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Abstract — We show that properly trained neural
networks provide universally consistent nonparamet-
ric estimators. The results apply to regression esti-
mation, conditional median estimation, curve fitting,
pattern recognition and learning concepts. The esti-
mators minimize the empirical Ly-error.

Let the random variables X and Y take their values from
IR and IR, respectively. Denote the error of the Ly-optimal
predictor by

J*=inf (Ejm(X) = ¥|")'/" = (Ejm"(X) - Y[")'/7.
m ‘

Assume that we do not know anything about the distribution
of the pair (X, Y), but a collection of independent
distributed copies D,, = ((Xy, Y1), A Xn Yo
available, where [, is independent of (X, Y)

identically
Jof (X,Y)is
Our aim is to

estimate good predictors from the data, that is, to construct a
function mu(z) = ma(z, D) such that its Ly-error J(mg) =

f i i \r
(E (\m,.(.‘\’l - Y|\ U.,)) is close to the optimum.

Definition 1 A sequence of estimators {ma} is consistent for
o given distribution of (X, Y), if J(m,)—=J" — 0 almast surely
asn — oo. {my,) is universally consistent if it is consistent
for any distribution of (X, Y) satisfying E|Y [P < oc.

The main results af the paper point out that properly
trained neural networks provide eslimators that are univer-
sally consistent, extending results by White [4], Haussler [2],
and Faragd and Lugosi [1]. These estimators are based on
empirical risk minimization.,

Our method of construcling an estimator my, is to choose
it as a function from a class of functions F that Ill}llillli)’.(‘b the

F
empirical error Jo(f) = (ﬁ E::J If(X;) - }’,|’)

Formally, let {F,} be a sequence of classes of functions, and
define m, as a function in F, that minimizes Lhe empirical
ertor: Ju(mn) < Jo(f) for f € F,. For analyzing how close
the error of the estimator J(m,) is to the optimum J*, we
will use the following decomposition:

(.Hm,,i—- Ii:..;f .fm) + (’iﬂ..[ J(f) - ,J-) :

The first term on the right hand side tells us about the “learn-

Jlmn) —=J" =

ability™ of F,, that is, how well the empirical minimization
performs over this class. We will refer to this term as the
estimalion error. The second term, which we call the approz-
imation error describes how rich the class F,, is, that is, how
Here the main
problem is to balance the trade-off between the approxima-
tion potential and the estimability of the class, that is, lo
determine, how fast the class should grow Lo gel universally

well the best function in the class performs.

consistent estimators, if it is possible at all
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A neural network of one hidden layer with k hidden neurons
is a real function on IR® of the form

k

Jo.(x) = Zc.n{u.rr + b)) + ca,

=1

where the sigmoid o : IR — [0, 1] is 2 monotone nondecreasing
function converging to 0 as r — —o0 and 1 as £ — oo, # =
lay,...,ax € RYby,.. e € IR}

parameters that specily the network.

oben, .. is the set of

To handle the approximation error, we use a denseness the-
orem for feedforward neural networks, proved by Hornik [3].
To prove the convergence of the estimation error, we apply
techniques based on the rich theory of empirical processes.
Some difficulties arise in handling nonbounded random vari-
ables. We have the following consistency result.

Theorem 1
Fy, Fa,... as

Define a series of classes of neural nelworks

Fe
kn

*h
- Z(‘.ﬂ{qf r+b)+coy ay € |, b, € IR, Zlc.[" <

=1 =1

and let m,, minimize the empirical Lp-error over Fy, i.c.

1 R R R
;Zlmn(-\-l—hl"s;ZUM-%LI’ if f € Fa.

=1 =1

Then if k, and B, asatisfy kn oa, fn oo, and
ﬁL:‘,""H;‘:" log(knfin) — 0, then J(mn) — J° — 0 in proba-
tality, for all distributions of (X,Y). If there exists a § > 0
such that K32 2P fn' =% . 0, then J(mn)—J* — 0 a.s., that
i3, the estimate m, is universally consistent.
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