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Abstract

Entropy-coded vector quantization is studied using high
resolution multidimensional companding over a class of
non-difference distortion measures. For distortion mea-
sures which are “locally quadratic” a rigorous derivation
of the asymptotic distortion and entropy coded rate of
multidimensional companders is given along with condi-
tions for the optimal choice of the compressor function.
Examples are shown for the existence of optimal compres-
sors. The rate distortion performance of the companding
scheme is studied using a recently obtained asymptotic
expression for the rate distortion function which parallels
the Shannon lower bound for difference distortion mea-
sures. It is proved that the high resolution performance of
the scheme is arbitrarily close to the rate distortion limit
for large quantizer dimensions if the compressor function
and the lattice quantizer used in the companding scheme
are optimal, extending an analogous statement for en-
tropy coded lattice quantization and MSE distortion.

1 Introduction

The high resolution ( asymptotic, low distortion) behav-
ior of vector quantizers is relatively well understood for
so called difference distortion measures where the distor-
tion is measured by a function of the difference between
the source and the reproduction vectors. In particular,
for the mean squared error, and more generally for nice
functions of a norm-based distance measures, the asymp-
totic distortion of the optimal quantizer, as well as the
asymptotic distortion of sequences of quantizers with a
given “point density” have been identified as a function
of the codebook size, or as a function of the entropy of the
output {1, 2, 3, 4, 5, 6]. These results give insight to the
structure of asymptotically optimal quantizers. On the
practical side, the expressions for quantizer performance

provide useful guidance for quantizer design at even small
to moderate rates.

*The research was supported in part by the National Science
Foundation.

Source coding is less understood when the distor- B
tion is not measured by a difference distortion mes J&
sure. Non-difference distortion measures occur naturally ]
in source coding problems. Prominent examples include
the log spectral distortion and the Itakura-Saito distor- |
tion, which are used in linear predictive speech coding §
[7], perceptual distortion measures in image coding, and |

most distortion measures that arise in noisy (or remote)

source coding if the original distortion measure is other
than the squared error. Due to the difficulty of such anal- !

yses, there exist only a few known results for high resolu-
tion quantization with non-difference distortion measures.
By assuming the existence of a limiting quantizer point
density, a lower bound was calculated in [8] for the high
resolution performance of fixed rate optimal vector quan-
tizers for locally quadratic distortion measures. The log
spectral distortion and the Itakura-Saito distortion are
examples of such measures. A more formal treatment of
the same lower bound is given in [9], and a new lower
bound on the variable rate performance is developed us-
ing optimal point densities. It is also pointed out in 9]

that some important “perceptual distortion measures” in | |

image coding are locally quadratic. In [10] an asymptot-
ically tight expression for the rate distortion function is
derived for locally quadratic distortion measures. As will
be shown in this paper, the expression given in [10] plays
the same important role in high resolution quantization
for these distortion measures as does the Shannon lower
bound in quantizing for squared error loss.

To develop the basics of a high resolution quantization
theory for locally quadratic distortion measures, we inves-
tigate variable rate (entropy coded) companding vector
quantization. Multidimensional companding is a type of

structured vector quantization of low complexity where |

a k-dimensional source vector X is “compressed” by an
invertible mapping F (called the compressor function).
Then F(X) is quantized by a uniform (or more gener-
ally, a lattice) quantizer, and the inverse mapping F~1is
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applied to obtain the reproduction X. Thus the scheme
is

X = F()=Qu() > F()» X

;| where Qu is a uniform or lattice quantizer whose output
8 may or may not be entropy coded.

We have two main reasons for considering multidimen-

, sional companders. First, in [10] it has been informally
- observed that for a large class of non-difference distortion

measures the asymptotically optimal forward test chan-

el which realizes Shannon’s rate distortion function has
§ a certain structure very similar to that of multidimen-
§ sional companding quantizers. It has also been conjec-

tured that such a companding scheme, together with en-

' tropy coding, performs arbitrarily close to the rate dis-

tortion limit. Second, our aim is to develop a rigorous
theory with performance bounds relating to the rate dis-
tortion function. In high resolution quantization theory
acommonly invoked technique to obtain results is to use

1 | heuristic, informal reasoning (see, e.g., [11, 2, 3, 4, 8)).
- While there are a number of important results derived

rigorously, it is apparent that the majority of them deal
with fixed rate quantization [5, 12, 13, 6, 14]. The reason
is that it is especially difficult to construct rigorous proofs
using the notion of “point density” for unstructured en-

3 tropy coded vector quantization. On the other hand, for

the purpose of directly comparing quantizer performance

# to the rate distortion function, one is forced to consider

the asymptotic variable rate performance and thus to in-

V - troduce structure in the coding scheme (see e.g. {15, 16]).

In this paper we consider entropy coded multidimen-

4§ sional companding quantizers with non-difference distor-

tion measures satisfying rather general regularity condi-
tions. The main requirement is a smoothness condition
which implies that the distortion d(z,y) between z,y €
R* can be approximated as d(z,y) ~ (z—y)T M(z)(z—y)
for y close to z, where M(z) is an input-dependent pos-

- jtive definite matrix. Theorem 1 gives a rigorous deriva-
¥ tion of the asymptotic entropy coded rate as a function
-~ of the distortion for sources with densities. A general suf-

ficient condition for the optimal choice of the compressor

# function is derived in Theorem 2 and examples are shown
- for the existence of optimal compressors, which are de-

termined by the distortion measure and do not depend

$§ oo the source distribution. Using a result from [10] we
§ prove in Theorem 4 that if the compressor function sat-
& isfies the sufficient condition for optimality, and if the

| lattice quantizer used in the companding scheme is opti-
§ mal, then the high resolution performance of the scheme
§ is arbitrarily close to the rate distortion limit for large

b quantizer dimensions. When specialized to mean squared

error, this result gives back the well known fact that for

] large rate and large quantizer dimension, lattice quan-
& tizers combined with entropy coding are asymptotically

2 Preliminaries

A k-dimensional vector quantizer Q) is a mapping defined

by
Q(.’E) =Y if TE Bi7

where Bi,...,B, form a measurable partition of RF,
and the collection of codepoints y; € R¥, 1 < i < n
is called the codebook. We do not eliminate the possi-
bility that n = oo, i.e., the codebook of @} can contain
countably infinite number of codepoints. The distortion
between r and Q(z) is measured by d(z,Q(z)), where
d: RF x R* — [0, 00) is a Borel measurable function. The
expected distortion in quantizing a k-dimensional random
vector X is

D(Q) = E[d(X, Q(X))];

and we assume the expectation is finite. The rate of Q
will be measured by the Shannon entropy of Q(X),

H(Q) = - > P{Q(X) =i} 1og P{Q(X) = i},

where the logarithm is base two. The per dimension rate
of the system can by made within £ of + H(Q) by use of
entropy coding techniques.

The basic building block in a multidimensional com-
panding quantizer is a lattice quantizer. Let A be a
k-dimensional nonsingular k-dimensional lattice, and for
any o > 0 let aA denote the scaled lattice aA = {az :
z € A}. The lattice quantizer Qa4 is then defined so that
its codepoints are the points of aA and its quantization
regions are the corresponding Voronoi regions of aA, i.e.,
if Qaa(z) = 2, then ||z — z|| < |jz — 2'|| for all 2’ € A,
where ||-|| denotes the Euclidean norm. The quantization
regions of aA are the translated and scaled copies of Fo,
the basic Voronoi cell of A, which is defined by

Po={zeRr:|z||<|lz—z| forall z€ A}.

An important performance figure of A is the (dimension-
less) normalized second moment of its basic cell, namely

el de

L(R) = RV (BT

where V(P;) denotes the k-dimensional volume of Fy. We
call a lattice optimal if its normalized second moment
is minimum over all k-dimensional lattices [17]. It was
proved in [18] that the basic cell of an optimal lattice is
white in the sense that if Z = (Z1,...,Z) is a random
vector uniformly distributed over Py, then the covariance
matrix of Z is
E[zZT] = oI,

where I denotes the k x k identity matrix. In other words,
the Z; are uncorrelated and their second moments are
equal. We will assume that the lattice A used in the
companding scheme has a white basic cell Fp.

The concept of a companding realization of a nonuni-
form quantizer originates from Bennett [11]. The idea is
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to apply a nonlinear transformation (called the compres-
sor) to the input, followed by a uniform (more generally
a lattice) quantizer and the inverse of the transformation
to obtain the reproduction. Let F : R* — R* be a one-to-
one continuously differentiable mapping whose derivative
matrix F'(z) is nonsingular for all . Then F has an
inverse F~! = G which is continuously differentiable on
its domain and whose derivative G’ is nonsingular. F
and G are called the compressor and ezpander functions,
respectively.

The companding vector quantizer realized by the com-
pressor function F and the scaled lattice quantizer Qana
is defined by

Qa,F(z) = G(Qan(F(2))), z€RE.

Our goal is to analyze the entropy coded rate of Qq, r
as a function of its distortion for absolutely continuous
source distributions. In general, the analytical evaluation
of the rate is not possible for any given o > 0, so we are
forced to take the asymptotic approach and determine
the asymptotic behavior of the rate as the distortion (or
equivalently ) tends to zero.

3 Multidimensional Companding

3.1 Asymptotic Performance

Let £ = (z1,...,%%) € R, y = (41,...,3) € RF (2
and y are regarded as column vectors) and assume that
the distortion measure d(x,y) satisfies the following three
conditions.

(a) For all fixed z € R*, d(z,y) is three times continu-
ously differentiable in the variable y, and the third
order partial derivatives

&*d(z,y)
0y:0y;0yn’
are uniformly bounded.

() For all z € R*, d(z,y) > 0 with equality if and only
fy=u=z.

i,jne{l,... .k} 1)

Condition (b) implies that the gradient of d(z,y) with
respect to y is zero at y = z. Thus for any fixed z, a
second order Taylor expansion of d(z,y) in y gives

d(z,y) = (z - y)" M (2)(z — y) + O(llz ~ yI1*), .

where M(z) is the & x k matrix whose ijth element is
given by

1 8%d(z,y)
m;;(z) = = ——==t 3
.7( ) 2 ayzayj y=s ()
M(z) is called the sensitivity matriz of d [8). Since

d(z,y) > 0 if y # z, this quadratic approximation im-
plies that M (z) is symmetric and nonnegative definite.
In addition to (@) and () above, we impose the following
condition on the sensitivity matrix.

(¢) M(z) is positive definite for all z and its elements
m;;(z) are continuous functions.

Remark. (i) Consider an input weighted quadratic dis-
tortion measure given by

d(z,y) = W (2)(z - y)II%,

where W {(z) is a nonsingular k x k matrix depending on
the input z [19]. Since d(z,y) = (z—y)TWT ()W (z)(z-
y), and since M (z) = W(z)T W(z) is positive definite, it
is easy to see that d(z,y) satisfies condition (a)—(c) if the
elements of W (z) are continuous functions of z. (ii) Very
similar conditions are used in [9] to heuristically derive
lower bounds on the asymptotic distortion of a sequence
of fixed rate quantizers with a given point density. Some
important measures of image quality [20, 21] satisfy these
regularity conditions, for example.

- To study the rate of Qo F as a function of its distor-

tion, one needs to eliminate the scaling factor a. One
reasonable way to do this is to chose an a(D) > 0, for
each D > 0, such that

D(Qu(p)y,r) = D.

If X has a density, it is not hard to see that D{Qq,r) isa -

continuous function of @ > 0 which converges to zero as
a — 0, so that such a(D) always exists for all sufficiently
small D > 0. For such values of D we define

@p,F = Qu(D),F-

The next theorem, the main result of this paper, de
termines the asymptotic behavior of the rate of Qp r as
D — 0 for bounded sources.

Theorem 1 Assume that the source X has a density
which is zero outside a bounded subset of R* and suppose
the distortion function d(z,y) satisfies conditions (a)-(c).
If X has a finite differential entropy h(X), then the rate
H(Qp,r) and the distortion D of the multidimensional
companding quantizer Qp r satisfy

ll)igo(H(QD,p) + g log D) = h(X) + E[log| det F'(X)]]
+2 log (L(Po)E[tr{T(X)})

where F is the compressor function, tr{I'(z)} denotes the
trace of the matriz

L(z) = [F'(2)]"T M (2)[F' ()] )

and [F'(z)]~7T is the inverse transpose of the derivative
of F(z).

Remarks. (i) The proof of this result is given in {22 ¥

The only restrictive condition in Theorem 1 is the as-
sumption that the source density has bounded support.
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In principle, the result can be proved for source densities

& with unbounded support, but in that case extra condi-

tions on the compressor function are needed. These con-
ditions are associated with the tail of the source density,
kading to a substantially more complicated proof. (ii)

3 The proof of the result can be used to obtain the high-rate
§ distortion of the companding quantizer as a function of
§ the number of codepoints (which is finite since the source

is bounded). When specialized to mean squared error

“ - (M(z) = I), we obtain Bucklew’s heuristically derived
3 formula [23] for fixed rate multidimensional companding.

32 Optimal Compressor Functions

3 The question of the optimal choice of the compressor F
i3 considered next. Let us define

Ci(F) = E[tr{l(X)}]

C:(F) = Ellog|det F'(X)]],

where I'(z) is defined in (4). Then the statement of The-
orem 1 becomes

gglo(H(QD,p) + 2 log D) — hx)+ Erog LRy

k
+C2(F) + 3 log Cy (F).
It is clear that if F satisfies

Co(F) + 5 log Cu(F) < Co(F) + 5 1og Oy (F)

| for all allowable F, then Qp r asymptotically outper-
4§ forms all other companding quantizers ¢ p,p- Thus to
4§ find a best compander one has to minimize the functional

Ca(F) + § 105 Cu(F) ©)

over all one-to-one and continuously differentiable F' such

4 that F'(2) is nonsingular for all z.

A lower bound on (5) is obtained next. Since M (z)

B is positive definite and F'(z) is nonsingular, I'(z) =
J (@) TM(z)[F'(z)]! is also positive definite. Thus
B by the arithmetic-geometric mean inequality we have
& t{l(z)} > k(detT(z))/* with equality if and only if
B the eigenvalues of I'(z) are all equal. Therefore

SoEEGrI(X))] > SlogE [k(detD(X)]  (6)

> 3B [logk(@etT(0)4] (0

- glogk + %E[log(det M(X))]
—E[log|det F'(X)]],

- where (7) follows from Jensen’s inequality. The above is
- equivalent to

glog CL(F) + Ca(F) > glog k+ %E[log(det M(X))).
(8)

Let us examine the conditions for achieving the above
lower bound. We have equality in (8) iff both (6) and (7)
are equalities. Equality holds in (6) iff the eigenvalues
of I'(z) are equal a.e. [ux]. (ux denotes the probabil-
ity measure induced by X on R*.) Since I'(z) is posi-
tive definite, this implies that ®(z)TT'(z)®(x) = B(z)]
a.e. [ux] for some B(z) > 0 and some orthogonal matrix
®(z) (i.e., ®(z)T®(z) = I). This in turn implies that
I'(z) = B(z)I a.e. [px]. The condition of equality in (7)
is that the determinant of I'(z) be constant a.e. [ux].
Thus equality holds in (8) if and only if I'(z) = BI a.e.
[ux], where 8 > 0 is a constant. This is equivalent to
M(z) = BF'(z)TF'(z) a.e. [ux]. We have thus proved
the following sufficient condition for the optimality of a
compressor function in terms of a condition involving the
sensitivity matrix of d.

Theorem 2 Assume the compressor F satisfies
F'(z)TF'(z) = cM(z) (9)

a.e. [ux], where ¢ > 0 is a scalar constant. If the condi-
tions of Theorem 1 hold, then

Jim (H(QD,F) ; -’glogu) = h(X) + £ log(KL(Ry))

1
+§E[Iog(det M(X))]
and therefore F is an optimal compressor function in the
sense that

lim (H(Qp,2) - H(@p.p)) 20
for all other compressors F.

Remarks. (i) The proof of Theorem 1 indicates that
the sufficient condition of optimality in the above theo-
rem means the following. The optimal compressor func-
tion shapes the lattice quantizer so that for small «
the weighted quantization error vector e = W(X)(X —
Qa,r(X)) is approximately white and its conditional
power E[||e||?|Qq,7(X) = ya,i] does not depend on the
codepoint y, ;. (ii) Note that the optimality condition of
Theorem 2 does not depend on the source density. This
observation nicely parallels the fact that for mean squared
error the asymptotically optimal entropy coded quantizer
is an infinite level uniform quantizer [2]. It is also analo-
gous to a widely cited conjecture made by Gersho [3] that
the asymptotically optimal entropy coded quantizer has
a so called tessellating structure, i.e., its quantization re-
gions are congruent polytopes which tessellate the whole
space.

The condition F'(z)T F'(z) = M(x) is a system of par-
tial differential equations which might not have a solu-
tion for a general M(z). Thus, as in the case of fixed
rate multidimensional companding for the squared error
[3, 23, 24], in general there may not exist a compressor
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function F(z) satisfying the above condition. The follow-
ing example shows that the condition of Theorem 2 can
be satisfied if d is a single letter distortion measure.

Example Assume that d(z,y) can be written as

k
d(z,y) = Zdi(xi,yi),

i=1

(10)

where = (r1,... ,2k), ¥y = (¥1,-.- ,¥%), and the scalar
distortion measures d; : R x R — R*, 1 < i < k satisfy
conditions (a)-(c). Namely, for each d; we must have
that a%sgdi(t, u) is uniformly bounded, d;(t,u) > 0 with
equality iff u = ¢, and

132di(t, u)
2 Ou?

is positive and continuous for all ¢. Then M(z) is the
diagonal matrix

M(z) = diag{mi(z1),... ,ms(z+)}.

Define F(z) = (Fi(z),...,Fk(z)) by setting

m; (t) =

Iu:t

Fi() = /O "ma@)"2 dt,

where we used the convention that f: =—[lifa>b
Then F'(z) is one-to-one and continuously differentiable
since each m;(t) is positive and continuous by assumption.
Obviously, F'(z) is diagonal and [F'(z)]? = M(z) so the
optimality condition of Theorem 2 is satisfied. There is
an interesting analogy with fixed rate multidimensional
companding for squared error. For this problem it has re-
cently been reported [25] that if the source is stationary
and memoryless, then the optimal compressor function
compresses each vector component independently, using
the scalar compressor optimal for the marginal distribu-
tion of the source.

Consider now the more general case when d(z,y) is
not a single letter distortion measure, but there exists an
orthogonal transformation such that d(z,y) becomes a
single letter distortion measure in the transformed space.
That is, if

d(z,y) = d"(Vz,Vy)
where V is a fixed orthogonal matrix and d* is in the form
of (10), then it is easy to see that the optimal compander
F is given by F(z) = F*(Vz), where F* is optimal for
d*.

4 Rate Distortion Performance

The rate distortion function of the random vector X is
defined by

R(D) = inf {I(X,Y) : E[d(X,Y)] < D},
(11)
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where I(X;Y’) denotes the mutual information between §
the the k-dimensional random vectors X and Y, and §
the infimum is taken over all joint distributions of the [
pair (X,Y) such that E[d(X,Y)] < D. The rate distor- §
tion function characterizes the lowest rate achievable by }
any source coding scheme in coding a memoryless vector
source with marginal X at distortion level D. In partic-
ular, R(D) is a lower bound on the rate of any vector
quantizer for X whose distortion does not exceed D.

In recent work [10] the asymptotic behavior of the rate
distortion function was investigated for locally quadratic
non-difference distortion measures. Let us assume that
in addition to conditions (a)—(c), the distortion measure §
also satisfies the following natural requirements. '

(d) The elements of M (z) are continuously differentiable §
functions of z.

(&) lim infyy o0 d(z,y) > O for all z € R¥.

The next theorem is a specialization of a more general
result to our case.

Theorem 3 ([10, Theorem 1)) Assuming that (d), (e), §
and the conditions of Theorem 1 hold, the low distortion }
asymptotic behavior of R(D) is given by j

gino (R(D) + —glog(27reD/k)) = h(X)
+%E[log(det M(X)), ‘;

where M(x) is the sensitivity matriz of d(z,y) given in

(3).

Assume now that there exists an optimal compressor F
which satisfies the optimality condition (9) of Theorem 2.
Then Theorem 3 implies the following.

Theorem 4 Assume that an optimal compressor F er
ists which satisfies F'(z)TF'(z) = cM(z) a.e.

sitivity matriz of d(z,y). Then with the conditions of
Theorem 1 and (d) and (e), the low distortion asymptotic
behavior of the multidimensional companding quantizer
relative to R(D) is given by

Jim (H(@p.r) ~ R(D)) = & log(2reL(Ry)). .

Thus, for low distortion, the per dimension rate of Qrp | ;.k
is at most 3 log(2meL(P,)) bits above the rate distortion g

function.

Remark. This statement has a well known analogue for
mean squared error and entropy coded lattice (or tessel
lating) quantizers [2, 4]. In fact, the same upper bound
applies there, but the the result is conceptually much sim-
pler since the well known Shannon lower bound for the
squared error can be used in place of Theorem 3.
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