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Abstract— We derive bounds for optimal rate allocation
between source and channel coding for linear codes that
meet the Gilbert-Varshamov bound. Analogous bounds
based on Shannon’s channel coding theorem and Zador’s
high-resolution quantization formula have previously been
given.

I. INTRODUCTION

A theoretical study of the fundamental tradeoff of
transmission rate between source and channel coding was
given in [1]. They studied a cascaded vector quantizer
and channel coder system operating on a binary symmet-
ric channel, and derived upper and lower bounds on op-
timal rate allocation between the two subsystems. Their
results rely on the fact that both subsystems contribute
an exponentially decaying term to the total distortion
(averaged over all index assignments), as a function of
the overall transmission rate of the system.

Various suboptimal algorithms exist for vector quan-
tizer design for noisy channels, but their implementation
and design complexities generally grow exponentially fast
as a function of the transmission rate of the system. A
commonly used approach to transmitted source informa-
tion across a noisy channel is to cascade a vector quan-
tizer designed for a noiseless channel, and a block channel
coder designed independently of the source coder.

A fundamental question for this traditional “separa-
tion” approach is to determine the optimal allocation
of available transmission rate between source coding and
channel coding. In practice, there is usually a constraint
on the overall delay and complexity of such a system.
This constraint generally limits the length of source block
lengths and of channel codeword block lengths. As a re-
sult, the classical approach of Shannon, to transmit chan-
nel information at a rate close to the channel’s capacity
and to encode the source with the corresponding avail-
able amount of information, cannot be used in practice.
In reality, one must often transmit data at a rate sub-
stantially below capacity. The amount below capacity
that one must transmit was determined in [1]. However,
the results in [1] exploit the availability of codes which
achieve the reliability function of the channel.

In the present paper we determine bounds on the op-
timal tradeoff between source and channel coding, for
classes of linear channel codes achieving the Gilbert-
Varshamov bound. Examples include certain Goppa
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codes, alternant codes, self-dual codes, and double cir- |

culant or quasi-cyclic codes [2, p. 557).

II. PRELIMINARIES

We consider a k-dimensional vector quantizer cascaded |
with a channel coder operating on a binary symmetric |

channel with a fixed overall transmission rate per vector
component R, as shown in Figure 1. Let r € [0,1] de-
note the channel code rate. Then, for each input vector
x € R* the quantizer encoder produces a kRr-bit index i,
which is passed through an index assignment 7, and then
encoded into kR bits before entering a binary symmetric

channel. The index assignment is a permutation of the set |

of all possible kRr-bit indices. At the receiver, the chan-
nel decoder reconstructs a kRr-bit word =(j) from the
(possibly corrupted) kR bits received from the channel.
Then the inverse of the index assignment is performed,
and one of the 2¥%" quantizer codepoints y; € RF cor-
responding to the resulting index j is presented at the
output.

Using the p*®-power distortion as a figure of merit, fora
given index assignment 7 the performance of this system
can be expressed as

2er_1 2er_1

De= 2 X Qe [ Ix—ilPdutx)

i=0  j=0 ]
where || - || is the usual Euclidean distance, y is the prob-
ability distribution of the input, Q1= is the probability
that the channel decoder outputs [ given that the in-
put to the channel encoder was m, and R; is the region
of the encoder partition corresponding to codepoint y;.
There are no known general techniques for analyzing the
performance of such a system for an arbitrary index as-
signment. Instead we randomize the choice of index as-
signment. This technique serves as a tool in obtaining
an existence theorem and at the same time accurately
models the choice of index assignment in systems where
active index design is ignored. Hence, we examine the
distortion averaged over all index assignments,

1
D:W Z D,r,

”esger

where Soxr- is the set of all possible permutations of all
kRr-bit indices. The distortion can be decomposed into
two components, one due to source coding and one due to
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Fig. 1. Cascaded vector quantizer and channel coder system

channel coding. The behavior given that no uncorrected
channel error occurred (equivalent to noiseless quantiza-
tion) is described by Zador’s formula; whereas the asymp-
totics (in R) of the component corresponding to an un-
corrected channel error are governed by the probability
of channel decoding error.

Let f(n) and g(n) be real-valued sequences. Then, we
write
+ f = 0O(g), if there is a real number ¢ > 0, and a positive
integer ng such that |f(n)]| < ¢lg(n)|, for all n > ng;

+ f = o(g), if g has only a finite number of zeros, and
f(n)/g(n) = 0 as n — oo;

o f = O(9g), if there are real numbers ¢;,c2 > 0, and a
positive integer ng such that ¢;|g(n)| < |f(n)| < e2|g(n)],
for all n > ng.

In [1], it is shown that the average p*®-power distortion
D of a cascaded system, with total available transmission
rate R, consisting of a k-dimensional vector quantizer and
arate r channel coder can be bounded as

9—PRr+6(1) 4 9~kREL(r)+o(R)
< D < )
9-pPRr+6(1) 4 9—kREy(r)+o(R)

where Ey, and Ey are the corresponding error exponents
in the lower and upper bound for the probability of de-
coding error. Thus, by solving the equations

Ev(r1) = £r1 +o(1), 3)
and
Bu(rz) = £r5 +o(1), (4)

one obtains the following bounds on the optimal rate r:
re ST ST, (5)
and the corresponding distortion satisfies

D= 2—pRr+9(1) .

For a fixed transmission rate R, the performance of the

j system varies depending upon the rate aliocation between

source and channel coding. In [1], [3], bounds on the
optimal channel coding rate r are given assuming that the
channel code performs as predicted by Shannon’s random
coding argument. We investigate the problem of optimal
rate allocation for channel codes satisfying the Gilbert-
Varshamov bound.

As in [1], we take Ej, to be the sphere-packing expo-
nent, which holds for any code. Following [4, p. 165), this
can be expressed as

Ep(r)=D(H'1-1)|¢), (6)
or in parametric form as

r =

Ep(r) =

1 —H(é) (7)
D(dlle), (8)

where H(8) = —éblogé — (1 — &) log(1 — §) is the binary
entropy, D (4]| €) = §log §+ (1-8)log -11_7‘3 is the informa-
tion divergence between two Bernoulli distributions with
parameters é and ¢, and all logarithms are base 2.

A similar expression can be obtained for Fy for
sequences of codes that meet the Gilbert-Varshamov
bound. First, consider the following bounds for the tail
of a binomial distribution.

Lemma 1 ([4, p. 531]) For u > p,

> (’i’)p‘(l —p)"t < 27 PlR), )
i=ng
Proposition 1: For (n,m) linear block channel codes
with rate r = m/n that meet the Gilbert-Varshamov
bound, the probability of decoding error over a binary
symmetric channel with bit error probability ¢ can be
bounded as
P, <27"PO3HT0-0l) 1 (0,1 — 3(2€)).
(10)
Proof
For an (n,nr,d) linear block channel code that meets
the Gilbert-Varshamov bound we have
d 1

H1-7)< —~<3 (11)
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(see [4, p. 537] for details).
Using a standard bound on the probability of decoding
error (e.g. [2, p. 19]) we have

n
< X (gea—a**
=45+
< Z (n) Ci(l _ 6)n—i
i=niH-1(1-r) ¢
< o—nD($H™ (1-7)||¢)

where the second inequality follows from (11), and the
last one from Lemma 1. [ ]
Thus, for “good” linear codes an error exponent can be

written as
Egv(r)=D (%7—[—1(1 -7) e) , (12)
or in parametric form
ro= 1-H() (13)
Egv(r) = D(4/2]¢). (14)

As stated in Proposition 1, this exponent is only valid
for 7 < 1 - 7(2¢). For r > 1 — H(2¢), the trivial bound
of P, < 1 can be used, which corresponds to the error
exponent being zero.

Equations (6) through (8), and (12) through (14) differ
only in a factor of 2. Also, equations (3) and (4) have
essentially the same form. To reduce the redundancy in
solving two nearly identical problems, we take a unified
approach, and rewrite those expressions to obtain for 7 =
1,2,

Ei(r,-) =D (%'H—l(l - 7‘,') 6) . (15)
Alternatively,

ri o= 1-—%(), (16)

Ei(ri) = D(d&/ille), (17)

and the equations for balancing the exponents are

Ei(rs) = r, +o(1), (18)

where E, = Ey, = E,,, and E; = Ey = Egv.

III. RESULTS

The bounds on the optimal rate allocation in a cas-
caded vector quantizer and channel coder system are
functions of the vector dimension k, the channel, bit er-
ror probability €, and the parameter p in the distortion
criterion. They do not depend, however, on the statistics
of the source. We analytically characterize the optimal
rate allocation for two important cases of interest: a large
vector dimension k, and a small bit error probability e.
In each case the remaining parameters are assumed fixed
but arbitrary.

A. Small Bit Error Probability

Lemma 2: For any p, k, and e sufficiently small, let
o; € ($2,2i2) (fori = 1,2) satisfy

P @ (P loga;
o Zk + — logl/ (1 zk) (loglog1/e + loge — log a;)
a;logi _ loge (1 _ izg) @i ? (19) ¢
logl/e  2i k/ \logl/e) °

Then, the channel code rate minimizing the bounds in (2)
is

i =1—H(

1
log 1/e)+0(log3 l/e) * o, (20)

where the O ( ESIIT) term goes to zero as € — 0 for any

R, and the o(1) term goes to zero as R — .

Proof

Usmg an intermediate value theorem argument (at
a; = % and a; = 2i£) shows that an «; satisfying (19)
must exist. Thus, since the sequence of a; is bounded,
we have a; = 1% as e = 0.

After substituting 6; £ Tﬁﬁ’ and applying standard
power series expansions, (16) becomes

Q; lo [+ F}
log1/e glogl/e

a; Qa;
+ (1 B lo 1/6) log (1 logl/e)
1-

(loglog1/e + loge — log ;)

T 1+

log 1/

loge o \? ( 1 )
+— +0 | ——],
2 (log 1 /e) log®1/e

and (17) becomes
logl/e— (

a
l 1
+z'log 1/e 8 ilogl/e

( 11;;1/6)1 ot (1~ a7)
+_2— (loga;/e) 2) +0 (logsll/e)

p 1
“r;+0 | —7—
k (log3 l/e)

where (19) was used. Since r} satisfies (18), we have
rp =1+ 0 () +o(D). "

E;(r;)

) log(1-¢)

zlogl/ zlogl/

(log logl/e + loge — log ;)
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Fig. 2. A set of upper and lower bounds as given in Theorem 1 for mean-squared distortion (p = 2).
Solid (upper bound) and dashed (lower bound) curves come in pairs for k = 1,4, 16,64, c0.

(The optimal rate increases as k gets larger.)

Theorem 1: Consider the cascade of a k-dimensional
vector quantizer, a channel coder using a linear block
channel code that meets the Gilbert-Varshamov bound,
and a binary symmetric channel with bit error probability
¢. Then, the channel code rate r that minimizes the p*P-
power distortion (averaged over all index assignments)
satisfies

loglogl/e +loge — log %CE
log1/e

log €

2log? l/e ) +oll)

( 1
log®1/e

IA
.

loglog1/e +1loge —log £
logl/e

loge
2log®1/e

0 (1og311 /6) +o(1),

where the O (—0?-1—/—6-) term goes to zero as € — 0 for any
R, and the o(1) term goes to zero as R — .
Figure 2 illustrates the upper and lower bounds of The-

orem 1. The curves plotted are generated numerically
without omitting any O(-) terms.

B. Large Source Vector Dimension

For i = 1,2, let C; = 1 — H(ie). Then, only the case

| of r; € (0,C;) corresponds to a nonzero error exponent.

And, since the error exponents E;(r;) are decreasing func-
tions of the rate r;, and as k increases the right hand side
of (18) decreases, for R sufficiently large we have r; — C;
as k — oo. Thus, for large k, H~1(1 — ;) can be approx-

imated by its Taylor series around 1 — C;

C: —r;
-1 1-r - -1 1-C; i i
H'(1-1) H™H( C)+7{’('H‘1(1—C,-))
O((Ci —m:)?) (21)
where H'(z) = log 12 is the first derivative of the binary
entropy H.
We have H™1(1 — C;) = H™1(H(ie)) = ie. Also, let us

define (z;)x 2 C; —r; Then (z;)r > 0, and (z:)r = 0
as k = oo. Thus, rewriting (21) in a form suitable for
substitution in (15) we obtain

(Ii)k

A-r) =€t omes

O((z:))

1
;H‘ (22)
which approaches € as k increases.

The information divergence can be expressed in terms
of entropies as

D (allb) = HO) + (a — bYH'(B) — H(a).  (23)
Thus,
" N2
D (%7{—1(1 — 1) e) - _% O((z:)?)

where H"(z) = ——%2515 is the second derivative of the

binary entropy H. Let 4; = 2p [iH(i€))? [-H"(e)] . Us-
ing r; = C; — (z:), and substituting the above results in
the equations for balancing the exponents yields
(z:)k) + O((z:)}) + o(1).

(=)} = £(Ci -

(24)
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Fig. 3. Upper and lower bounds as given in Theorem 2 for mea.n-squared distortion (p = 2). Solid
(upper bound) and dashed (lower bound) curves come in pairs for ¢ = 10~1,10~2,10—4,10~8.

(The optimal rate increases as € gets smaller.)

The nonnegative root of the quadratic is

\/4k2 ﬁC’i +O0((z:)}) +0(1) — ==

7,kc, +0 ( ) + o(1).

x‘l.)k

Thus, fori = 1,2,

0 (38)' o) o

and we can state the following.

. Theorem 2: Consider the cascade of a k-dimensional
vector quantizer, a channel coder using a linear block
channel code that meets the Gilbert-Varshamov bound,
and a binary symmetric channel with bit error probability
€. Then, the channel code rate r that minimizes the pth-
power distortion (averaged over all index assignments)

r, = Ci—

satisfies
c' - 2“\1/%26) (—2735(;))% +0 (%) +o(1)
< r <

where C' = 1 — #(e) is the channel capacity, and C' =
1—%H(2¢); the O (1) term goes to zero as k — oo for any
R, and the o(1) term goes to zero as R — 0.
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