + (-a_1 + a_2 + a_5 + a_9) H(y) \\
& + (a_3 + a_8 + a_{10}) H(z).
\end{align*}
\]

And by the same argument, if (54) is a linear rank inequality (for a particular characteristic), then (55) holds for any linear (for that characteristic) fractional code for the Vamos network.

If the inequalities

\[
\begin{align*}
a_2 & \geq a_1 + a_7 \\
a_4 + a_7 & \geq a_{10}
\end{align*}
\]

are satisfied, then the inequality (55) directly leads to a Vamos achievable rate region bound, by neglecting the (nonnegative) terms involving \(I(c; y)\) and \(I(b; x)\). Specifically, in this case, by substituting

\[
\begin{align*}
H(a) &= k_a \\
H(b) &= k_b \\
H(c) &= k_c \\
H(d) &= k_d \\
H(w) &= H(x) = H(y) = H(z) = n
\end{align*}
\]
into (55), we obtain

\[
\begin{align*}
 & k_a(a_2 + a_3 + a_4) \\
 & + k_b(a_2 + a_3 + a_8 + a_9 + a_{10}) \\
 & + k_c(a_5 + a_7 + a_8 + a_9 + a_{10}) \\
 & + k_d(a_5 + a_6 + a_7) \\
 \leq & n(-a_1 + 2a_2 + 2a_3 + a_4 + 2a_5 \\
 & + a_6 + 2a_7 + 2a_8 + 2a_9 + a_{10}).
\end{align*}
\] (57)

Theorem VII.3. The achievable rate region for linear coding over any finite field alphabet for the Vámós network is the polytope in \(\mathbb{R}^4 \) whose faces lie on the 10 planes:

\[
\begin{align*}
 r_a &= 0 \\
 r_b &= 0 \\
 r_c &= 0 \\
 r_d &= 0 \\
 r_a + r_b &= 2 \\
 r_c + r_d &= 2 \\
 r_a + 2r_b + 2r_c + r_d &= 5
\end{align*}
\]

and whose vertices are the points

\[
\begin{align*}
 (0, 0, 0, 0) & \quad (0, 0, 0, 1) & \quad (1, 0, 0, 1) & \quad (1, 0, 0, 0) \\
 (0, 0, 2, 0) & \quad (0, 0, 1, 1) & \quad (1, 0, 1, 1) & \quad (1, 0, 0, 0) \\
 (1, 1, 0, 0) & \quad (0, 2, 0, 0) & \quad (1, 1, 1/2, 1) & \quad (1, 1/2, 1, 1) \\
 (0, 2, 0, 1) & \quad (1, 1, 1, 0) & \quad (0, 1, 1, 1) & \quad (1, 0, 2, 0).
\end{align*}
\]

Proof: The first nine bounding planes come from Theorem VII.2. The tenth bounding plane is shown by letting (54) be the Ingleton inequality [14], which can be written in the form

\[
I(A; B) \leq I(A; B|C) + I(A; B|D) + I(C; D)
\]

and which is a linear rank inequality for all characteristics, to get the Vámós linear rate region bound

\[
H(a) + 2H(b) + 2H(c) + H(d) \leq 2H(w) + H(x) + H(y) + H(z)
\]

from (55).

The proof that the extreme points of the polytope bounded by these planes are the 16 points listed above is left as an exercise for the reader’s computer (we used cdlib [11]).

Here are linear codes over an arbitrary field) achieving six of the extreme points:

\[
\begin{align*}
 (1, 1, 1, 0): & \quad n = 1, \\
 & \quad w = a + c \\
 & \quad x = a \\
 & \quad y = z = a + b \\
 (0, 1, 1, 1): & \quad n = 1, \\
 & \quad w = x = b + d \\
 & \quad y = b + c + d \\
 & \quad z = c \\
 (1, 0, 2, 0): & \quad n = 1, \\
 & \quad w = c_1 \\
 & \quad x = a \\
 & \quad y = z = a + c_2 \\
 (0, 2, 0, 1): & \quad n = 1, \\
 & \quad w = x = b_1 + d \\
 & \quad y = z = b_2 + d \\
 (1, 1, 1/2, 1): & \quad n = 2, \\
 & \quad w = (b_a + d_1, c + d_2) \\
 & \quad x = (a_1 + d_1, a_2 + b + c + d_2) \\
 & \quad y = (a_1 + b_1 + d_1, a_2 + d_2) \\
 & \quad z = (a_1 + b_1, a_2 + c) \\
 (1, 1/2, 1, 1): & \quad n = 2, \\
 & \quad w = (c_1 + d_1, b + d_2) \\
 & \quad x = (a_1 + c_1 + d_1, a_2 + d_2) \\
 & \quad y = (a_1 + d_1, a_2 + b + c_2 + d_2) \\
 & \quad z = (a_1 + c_2, a_2 + b)
\end{align*}
\]

The remaining 10 points are achieved by fixing certain messages to be 0.

The following theorem uses the non-Shannon-type Zhang-Yeung information inequality to obtain an additional outer bound in \(\mathbb{R}^4 \) to the achievable rate region.

Theorem VII.4. The achievable rate region for non-linear coding for the Vámós network is bounded by the inequalities:

\[
\begin{align*}
 4r_a + 4r_b + 2r_c + r_d & \leq 10 \quad (58) \\
 2r_a + 2r_b + 4r_c + 4r_d & \leq 11 \quad (59) \\
 r_a + 2r_b + 4r_c + 5r_d & \leq 11 \quad (60) \\
 5r_a + 6r_b + 6r_c + 5r_d & \leq 20. \quad (61)
\end{align*}
\]

Proof: If we let (54) be the Zhang-Yeung inequality [23], which can be written in the form

\[
I(A; B) \leq 2I(A; B|C) + I(A; C) + I(B; C|A) \\
+ I(A; B|D) + I(C; D),
\]

(62)
then we get the Vámos network bound

$$4H(a) + 4H(b) + 2H(c) + H(d) + I(c; y) \leq 2H(w) + 4H(x) + 2H(y) + 2H(z)$$

(63)

from (55). This immediately gives the inequality (58) (we can simply discard the $I(c; y)$ term).

Also, we can let (54) be (62) with variables C and D interchanged; then the result from (55) is

$$H(a) + 2H(b) + 4H(c) + 4H(d) - I(c; y) + I(b; y) \leq 5H(w) + 2H(x) + 2H(y) + H(z).$$

(64)

This does not directly give a rate region bound, because the term $-I(c; y)$ cannot be simply discarded. However, if we add (63) and (64), we get an inequality that yields (61); if we add to (64) the inequality

$$H(a) + I(c; y) \leq H(y)$$

(which, as noted in [10], holds in the Vámos network because $b, c, d, y \rightarrow a$), we get (59); and if we add to (64) the inequality

$$H(d) + I(c; y) \leq H(y)$$

(which, as noted in [10], holds in the Vámos network because $a, b, c, y \rightarrow d$), we get (60).

Many additional non-Shannon-type information inequalities are given in [10]. These can be used as above to give additional bounds on the achievable rate region for non-linear coding for the Vámos network. In fact, the inequalities from [10] using at most four copy variables with at most three copy steps yield 158 independent constraints on this achievable rate region. (Note: inequalities (58)–(61) are superseded by these new inequalities.) One of these is used in [10] to show that the uniform coding capacity of the Vámos network is at most 19/21.

Since there are infinitely many information inequalities on four random variables [18], it is quite possible that the achievable rate region for non-linear coding for the Vámos network is not a polytope. On the other hand, this rate region could be quite simple; to date, no fractional solution is known for the Vámos network which lies outside the achievable rate region for linear coding.

VIII. NEW LINEAR RANK INEQUALITIES FROM NETWORKS

We now give a new method for producing bounds on achievable rate regions for linear coding. Unlike the previous method using matrix algebra, this method actually produces explicit linear rank inequalities (perhaps only true for some characteristics) which directly imply the bounds in question. However, it is not clear yet that this new method can produce all results obtained from the matrix algebra method. We will use the method to prove one of the three bounds needed for the Fano network, and a weaker version of the bound needed for the non-Fano network; we hope to find further refinements of the method later which will yield all four of these bounds.

In particular, we produce an explicit linear rank inequality valid only for odd-characteristic fields, and another linear rank inequality valid only for even-characteristic fields. Such inequalities have also been produced by Blasiak, Kleinberg, and Lubetzky [3] (also by use of the Fano and non-Fano matroids), but those inequalities do not directly give bounds for the networks here.

Unlike the matrix computation method, which concentrates on the matrices specifying how information moves forward through the network, the new method concentrates on inverse functions specifying how the information on each edge was produced from the information on its predecessor edges. (One can think of the edge as carrying some linear functions of the original message components; then the information on this edge can be thought of as the vector space spanned by these functions, as a subspace of the space of all linear functions of the message components.) If the network conditions are satisfied, then the information can be traced back from the receiver node to the source nodes using these functions; one will be able to give arguments that some of these functions are invertible, just as one gave arguments that some of the matrices were invertible or full-rank. But now we will go further, by saying that even if the network conditions do not quite hold, the reasoning about invertibility of the functions will still work on a subspace of the domain of the functions; the extent to which the reasoning does not work (i.e., the codimension of this subspace) is the same as the extent to which the network condition fails (which can also be measured in terms of dimensions of subspaces). The result will be that we can produce an unconditional (but perhaps dependent on characteristic) linear rank inequality which, in combination with the network conditions, will directly imply the desired rate region bound.

We start by giving some basic results in linear algebra.

If A is a subspace of a finite-dimensional vector space V, then we denote the codimension of A in V by

$$\text{codim}_V(A) = \dim(V) - \dim(A).$$

Linear rank inequalities are closely related to information inequalities. In fact, in order to describe linear rank inequalities we will borrow notation from information theory to use in the context of linear algebra in the following manner.

Suppose A and B are subspaces of a given vector space V, and let $\langle A, B \rangle$ denote the span of $A \cup B$. We will let $H(A)$ denote the rank of A, and let $H(A, B)$ denote the rank of $\langle A, B \rangle$. The meaning of conditional entropy notation with subspace dimensions then follows from

$$H(A|B) = H(A, B) - H(B)$$

that is, $H(A|B)$ denotes the excess rank of subspace A over that of subspace $A \cap B$, or equivalently, the codimension of $A \cap B$ in A. Similarly, the mutual information

$$I(A; B) = H(A) - H(A|B)$$

when applied to subspaces A and B, gives the dimension of the intersection $A \cap B$.
Lemma VIII.1. For any subspaces A_1, \ldots, A_m of finite-dimensional vector space V,
\[
\text{codim}_V \left(\bigcap_{i=1}^m A_i \right) \leq \sum_{i=1}^m \text{codim}_V (A_i).
\]

Lemma VIII.2. Let A and B be finite-dimensional vector spaces, let $f : A \to B$ be a linear function, and let B' be a subspace of B. Then
\[
\text{codim}_A (f^{-1}(B')) \leq \text{codim}_B (B').
\]

Proof: Let $S = f^{-1}(B')$ and let T be a subspace of A such that $S + T = A$ and $S \cap T = \{0\}$. Let $g : T \to B$ be a linear function such that $g = f$ on T. Then we have
\[
\begin{align*}
\text{codim}_A (S) &= \dim(T) \quad \text{[from $S + T = A$ and $S \cap T = \{0\}$]} \\
&= \dim(g(T)) + \text{nullity}(g) \\
&= \dim(g(T)) \quad \text{[from $g^{-1}(\{0\}) = \{0\}$]} \\
&\leq \text{codim}_B (B').
\end{align*}
\]

Lemma VIII.3. Let A_1, \ldots, A_k, B be subspaces of a finite-dimensional vector space V. There exist linear functions $f_i : B \to A_i$ (for $i = 1, \ldots, k$) such that $f_1 + \cdots + f_k = 1$ on a subspace of B of codimension $H(B|A_1, \ldots, A_k)$ in B.

Proof: The subspace is
\[
W = (A_1 + \cdots + A_k) \cap B.
\]
For each w_j in a basis for W, choose $x_{i,j} \in A_i$ for $i = 1, \ldots, k$ such that
\[
w_j = x_{1,j} + \cdots + x_{k,j}.
\]
Define linear maps $g_i : W \to A_i$ for $i = 1, \ldots, k$ so that $g_i(w_j) = x_{i,j}$ for all i and j; then extend each g_i arbitrarily to a linear map $f_i : B \to A_i$. We have
\[
H(B|A_1, \ldots, A_k) = \dim(B) - \dim(B \cap (A_1 + \cdots + A_k)) \\
= \dim(B) - \dim(W).
\]

Lemma VIII.4. Let A, B, C be subspaces of a finite-dimensional vector space V, and let $f : A \to B$ and $g : A \to C$ be linear functions such that $f + g = 0$ on A. Then $f = g = 0$ on a subspace of A of codimension at most $I(B; C)$ in A.

Proof: For all $u \in A$, $g(u) \in B$ so $f(u) = -g(u) \in B$ and therefore f maps A into $B \cap C$. Thus,
\[
\dim(A) - \text{nullity}(f) = \text{rank}(f) \leq \dim(B \cap C) = I(B; C)
\]
so the kernel of f has codimension at most $I(B; C)$ in A.

Lemma VIII.5. Let A, B_1, \ldots, B_k be subspaces of a finite-dimensional vector space V, and let $f_1 : A \to B_1$ be linear functions such that $f_1 + \cdots + f_k = 0$ on A. Then $f_1 = \cdots = f_k = 0$ on a subspace of A of codimension at most
\[
H(B_1) + \cdots + H(B_k) - H(B_1, \ldots, B_k)
\]
in A.

Proof: Use induction on k. The claim is trivially true for $k = 1$, and is true for $k = 2$ by Lemma VIII.4. Let us assume it is true up to $k - 1$ for $k \geq 3$. Apply Lemma VIII.4 with
\[
\begin{align*}
B &= B_k \\
C &= B_1 + \cdots + B_{k-1} \\
f &= f_k \\
g &= f_1 + \cdots + f_{k-1}
\end{align*}
\]
to get $f_1 + \cdots + f_{k-1} = f_k = 0$ on a subspace S of A satisfying
\[
\text{codim}_A (S) \leq H(B_1, \ldots, B_{k-1}) + H(B_k) - H(B_1, \ldots, B_k).
\]
By the induction hypothesis, $f_1 = \cdots = f_{k-1} = 0$ on a subspace S' of S satisfying
\[
\text{codim}_S (S') \leq H(B_1) + \cdots + H(B_{k-1}) - H(B_1, \ldots, B_{k-1}).
\]
Adding these two inequalities gives us the desired result for subspace S'.

A. A Linear Rank Inequality from the Fano Network

Theorem VIII.6. Let A, B, C, D, W, X, Y, Z be subspaces of a finite-dimensional vector space V over a scalar field of odd characteristic. Then, the following linear rank inequality holds:
\[
2H(A) + H(B) + 2H(C)
\]
\[
\leq H(W) + H(X) + H(Y) + H(Z) \\
+ 2H(A|Z, Y) + H(B|X, Z) + 2H(C|A, X) \\
+ 3H(X|W, Y) + 3H(Z|W, C) \\
+ 5H(W|A, B) + 5H(Y|B, C) \\
+ 5(H(A) + H(B) + H(C) - H(A, B, C)).
\]

Proof: See the Appendix.

In the context of the Fano network, all of the compound terms at the end of inequality (65) are zero, so this inequality directly implies inequality (19).

By replacing W with $W \cap (A + B + C + X + Y + Z)$ and similarly for $X, Y,$ and Z, one can improve the inequality to a balanced form where $H(W)$ becomes $I(W; A, B, C, X, Y, Z)$, $H(W|A, B)$ becomes $I(W; C, X, Y, Z|A, B)$, and similarly for $X, Y,$ and Z.

Theorem VIII.7. The linear rank inequality in Theorem VIII.6 holds for any scalar field if $\dim(V) \leq 2$, but may not hold if the scalar field has characteristic 2 and $\dim(V) \geq 3$.

Proof: See the Appendix.
B. A Linear Rank Inequality from the non-Fano Network

Theorem VIII.8. Let A, B, C, W, X, Y, Z be subspaces of a finite-dimensional vector space V over a scalar field of even characteristic. Then, the following linear rank inequality holds:

$$
2H(A) + 3H(B) + 2H(C)
\leq H(W) + H(X) + H(Y) + 3H(Z)
+ 2H(A|Y, Z) + 3H(B|X, Z) + H(C|W, Z)
+ 2H(W|A, B) + 4H(X|A, C) + 3H(Y|B, C)
+ 6H(Z|A, B, C) + H(C|W, X, Y)
+ 7(H(A) + H(B) + H(C) - H(A, B, C)). \quad (66)
$$

Proof: See the Appendix. □

In the context of the non-Fano network, all of the compound terms at the end of inequality (66) are zero, so this inequality directly implies the inequality

$$
2k_a + 3k_b + 2k_c \leq 6n, \quad (67)
$$

which is a weaker version of inequality (42).

Theorem VIII.9. The linear rank inequality in Theorem VIII.8 holds for any scalar field if $\dim(V) \leq 2$, but may not hold if the scalar field has odd characteristic and $\dim(V) \geq 3$.

Proof: In $V = GF(p)^3$ for any odd prime p, define the following subspaces of V:

$$
A = \langle (1, 0, 0) \rangle
B = \langle (0, 1, 0) \rangle
C = \langle (0, 0, 1) \rangle
W = \langle (1, 1, 0) \rangle
X = \langle (1, 0, 1) \rangle
Y = \langle (0, 1, 1) \rangle
Z = \langle (1, 1, 1) \rangle
$$

It is easily verified that the inequality in Theorem VIII.8 is not satisfied in this case. To show that the inequality indeed holds if $\dim(V) \leq 2$, one can again show that the inequality becomes a Shannon inequality under the assumption that $H(A) = 0$, or under the assumption $H(B|A) = 0$, or under the assumption $H(C|A, B) = 0$. If all three of these assumptions fail, then we must have

$$
\dim(V) \geq H(A, B, C) > H(A, B) > H(A) > 0 \quad (68)
$$

and hence $\dim(V) \geq 3$. Or one can give a case-by-case direct argument. □

APPENDIX

Proof of Theorem VIII.6:
We will use the Fano network in Figure 2, derived in [8], from the Fano matroid, to help guide the proof. By Lemma VIII.3, there exist linear functions

$$
f_1 : W \rightarrow A \quad f_2 : W \rightarrow B
f_3 : Y \rightarrow B \quad f_4 : Y \rightarrow C
f_5 : X \rightarrow W \quad f_6 : X \rightarrow Y
f_7 : Z \rightarrow W \quad f_8 : Z \rightarrow C
f_9 : C \rightarrow A \quad f_{10} : C \rightarrow X
f_{11} : B \rightarrow X \quad f_{12} : B \rightarrow Z
f_{13} : A \rightarrow Z \quad f_{14} : A \rightarrow Y
$$

such that

$$
f_1 + f_2 = I \text{ on a subspace } W' \text{ of } W \text{ with codim}_W(W') \leq H(W|A, B) \quad (A.1)
f_3 + f_4 = I \text{ on a subspace } Y' \text{ of } Y \text{ with codim}_Y(Y') \leq H(Y|B, C) \quad (A.2)
f_5 + f_6 = I \text{ on a subspace } X' \text{ of } X \text{ with codim}_X(X') \leq H(X|W, Y)
f_7 + f_8 = I \text{ on a subspace } Z' \text{ of } Z \text{ with codim}_Z(Z') \leq H(Z|W, C) \quad (A.3)
f_9 + f_{10} = I \text{ on a subspace } C' \text{ of } C \text{ with codim}_C(C') \leq H(C|A, X)
f_{11} + f_{12} = I \text{ on a subspace } B' \text{ of } B \text{ with codim}_B(B') \leq H(B|X, Z)
f_{13} + f_{14} = I \text{ on a subspace } A' \text{ of } A \text{ with codim}_A(A') \leq H(A|Z, Y). \quad (A.4)
$$
Combining these, we get maps
\begin{align}
f_1 f_7 f_{13} & : A \to A \tag{A.5} \\
f_2 f_7 f_{13} + f_3 f_{14} & : A \to B \tag{A.6} \\
f_8 f_{13} + f_4 f_{14} & : A \to C. \tag{A.7}
\end{align}

Note that
\begin{align*}
f_1 f_7 f_{13} + f_2 f_7 f_{13} & = f_7 f_{13} \\
on the subspace f_{13} \Delta f_{13} & = f_{13} \\
on the subspace f_{13} \Delta f_{13} & = f_{13} \\
on the subspace f_{13} \Delta f_{13} & = f_{13} \\
on the subspace f_{13} \Delta f_{13} & = f_{13}
\end{align*}
so the sum of the functions in (A.5)–(A.7) is equal to \(I \) on the subspace
\begin{align*}
A'' & = A' \cap f_{13}^{-1} (Z') \cap f_{13}^{-1} (W') \cap f_{14}^{-1} (Y') \\
\text{and we get}
\begin{align*}
\text{codim}_A (A'') & \leq \text{codim}_A (A') + \text{codim}_A (f_{13}^{-1} (Z')) \\
& + \text{codim}_A (f_{13}^{-1} (W')) + \text{codim}_A (f_{14}^{-1} (Y')) \\
& \leq \text{codim}_A (A') + \text{codim}_A (Z') + \text{codim}_A (W') + \text{codim}_A (Y')
\end{align*}
\text{[from Lemma VIII.1]}
\begin{align*}
& \leq H (A | Z, Y) + H (Z | W, C) + H (W | A, B) + H (Y | B, C) \\
& \text{[from Lemma VIII.2]}
\end{align*}
\text{[from VIII.1), (A.2), (A.3), (A.4)]}

Applying Lemma VIII.5 to
\begin{align*}
f_1 f_7 f_{13} - I \\
f_2 f_7 f_{13} + f_3 f_{14} \\
f_8 f_{13} + f_4 f_{14}
\end{align*}
we get a subspace \(\bar{A} \) of \(A'' \) such that
\begin{align*}
\text{codim}_A (\bar{A}) & = \text{codim}_A (A'') + \text{codim}_A (\bar{A}) \\
& \leq \Delta_A \tag{A.8} \\
& \leq H (A | Z, Y) + H (Z | W, C) + H (W | A, B) + H (Y | B, C) \\
& + H (A) + H (B) + H (C) - H (A, B, C) \tag{A.9}
\end{align*}
on which
\begin{align*}
f_1 f_7 f_{13} & = I \tag{A.10} \\
f_2 f_7 f_{13} + f_3 f_{14} & = 0 \\
f_8 f_{13} + f_4 f_{14} & = 0.
\end{align*}
Similarly, we get a subspace \(\bar{C} \) of \(C \) such that
\begin{align*}
\text{codim}_C (\bar{C}) & \leq \Delta_C \tag{A.11} \\
& \leq H (C | A, X) + H (X | W, Y) + H (W | A, B) + H (Y | B, C) \\
& + H (A) + H (B) + H (C) - H (A, B, C) \tag{A.12}
\end{align*}
on which
\begin{align*}
f_4 f_6 f_{10} & = I \tag{A.13} \\
f_2 f_5 f_{10} + f_3 f_6 f_{10} & = 0 \\
f_9 + f_1 f_5 f_{10} & = 0
\end{align*}
and a subspace \(\bar{B} \) of \(B \) such that
\begin{align*}
\text{codim}_B (\bar{B}) & \leq \Delta_B \tag{A.14} \\
& \leq H (B | X, Z) + H (X | W, Y) + H (Z | W, C) + H (W | A, B) \\
& + H (Y | B, C) + H (A) + H (B) + H (C) - H (A, B, C) \tag{A.15}
\end{align*}
on which
\begin{align*}
f_2 f_5 f_{11} + f_3 f_7 f_{12} + f_3 f_6 f_{11} & = I \\
f_1 f_5 f_{11} + f_1 f_7 f_{12} & = 0 \\
f_4 f_6 f_{11} + f_8 + f_{12} & = 0.
\end{align*}
Note: There is only one \(H (W | A, B) \) in (A.15) because we can write
\begin{align*}
f_1 f_5 f_{11} + f_1 f_7 f_{12} & = f_1 (f_5 f_{11} + f_7 f_{12})
\end{align*}
for \(i = 1, 2 \).

Let us define the following subspaces of \(B \):
\begin{align*}
S_1 & = \{ u \in B : f_{11} u \in f_{10} \bar{C} \} \\
S_2 & = \{ u \in B : f_{12} u \in f_{13} \bar{A} \} \\
S_3 & = \{ u \in B : f_{13} f_{11} u \in f_{13} \bar{A} \} \\
S_4 & = \{ u \in B : f_{14} f_{13} f_{12} u \in f_{10} \bar{C} \} \\
S & = \bar{B} \cap S_1 \cap S_2 \cap S_3 \cap S_4. \tag{A.16}
\end{align*}

Then we have the following:
\begin{align*}
\text{codim}_B (S_1) & \leq \text{codim}_X (f_{10} \bar{C}) \tag{from Lemma VIII.2} \\
& = \text{dim} (X) - \text{dim} (\bar{C}) \\
& \leq \Delta_C + H (X) - H (C) \tag{from (A.11)} (A.17)
\end{align*}
\begin{align*}
\text{codim}_B (S_2) & \leq \text{codim}_Z (f_{13} \bar{A}) \tag{from Lemma VIII.2} \\
& = \text{dim} (Z) - \text{dim} (\bar{A}) \\
& \leq \Delta_A + H (Z) - H (A) \tag{from (A.8)} (A.18)
\end{align*}
We therefore obtain
\begin{align}
2t &= 2(f_2 f_5 f_{1t1} t + f_2 f_7 f_{12} t + f_3 f_6 f_{11} t) \\
&= (f_2 f_5 f_{1t1} t + f_2 f_7 f_{12} t) + (f_2 f_5 f_{1t1} t + f_3 f_6 f_{11} t) \\
&\quad + (f_2 f_7 f_{12} t + f_3 f_6 f_{11} t) \\
&= 0 + 0 + 0 = 0.
\end{align}

Since the field has odd characteristic, we must have \(t = 0 \).
Thus, \(S = \emptyset \), and therefore
\[
H(B) = \text{codim}_B(S)
\leq \text{codim}_B(\tilde{B}) + \sum_{i=1}^{4} \text{codim}_B(S_i)
\]
\[
\leq \Delta_B + 2\Delta_A + 2\Delta_C \\
+ H(W) + H(X) + H(Y) + H(Z) \\
- 2H(A) - 2H(C).
\]

The result then follows from (A.9), (A.12), and (A.15). \(\blacksquare \)

Proof of Theorem VIII.7:

In \(V = GF(2)^3 \), define the following subspaces of \(V \):

\[
A = \langle (1, 0, 0) \rangle \\
B = \langle (0, 1, 0) \rangle \\
C = \langle (0, 0, 1) \rangle \\
W = \langle (1, 1, 0) \rangle \\
X = \langle (1, 0, 1) \rangle \\
Y = \langle (0, 1, 1) \rangle \\
Z = \langle (1, 1, 1) \rangle
\]

It is easily verified that the inequality in Theorem VIII.6 is not satisfied in this case.

Next we show the inequality indeed holds if \(\dim(V) \leq 2 \). One way to do this is to show (using software such as Xitip [19]) that the inequality becomes a Shannon inequality under the assumption that \(H(A) = 0 \), or under the assumption \(H(B|A) = 0 \), or under the assumption \(H(C|A,B) = 0 \). If all three of these assumptions fail, then we must have
\[
\dim(V) \geq H(A, B, C) > H(A, B) > H(A) > 0
\]
and hence \(\dim(V) \geq 3 \).

Or one can give a direct argument by cases. Assume to the contrary that there exist subspaces \(A, B, C, W, X, Y, Z \) of vector space \(V \) such that
\[
2H(A) + H(B) + 2H(C) \\
> H(W) + H(X) + H(Y) + H(Z) \\
+ 2H(A|Z, Y) + H(B|X, Z) + 2H(C|A, X) \\
+ 3H(X|W, Y) + 3H(Z|W, C) \\
+ 5H(W|A, B) + 5H(Y|B, C) \\
+ 5(H(A) + H(B) + H(C) - H(A, B, C)).
\]
Let

\[Q = (H(A), H(B), H(C), H(A, B, C)) \]

\[R = H(A) + H(B) + H(C) - H(A, B, C). \]

Let LHS and RHS denote the left and right sides of inequality (A.25). We will obtain contradictions for all the possible values of \(Q \).

Case (i): \(\dim(V) = 1 \)

All entropies are 0 or 1. Since LHS \leq 5, at most one of \(H(A), H(B), H(C) \) can equal 1, for otherwise \(R \geq 1 \) would imply RHS \geq 5.

- **(001):** LHS = 2 implies \(H(A|Z, Y) = 0 \) which implies \(H(Z) = 1 \) or \(H(Y) = 1 \). Also, we must have \(H(Z|W, C) = H(Y|B, C) = 0 \), the latter implying \(H(Y) = 0 \). So we must have \(H(Z) = 1 \) which in turn implies \(H(W) = 1 \) and therefore RHS \geq 2.

- **(0101):** LHS = 1 implies \(H(B|X, Z) = 0 \) which implies \(H(X) = 1 \) or \(H(Z) = 1 \), and therefore RHS \geq 1.

- **(0011):** LHS = 2 implies \(H(C|A, X) = 0 \) and \(H(X|W, Y) = 0 \), which imply \(H(X) = 1 \), which implies \(H(W) = 1 \) or \(H(Y) = 1 \) and therefore RHS \geq 2.

Case (ii): \(\dim(V) = 2 \)

All entropies are 0, 1, or 2. LHS \leq 10 implies RHS \leq 9, and therefore \(R \leq 1 \). LHS \geq 1 implies \(H(A, B, C) > 0 \) and therefore \(H(A, B, C) \in \{1, 2\} \).

- **(101):** LHS \leq 4 and \(R = 1 \) imply RHS \geq 5.

- **(1101):** Same.

- **(0111):** Same.

- **(2001):** Same.

- **(0201):** Same.

- **(0021):** Same.

- **(2012):** LHS = 6. \(R = 1 \) implies RHS \geq 5 which implies \(H(A|Z, Y) = 0 \) which implies \(H(Z, Y) \geq 1 \) and therefore RHS \geq 6.

- **(2022):** Same.

- **(1112):** LHS = 5. \(R = 1 \) implies RHS \geq 5.

- **(0122):** Same.

- **(2102):** Same.

- **(0212):** LHS = 4. \(R = 1 \) implies RHS \geq 5.

- **(1202):** Same.

- **(1001):** LHS = 2 implies \(H(A|Z, Y) = 0 \) which implies \(H(Z) = 1 \) or \(H(Y) = 1 \). If \(H(Z) = 1 \), then \(H(Z|W, C) = 0 \) which would imply \(H(W) = 1 \) and therefore RHS \geq 2. If \(H(Y) = 1 \), then \(H(Z|W, C) = 1 \) which would imply RHS \geq 5.

- **(0101):** LHS = 1 implies \(H(X) = H(Z) = 0 \) which implies \(H(B|X, Z) = 1 \) and therefore RHS \geq 1.

- **(0011):** LHS = 2 implies \(H(C|A, X) = 0 \) which implies \(H(X) = 1 \). Also, \(H(X|W, Y) = 0 \) implies \(H(W, Y) \geq 1 \) and therefore RHS \geq 2.

- **(0022):** LHS = 2 implies \(H(X) + H(Z) \leq 1 \) which implies \(H(B|X, Z) \geq 1 \) which implies \(H(B|X, Z) = 1 \) which implies \(H(X, Z) = 1 \) which implies \(H(X) + H(Z) = 1 \) and therefore RHS \geq 2.

- **(0022):** LHS = 4 implies \(H(W|A, B) = 0 \) which implies \(H(W) = 0 \). Also, \(H(C|A, X) \leq 1 \) implies \(H(X) \geq 1 \) which implies \(H(X|W, Y) = 0 \) which implies \(H(Y) \geq H(X) \). Thus, \(H(C|A, X) = 0 \) which implies \(X = C \) which implies \(H(Y) \geq H(C) = 2 \) and therefore RHS \geq 4.

- **(2002):** LHS = 4 implies \(H(Y|B, C) = 0 \) which implies \(H(Y) = 0 \). Also, \(H(A|Z, Y) \leq 1 \) implies \(H(Z) \geq 1 \). Additionally, \(H(Z|W, C) = 0 \) which implies \(H(W) \geq H(Z) \) which implies \(H(A|Z, Y) = 0 \) which implies \(H(Z) = 2 \) and therefore RHS \geq 4.

- **(1102):** LHS = 4 implies \(H(A|Z, Y) = 0 \) which implies \(H(Z) = 1 \). Additionally, \(H(Z|W, C) = 0 \) which implies \(H(W) \geq H(Z) \) which implies \(H(A|Z, Y) = 0 \) which implies \(H(Z) = 2 \) and therefore RHS \geq 4.

- **(1102):** LHS = 4 implies \(H(Y|B, C) = 0 \) which implies \(H(Y) = 0 \). Also, \(H(A|Z, Y) \leq 1 \) implies \(H(Z) \geq 1 \). Additionally, \(H(Z|W, C) = 0 \) which implies \(H(W) \geq H(Z) \) which implies \(H(A|Z, Y) = 0 \) which implies \(H(Z) = 2 \) and therefore RHS \geq 4.

Proof of Theorem VIII.8:

We will use the non-Fano network in Figure 6, derived in [8],
from the non-Fano matroid, to help guide the proof. By Lemma VIII.3, there exist linear functions

\[
\begin{align*}
&f_1 : W \to A & f_2 : W \to B \\
&f_3 : X \to A & f_4 : X \to C \\
&f_5 : Y \to B & f_6 : Y \to C \\
&f_7 : Z \to A & f_8 : Z \to B & f_9 : Z \to C \\
&f_{10} : C \to W & f_{11} : C \to Z \\
&f_{12} : B \to X & f_{13} : B \to Z \\
&f_{14} : A \to Y & f_{15} : A \to Z \\
&f_{16} : C \to W & f_{17} : C \to X & f_{18} : C \to Y
\end{align*}
\]

such that

\[
\begin{align*}
f_1 + f_2 &= I \text{ on a subspace } W' \text{ of } W \\
\text{codim}_W(W') &\leq H(W|A,B) \tag{A.26} \\
f_3 + f_4 &= I \text{ on a subspace } X' \text{ of } X \\
\text{codim}_X(X') &\leq H(X|A,C) \tag{A.27} \\
f_5 + f_6 &= I \text{ on a subspace } Y' \text{ of } Y \\
\text{codim}_Y(Y') &\leq H(Y|B,C) \tag{A.28} \\
f_7 + f_8 + f_9 &= I \text{ on a subspace } Z' \text{ of } Z \\
\text{codim}_Z(Z') &\leq H(Z|A,B,C) \tag{A.29} \\
f_{10} + f_{11} &= I \text{ on a subspace } C' \text{ of } C \\
\text{codim}_C(C') &\leq H(C|W,Z) \tag{A.30} \\
f_{12} + f_{13} &= I \text{ on a subspace } B' \text{ of } B \\
\text{codim}_B(B') &\leq H(B|X,Z) \tag{A.31} \\
f_{14} + f_{15} &= I \text{ on a subspace } A' \text{ of } A \\
\text{codim}_A(A') &\leq H(A|Y,Z) \tag{A.32} \\
f_{16} + f_{17} + f_{18} &= I \text{ on a subspace } C'' \text{ of } C \\
\text{codim}_C(C'') &\leq H(C|W,X,Y). \tag{A.33}
\end{align*}
\]

Combining these, we get maps

\[
\begin{align*}
f_{7}f_{15} : A \to A \tag{A.34} \\
f_5f_{14} + f_8f_{15} : A \to B \tag{A.35} \\
f_6f_{14} + f_9f_{15} : A \to C. \tag{A.36}
\end{align*}
\]

Note that

\[
\begin{align*}
f_5f_{14} + f_6f_{14} &= f_{14} \text{ on the subspace } f_{14}^{-1}(Y') \text{ of } A \\
f_{7}f_{15} + f_8f_{15} + f_9f_{15} &= f_{15} \text{ on the subspace } f_{15}^{-1}(Z') \text{ of } A
\end{align*}
\]

so the sum of the functions in (A.34)-(A.36) is equal to \(I \) on the subspace

\[
A'' \supset A' \cap f_{14}^{-1}(Y') \cap f_{15}^{-1}(Z')
\]

and we get

\[
\begin{align*}
\text{codim}_A(A'') &\leq \text{codim}_A(A') + \text{codim}_A(f_{14}^{-1}(Y')) \\
&\quad + \text{codim}_A(f_{15}^{-1}(Z')) \tag{from Lemma VIII.1} \\
&\leq \text{codim}_A(A') + \text{codim}_Y(Y') + \text{codim}_Z(Z') \tag{from Lemma VIII.2} \\
&\leq H(A|Y,Z) + H(Y|B,C) + H(Z|A,B,C). \tag{from (A.28),(A.29),(A.32)}
\end{align*}
\]

Applying Lemma VIII.5 to

\[
\begin{align*}
f_7f_{15} - I \\
f_5f_{14} + f_8f_{15} \\
f_6f_{14} + f_9f_{15}
\end{align*}
\]

we get a subspace \(\bar{A} \) of \(A'' \) such that

\[
\begin{align*}
\text{codim}_A(\bar{A}) &= \text{codim}_A(A'') + \text{codim}_A(\bar{A}) \tag{A.37} \\
&\leq \Delta_A \\
&= H(A|Y,Z) + H(Y|B,C) + H(Z|A,B,C) \\
&\quad + H(A) + H(B) + H(C) - H(A,B,C) \tag{A.38}
\end{align*}
\]

on which

\[
\begin{align*}
f_7f_{15} &= I \tag{A.39} \\
f_5f_{14} + f_8f_{15} &= 0 \tag{A.40} \\
f_6f_{14} + f_9f_{15} &= 0. \tag{A.41}
\end{align*}
\]

Similarly, we get a subspace \(\bar{B} \) of \(B \) such that

\[
\begin{align*}
\text{codim}_B(\bar{B}) &\leq \Delta_B \tag{A.42} \\
&= H(B|X,Z) + H(X|A,C) + H(Z|A,B,C) \\
&\quad + H(A) + H(B) + H(C) - H(A,B,C) \tag{A.43}
\end{align*}
\]

on which

\[
\begin{align*}
f_8f_{13} &= I \tag{A.44} \\
f_5f_{12} + f_7f_{13} &= 0 \tag{A.45} \\
f_4f_{12} + f_9f_{13} &= 0. \tag{A.46}
\end{align*}
\]

and a subspace \(\bar{C} \) of \(C \) such that

\[
\begin{align*}
\text{codim}_C(\bar{C}) &\leq \Delta_C \tag{A.47} \\
&= H(C|W,Z) + H(W|A,B) + H(Z|A,B,C) \\
&\quad + H(A) + H(B) + H(C) - H(A,B,C) \tag{A.48}
\end{align*}
\]

on which

\[
\begin{align*}
f_9f_{11} &= I \tag{A.49} \\
f_{1}f_{10} + f_{7}f_{11} &= 0 \tag{A.50} \\
f_{2}f_{10} + f_{8}f_{11} &= 0. \tag{A.51}
\end{align*}
\]
and a subspace \hat{C} of C such that
\[
codim_C(\hat{C}) \leq \hat{\Delta}_C \tag{A.52}
\]
\[
\begin{align*}
\hat{\Delta} & \triangleq H(C|W, X, Y) + H(W|A, B) \\
& \quad + H(X|A, C) + H(Y|B, C) \\
& \quad + H(A) + H(B) + H(C) - H(A, B, C) \\
& \quad \leq H(C) \tag{A.53}
\end{align*}
\]
on which
\[
\begin{align*}
f_{14}f_{17} + f_{5}f_{18} &= I \tag{A.54} \\
f_{14}f_{16} + f_{5}f_{17} &= 0 \tag{A.55} \\
f_{2}f_{16} + f_{5}f_{18} &= 0. \tag{A.56}
\end{align*}
\]
Define the following subspaces of Z:
\[
\begin{align*}
A^* &= f_{15}(\hat{A}) \\
B^* &= f_{13}(\hat{B}) \\
C^* &= f_{11}(\hat{C}).
\end{align*}
\]
By (A.39), the restriction maps
\[
\begin{align*}
f_{15}|\hat{A} : \hat{A} &\to A^* \\
f_{13}|A^* : A^* &\to \hat{A}
\end{align*}
\]
are inverses of each other, and hence are injective. Similarly, by (A.44), $f_8|B^*$ is the inverse of $f_{13}|\hat{B}$ and, by by (A.49), $f_9|C^*$ is the inverse of $f_{11}|\hat{C}$, so these are all injective. In particular,
\[
\begin{align*}
dim(A^*) &= \dim(\hat{A}) \tag{A.57} \\
dim(B^*) &= \dim(\hat{B}) \tag{A.58} \\
dim(C^*) &= \dim(\hat{C}). \tag{A.59}
\end{align*}
\]
Now let
\[
A^{**} = f_7(A^* \cap B^*) \subseteq \hat{A}.
\]
Then f_{15} is injective on A^{**} and
\[
f_{15}(A^{**}) = A^* \cap B^*
\]
so f_8f_{15} is injective on A^{**}. But
\[
f_{2}f_{14} + f_{5}f_{15} = 0
\]
on \hat{A}, so f_5f_{14} is injective on A^{**}, and hence so is f_{14}. This gives
\[
dim(f_{14}A^{**}) = \dim(A^{**}) = \dim(A^* \cap B^*). \tag{A.60}
\]
Similarly, let
\[
B^{**} = f_8(A^* \cap B^*) \subseteq \hat{B};
\]
then f_7f_{13} is injective on B^{**} and
\[
f_{3}f_{12} + f_{7}f_{13} = 0
\]
on B^{**}, so f_{12} is injective on B^{**} and
\[
dim(f_{12}B^{**}) = \dim(B^{**}) = \dim(A^* \cap B^*). \tag{A.61}
\]
And let
\[
C^{**} = f_9(B^* \cap C^*) \subseteq \hat{C};
\]
then $f_{8}f_{11}$ is injective on C^{**} and
\[
f_{2}f_{10} + f_{8}f_{11} = 0
\]
on C^{**}, so f_{10} is injective on C^{**} and
\[
dim(f_{10}C^{**}) = \dim(C^{**}) = \dim(B^* \cap C^*). \tag{A.62}
\]
Let us define the following subspaces of C:
\[
\begin{align*}
S_1 &= \{ u \in C : f_{16}u \in f_{10}C^{**}\} \\
S_2 &= \{ u \in C : f_{17}u \in f_{12}B^{**}\} \\
S_3 &= \{ u \in C : f_{18}u \in f_{14}A^{**}\} \\
S &= \hat{C} \cap S_1 \cap S_2 \cap S_3. \tag{A.63}
\end{align*}
\]
Then we have the following:
\[
\begin{align*}
codim_C(S_1) &\leq \begin{align*}
codim_C(f_{10}C^{**}) &\leq \begin{align*}
codim_W(f_{10}C^{**}) \\
&= \dim(W) - \dim(B^* \cap C^*) &\text{[from Lemma VIII.2]} \\
&= \dim(Z) + \dim(B) + \dim(C) &\text{[from (A.62)]} \\
&\leq \dim(Z) - \dim(B) &\text{[from Lemma VIII.1]} \\
&\leq \Delta_B + \Delta_C + H(W) + H(Z) - H(A) - H(B) &\text{[from (A.42),(A.47)]} \\
\end{align*} \\
&\leq \begin{align*}
\Delta_A + \Delta_B + H(W) + H(Z) - H(A) - H(B) &\leq \begin{align*}
codim_A(\hat{A}) + \begin{align*}
codim_B(\hat{B}) &\leq \begin{align*}
dim_X(f_{12}B^{**}) &\leq \begin{align*}
dim_X(f_{12}B^{**}) &\leq \begin{align*}
dim(W) + \dim(Z) - \dim(A) &\leq \begin{align*}
&= \dim(W) + \dim(Z) &\text{[from (A.57),A.58]} \\
&\leq \Delta_A + \Delta_B + H(W) + H(Z) - H(A) - H(B) &\text{[from (A.37),(A.42)]} \\
\end{align*} \\
\end{align*} \\
\end{align*} \\
\end{align*} \\
\end{align*}
\end{align*}
\]
\]}
Since \(f_{11c} \) and \(f_{15a} \) are both in \(B^* \), and \(f_8 \) is injective on \(B^* \), we get from (A.77) that \(f_{11c} = -f_{15a} \). This implies that \(f_{11c} \) is also in \(A^* \), and since \(f_{13b} \in A^* \) and \(f_7 \) is injective on \(A^* \), we get from (A.76) that \(f_{11c} = -f_{13b} \) and hence \(f_{15a} = f_{13b} \).

Hence, since the field has characteristic 2, we have

\[
t = -(f_9 f_{13b} + f_9 f_{15a}) = -(f_9 f_{13b} + f_9 f_{13b}) = 0.
\]

Since the choice of \(t \) was arbitrary, this implies \(S = \{0\} \), and therefore

\[
H(C) = \text{codim}_C(S) \leq \text{codim}_C(\hat{\mathcal{C}}) + \sum_{i=1}^{3} \text{codim}_C(S_i).
\]

[from (A.63), Lemma VIII.1]
\[
\leq \hat{\Delta} C + 2 \Delta A + 3 \Delta B + \Delta C + H(W) + H(X) + H(Y) + 3H(Z) - 2H(A) - 3H(B) - H(C)
\]

[from (A.52),(A.64),(A.65),(A.66)].

The result then follows from (A.38), (A.43), (A.48), and (A.53).

\[\]

