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Abstract

We present a new lower bound on the probability P. of
symbol error for maximum-likelihood decoding of lattice
codes on a Gaussian channel. Our bound is tight for
SNR's of practical interest, as opposed to the existing
bounds that are meaningful only for high SNR’s. More--
over, the new lower bound on P, is converted into an
upper bound on the highest possible coding gain that
may be achieved using any n-dimensional lattice code.
it is shown that the effective coding gains of the densest
lattice codes are much lower than the nominal coding
gains, at practical symbol error rates of 105 to 107".
Furthermore, it is shown that the new bound asymptot-
ically coincides with the Shannon limit as n — oc.

1. Introduction

Determining the maximum possible coding gain of an n-
dimensional lattice code is a fundamental problem in com-
munications. This problem has been extensively studied,
for instance in [1, 2, 3] and references therein.

In [2], it is shown that, assuming high rates and high
signal-to-noise ratio (SNR), the gain of a lattice code over
uncoded QAM transmission can be separated into a shap-
ing gain due to the shape of a bounding region and a cod-
ing gain due to the structure of the underlying lattice A.
Asymptotically, as SNR — oo, the latter approaches the
nominal coding gain of A which, in turn, depends only on
the density of A. Thus, for very high SNR’s, determining
the maximum possible coding gain of an n-dimensional
lattice code is equivalent to finding the densest possible
lattice packing in n-dimensions.

Nevertheless, there is usually a sharp discrepancy between
the nominal coding gain and the effective coding gain

*This work was supported by the National Science Foundation.
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observed at practical signal-to-noise ratios. Hence a more
careful analysis of the effective coding gain of lattice codes
at practical SNR's is necessary. Such analysis is presented
in this work.

2. Preliminaries

In this section, we first introduce some notation, and then
establish certain well known results that will be useful
later in the paper.

Let S be an open n-dimensional sphere of radius p. Anin-
finite set A of vectors y1,¥2,..-in R* isa sphere packing
if the translates y; + S,y2 + S, ... are pairwise disjoint.
It is a lattice packing, or simply a lattice, if the vectors
¥1,¥2,..- form a group under addition in K. Without
loss of generality, it is assumed that 2p = d(A) is the
minimum distance between two points of A. Then the
density A(A) of A is the fraction of the space covered by
the spheres, and the center density 8(A) is the density
divided by the volume V; of a unit sphere in R*. It is
known [1] that

k
a2 {’-,;- n=2k
Vo = —on = ) 1)
n/2)! ek ot
(n/2) Tre g = 2k4]
def

where (n/2)! = T(3+1) for both odd and even n, and

I(t) = [y ut~'e~du is Euler'’s Gamma function.

The Voronoi cell of a point y € A is a convex polyhedron,
which consists of all the points in K* that are at least as
close to y as to any other point in A. We let IT denote
the Voronoi cell of the origin of R*. (It is easy to see
that for lattice packings, Voronoi cells of all the points
are congruent to each other.) The volume of a lattice A
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is defined as the volume of II, that is V(A) = V(II). The
asymptotic, or the nominal, coding gain of A can then be
expressed as

d(A)?

¥(A) = 45(A)2/n = V(A2 (2

Now let = A + a be the translate of an n-dimensional
lattice A by a vector a, and let D be a connected, mea-
surable, non-empty bounded region of R*. Then a lattice
code C = C(A,D) is defined by C = QND, and D is called
the support region of the code. Because the support re-
gion is bounded and A is nowhere dense, a lattice code
has finitely many points, say C = {y1,¥2,...,¥m}- The
quantity R = log,(M)/n is called the rate of the code C.

Given a point y € R", we define the power of y as ||y||*/n.
The average power of the code C is then given by

M
P, = _1-2”%'”2 _TEyiy
av Ml=1 - i

If the number of codewords M is large, then it can be
approximated as M ~ V(D)/V (II). Thus, we have

R = la(VO)/V)
n

)

and M

2;’-_—.1 (yi -y:) V(II) (@)
' nV (D)

provided R is sufficiently large. The numerator of (4) is
a Riemann sum that can be approximated by fD X - X dx.
This, along with equations (3) and (4), is known [2] as
the continuous epprozimation. Using the continuous ap-
proximation, we have

Py >

Py =~ GD)V [@)*/" (5)
where
_ ppx-xdx
GMD) = nV (D) %+t

is the normalized second moment of the support re-
gion D. Notice that the average power of a lattice code
C = C(A,D) depends only on D. The quantity

1

is known [2] as the shaping gain of the support region D.

If a point y € C(A,D) is transmitted through an addi-
tive white Gaussian noise {AWGN) channel, the received
point is given by y + 77, where 7 is a vector of i.i.d. Gaus-
sian random variables with zero mean and variance o2.

We define the normalized signal-to-noise ratio as

PG‘U

SNRporm = m (6)
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Since the capacity of the AWGN channel is given by

1 P,
3 log; (1 + ﬁ)

Shannon’s theorem [5] for Gaussian channels has an ele-
gant statement in terms of SNRyorm. Namely, arbitrarily
small probabilities of symbol error can be achieved arbi-
trarily close to SNRyorm = 1 = 0dB.

For high rates R, we have 22% —1 ~ 22 ip the denomina-
tor of (6). Further, using (3) and (5), we conclude that the
normalized signal-to-noise ratio can be approximated by

FPoy G(D)V ()%~
SNRoorm = 221502 = p

Combining this with (2) gives

Lemmal.

p/o = 1/ 37.(D) Y(A) SNRuorm

Lemmal is well known, see for instance [2, 6]. The ap-
proximation of Lemma 1 is accurate for high rates.

3. Error analysis

In this section, we derive a new lower bound on the prob-
ability of symbol error for maximum-likelihood decoding
of n-dimensional lattice codes on an AWGN channel. The
bound is not asymptotic in SNR; it is reasonably tight at
SNR’s of practical interest, as will be shown later in this
section (see Figure 2). Moreover, as the bound applies to
any lattice code, we have effectively bounded the perfor-
mance of the best possible lattice codes in n dimensions.

The channel output y + 7 is decoded to y € C under
maximum-likelihood decoding, if and only if ¥y + 7 be-
longs to the Voronoi cell of y in the code C = C(A,D).
Thus, the probability of correct decoding is given by

P = /n f(x) dx. @

where
_ 1 -X-X
19 = e = (55)

is the probability density function of n. (In fact, if y lies
close to the boundary of I, then (7) is not necessarily
valid, since then the Voronoi cell of y in the lattice code
C(A,D) is not necessarily equal to the Voronoi cell of y
in the lattice A, which is congruent to II. However, we

show in [7] that for high-rate lattice codes, this boundary
effect is negligible.)




Now let S(r) denote the n-dimensional sphere of radius r
about the origin, having the same volume as II. This
sphere is sometimes called [4] the equivalent sphere of II.
The volume of S(r) is V7", and its radius is given by

_ Y@ VAMtgepre
" v
in view of (1). The following simple, but key, observation

dates back to the work of Shannon [5] (see also (8, p.329)),
and leads to most of the results in this section.

Lemma 2.
/ fx) dx < / Fx) dx 9
ot S(r)

Proof. Let =11\ (TINS(r)) and ¥ = S(r) \ (IINS(r)),
as in Figurel. It is obvious that (9) is equivalent to

Af(iddx < /wf(X)dx

Notice that V(®) = V(¥), by the definition of the equiv-
alent sphere S(r). Furthermore

1 2

flx) < mexp(#) for all xe ®
1 2

f(x) = mﬂp(#) forall xe ¥

since f(-) is a decreasing function of the distance from
the origin. Therefore

V(®) e /2"
(V2ro)"

which completes the proof of the lemma. J

L fx)dx < < /w £(x) dx

The usefulness of Lemma 2 lies in the fact that the integral
on the left-hand side of (9) is often difficult to compute,
whereas the integral on the right-hand side of (9) can be
computed in closed form. Indeed, changing variables to

spherical coordinates,
1 = oucosé;
o = ousinf cosfs
z3 = ousiné;sinf;cosfs
ZTpn-1 = ousing,---sinf,_2c086,_;
T, = ousiné;---sinf,_,sinb,_;

it can be shown (7] that

Fx) dx = ———— / Mn1g=2 gy (10)
8(r) 27/2(n/2)! Jo
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Figure 1. The Voronoi cell and the equivalent sphere *

@ =TES$(r)

Let Z(n) denote the one-dimensional integral on the right- k
hand side of (10). Setting z = r?/202 and integrating by |
parts, we obtain

z&u—l

2-1)! |
Further, it can be easily verified that Z(2) =1 —e~? and |
Z(1) = 1 — erfc(z?), where erfc(:) is the complezznenta.ty
error-function given by erfe(z) = (2/v/7) [° e~ dt. We
are now ready to prove our main result in this section.

In) = I(n—2) — e=* an |

Theorem 3. If points of an n-dimensional lattice A are
transmitted over an AWGN channel, the probability of §
symbol error under maximum-likelihood decoding is lower
bounded by

n

<zt !
P, > e_zgi—! (12) ,
for n even, and by
n=3
I i+
> 3 e
P, > erfc(z?) + e ; AT (13) |
for n odd, where
- 270 T 802A(A)2/n
Proof. By Lemma2 and (7), we have
P,=1-P. 2 1- f(x)dx

S(r)

The expressions (12) and (13) follow immediately by in- \

duction on (11). The expressions for z = r2/202 in (14)
follow from (8) and (1). § '

For practical purposes, it is more meaningful to have a |
lower bound on the probability of error obtained usinga |
lattice code C = C(A,D) rather than a lattice A. Further-
more, it is useful to have this bound expressed in terms
of the normalized signal-to-noise ratio SNRyorm.
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Corollary 4. If an n-dimensional lattice code C(A,D) is
used to transmit information over an AWGN channel,
then the probability of error under maximum-likelihood
decoding is lower bounded by (12) and (13), with

z = 61r'11"(%+1)2/"7s(D) SNRporm + o(1)  (15)
Proof. The expression for z = 2 /202 follows from (8),(2),

and Lemma 1. The term o(1) in (15) denotes a function
of the rate R of C(A,D) that tends to zero as R — 0. |

Probability of symbol error

0 2 4 [ 8 10 12
Normalized signal-to-noise ratio [dB]

Figure 2. Bounds on the performance of lattice codes

Corollary4 is a fundamental bound on the performance
of any n-dimensional lattice code on an AWGN channel.
This bound is plotted in Figure2 for n = 1,4, 16, 64, and
256, ignoring the term o(1) in (15). Note that we assumed
in Figure 2 the highest possible shaping gain for a spher-
ical support region D in n dimensions, given by (cf. [2]):

w(n + 2)

7s(D) = BTETT (16)
We have also included in Figure2 the actual simulation
results for a lattice code based on the 16-dimensional
Barnes-Wall lattice BW1g, which suggest that the bound

of Corollary 4 is quite tight.

4. Performance analysis

When designing a communication system for a band-
limited Gaussian channel, one is generally more interested
in effective coding gains than in probabilities of symbol
error. In this section, we show how the lower bounds
on P, obtained in the previous section can be converted
into an upper bound on the highest possible coding gain
that may be achieved using an n-dimensional lattice code.

For the sake of brevity, we only consider the case where n
is even. A similar result for odd n will be presented else-
where [7]. For even n, let k =n/2 and define

2 k-1
def -z A . A

g(z) = e (1+ TR (k—l)!) (17)

Thus (12) becomes P, > gi(z). It is easy to verify that

gx(z) is a continuous strictly decreasing function of z.

Furthermore, ¢(0) = 1 and lim;_, gx{z) = 0, for all k.

Now let P, denote a fized desired probability of symbol
error. We ask the following question: What is the min-
imum SNR;om that is required to achieve a probability
of symbol error P, using an n-dimensional lattice code?

From the properties of the function gx(z) in (17), it fol-
lows that the equation gr(z) = P. has a unique solution,
which we denote by z;. We further define

. def _Zk

since assuming a spherical support region D as in (16),
equation (15) becomes simply z = (k+1)SNRporm +0(1).

Theorem 5. To achieve a probability of symbol error P,
using a lattice code C of rate R in n = 2k dimensions, a
normalized signal-to-noise ratio of at least

SNRuorm 2 C(k, Pe) + 0(1) (18)

is required, where o(1) is a function of the rate R that
tends to zero as R — oc. '

Proof. In view of Corollary4, if the normalized signal-
to-noise ratio does not satisfy (18), then the probabil-
ity of symbol error is lower bounded by gi(z) for some
z < zk. Since gr(z) is a strictly decreasing function, we
have gx(z) > gx(2x) = P., and the theorem follows. ||

‘We now consider the uncoded case, namely the case where
a scaled version cZ™ of the integer lattice Z™ is used to
transmit information over a Gaussian channel. (For the
purpose of computing the coding gain of a lattice code
C(A,D) over uncoded transmission, the scaling constant ¢
is usually chosen in such a way that C(A,D) and ¢Z"ND
have the same rate, assuming the continuous approxima-
tion.) It is well-known [3] that the probability of symbol
error for the uncoded case can be computed exactly. In-
deed, the Voronoi cell IT for the lattice ¢Z™ is a hypercube
of side ¢, and therefore

P, = 1- /n F(x) dx
_ 1 [ _pnn
—1—(\/27_0/_6/2 du)
=1-(1 -erfc(p/\/ia))" (19)
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where p = ¢/2 is the packing radius of the lattice cZ™.
Observe that ¥(cZ™) = 1 from (2), and hence under the
continuous approximation we can write

plo = y/ 37:(D) SNRaorm (20)

by Lemma 1. Now let zo denote the unique solution of the
equation (1 — erfc(z))** = 1 — P., and define

def 422 T(k+1)Y/*
w(k+1)

where we have again used the expression in (16) for the
shaping gain vs(D) in (20). Then, by (19) and (20), in
order to achieve a probability of symbol error P. in the
uncoded case (even with spherical shaping), one needs a
signal-to-noise ratio of SNRporm = &(k; Pe)+0(1). There-
fore, Theorem 5, implies that the ratio

£(k; P.) _ 4z3T(k+1)V/*
C(k;P) T2k

is an upper bound on the coding gain that can be obtained
using any high-rate lattice code in n = 2k dimensions.

&(k; Pe)

(21)

. . Best
New upper bound on coding gain known
n |
P.=10% | P.=10"% | P.=10"7 | P. =0

1 0 0 0 0
2 0.62 0.66 0.70 0.62
3 1.09 1.16 1.22 1.00
4 1.47 1.57 1.65 1.51
5 1.78 1.90 2.00 1.81
6 2.05 2.19 2.30 2.22
7 2.28 2.44 2.57 2.58
8 2.49 2.66 2.80 3.01
9 2.67 2.85 3.00 331
10 2.84 3.03 3.19 3.57
11 2.99 3.19 3.35 3.82
12 3.12 3.33 3.51 4.05
13 3.25 347 3.65 4.27
14 3.37 3.59 3.78 4.47
15 3.48 3.71 3.90 4.67
16 3.58 3.81 4.01 4.86
17 3.67 3.91 4.12 5.04
18 3.76 4.01 4.22 5.21
19 3.84 4.10 431 5.37
20 3.92 4.18 4.40 5.53
21 4.00 4.26 4.48 5.68
22 4.07 4.34 4.57 5.83
23 4.14 4.41 4.64 5.97
24 4.20 4.48 4.71 6.10
25 4.26 4.54 4.78 6.24
26 4.32 4.60 4.85 6.36
27 4.38 4.66 4.91 6.49
28 4.43 4.72 4.97 6.61
29 4.48 4.78 5.03 6.73
30 4.53 4.83 5.08 6.84
31 4.58 4.88 5.14 6.95
32 4.63 4.93 5.19 7.06

Table 1. Upper bounds on coding gain of lattice codes
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n=12...,32 in Tablel. All the entries in Tablel are
given in dB. Observe that the bound of (21) is not asymp-
totic for P, — 0; it is reasonably tight for symbol error
rates of practical interest. As can be seen from Tablel, it
is considerably tighter than the results obtained by com-
puting the nominal (asymptotic for P. — 0) coding gains
based on the best known [1, p.14] upper bounds on the
packing density of n-dimensional lattices.

5. Asymptotic results

In this section we investigate the asymptotic behavior of
the lower bound on SNRuorm of Theorem 5 as a function
of dimension n = 2k, as k = oc. We will show that
limy o0 ((k; P.) = 1, regardless of the desired symbol er-
ror rate P.. Thus the lower bound of Theorem 5 coincides
with the Shannon limit SNRporm = 0dB as k — oo. This
constitutes an alternative proof of the converse part of the
Shannon theorem for lattice codes. Notably, our proof re-
lies solely on the geometric notion of equivalent sphere,
and does not involve information-theoretic arguments.

We start with two simple lemmas pertaining to the func-
tion gx(z) in (17). Recall that this function is strictly
decreasing, and that 0 < gx(z) < 1forall z > 0.

Lemma6. If x > k, then

e Zkz*
gr(z) < %

Proof. Observe that if z/k > 1, then

k k—1 2

1 T T
S = > >
k-1 = =2

Thus gi(z) = e~® (1+ E AT ,) < ekt /M
and the lemma follows. |]

Lemma?7. If 0 <z <k, then
e *kz*
—g(z) < G-oR
Proof. It is easy to see that e — e®gx(z) = Yooy %‘-
Now, for z/k < 1 we have

RS T
=k =0k_ —%

zt

a~|l~l

Hence

e(1-aa) < (k z:)k‘
1

and the lemma follows.

This bound is tabulated for P, = 10~3,10-%,10~7 and !
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We are now ready to prove an asymptotic bound on the
unique solution z; of the equation gx(z) = P., which
holds for any fixed P, in the interval (0,1).

Lemmas8. For any P. €(0,1) and for any
0<ea1<l<ez<x
there exists a kg, such that for all k > ko we have
ek < i £ ek
Proof Since gi(z) is a strictly decreasing function, it
suffices to show that
gr(e2k) < Pe < gi(e1k) (22)

for all sufficiently large k. As P. €(0,1) is fixed, the in-
equalities in (22) would follow if we knew that

klim gr(eek) = 0 (23)
—o0
klim gr(erk) = 1 (24)
—00

We first prove the limit in (23). Since €2 > 1, the condi-

tion of Lemma 6 applies, and we have

k e=c2* (g k)* ke czkekkkek
k! - k*

where the second inequality follows from the well-known

fact that k*/e* < k! for all k¥ > 1. Rearranging the right-
hand side of (25), we obtain

gr(e2k) < ke Klea—lnea—1) (26)

(25)

gr(e2k) <

Now, the function z—In z—1 is strictly positive for z # 1,
and therefore the right-hand side of (26) tends to zero as
k — oo. Since gi(x) > O for all z, this establishes (23).
To prove (24), we first rewrite it as

tim (1- gs(e1k)) = 0 (27)

k—oo
Note that again 1 — gi(z) > O for all z. Further, since
€1 < 1, the condition of Lemma 7 applies, and we have
ke_elk(é‘ﬂc)k
(k — e k) k!

Starting with (28) and using arguments similar to those
employed in the proof of (23), it can be shown that

1—gk(erk) < (28)

—k(e1—Ing;-1)
1-gi(eh) € ——— =¥ 0
1- &1
This establishes (27) and (24), and hence completes the

proof of the lemma. |

Our main result in this section implies that the bound of
Thorem 5 coincides with the Shannon limit, asymptoti-
cally as k — oc.
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Theorem9. For any P, €(0,1),

lim {(k;F.) = 1
k—+oco

Proof. Fix arbitrary 0 < €; < 1 < €2 < oo. By Lemma g,
zi 2> 1k for all sufficiently large &, and hence

liminf (ks P.) 2 & lim k

- k—»oom =& (29)

Since the value of ; < 1 in (29) is arbitrary, it follows
that lim infy, {(k; P.) > 1. By a similar argument
k
i ; < im — =
thI;pC(k,Pe) Selim . — =ea (30
and since €2 > 1 is arbitrary, lim sup, {(k; P.) < 1. This
implies that the limit of {(k; P.) exists and is equal to 1. §

Acknowledgment. We are deeply indebted to Dakshi
Agrawal for providing the simulation results for BWig
that are included in Figure 2. We are also grateful to Dave
Forney, Bert Hochwald, and Dakshi Agrawal for valuable
comments and discussions.

References

[1] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lat-
tices and Groups, New York: Springer-Verlag, 1988.

[2] M.V.Eyuboglu and G.D. Forney, Jr., “Lattice and tre-
1lis quantization with lattice and trellis-bounded code-
books — high-rate theory for memoryless sources,”
IEEE Trans. Inform. Theory, vol. 39, pp. 46-59, 1993.

[3] G.D.Forney,Jr., “Coset codes II: Binary lattices and
related codes,” IEEE Trans. Inform. Theory, vol. 34,
PP- 1152—11§7, 1988.

[4] R.G. Gallager, Information Theory and Reliable Com-
munication, New York: Wiley, 1968.

[5] C.E.Shannon, “A mathematical theory of communi-
cation,” Bell Syst. Tech. J., vol.27, pp. 379-423 and
pp- 623-656, 1948.

[6) V.Tarokh, Treillis Complezity vs. the Coding Gain of
Lattice-Based Communication Systems, Ph.D. Thesis,
University of Waterloo, Ontario, Canada, 1995.

[7] V.Tarokh, A.Vardy, and K. Zeger, “A bound on the
performance of lattice codes,” IEEE Trans. Inform.
Theory, submitted for publication.

[8] J.M.Wozencraft and 1.M Jacobs, Principles of Com-
munication Engineering, New York: Wiley, 1965.






