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Abstract— An automated theorem proving technique is devel-
oped and is used to show that the capacity of the hexagonal

���������
constraint is zero whenever

�
	��
���
for
��	������������������������

.

I. INTRODUCTION

For integers � �"!#�%$ , a binary sequence satisfies the& !(')�+* constraint if two consecutive ones are separated by at
least ! and at most � zeros. A two-dimensional binary pattern
arranged in a rectangle satisfies the

& !(')�+* constraint if it sat-
isfies the one-dimensional

& !,'��+* constraint both horizontally
and vertically. In general, for a two-dimensional constraint - ,
the capacity of - is defined by

. & -/*10 243657�8 9;:=< 26>@?�A
&CBEDF&HG '�IJ*�*
I G (1)

where
B D &KG '�IJ* is the number of

GML I -rectangles satisfying
- . This is asymptotically the quantity of information given by
a binary digit in a two-dimensional rectangle satisfying - .

In our setting, a codeword is a function N�O�P ARQTSVU $+'XW@Y ,
i.e., a labeling of P A with zeros and ones. A code is a set
of codewords. A

& !(')�+* -constrained code is a code whose
codewords all satisfy the

& !,'��+* constraint.
The capacity of two-dimensional

& !,'��+* constraints has been
investigated by many several authors (e.g. [2], [4], [6]) and
efficient coding methods have been proposed. In all of these
cases, the code bits lie on a square lattice. However, by using a
hexagonal lattice, it is possible to pack more code bits per area
unit. As for square lattices, we can define a

& !,'��+* constraint
on a hexagonal lattice, in which case a W must be surrounded
by at least ! and at most � zeros in six directions.

Denote the capacity of a
& !,'��+* -constraint for the square

lattice by
.;Z\[ & !,'��+* and for the hexagonal lattice by

.;]_^�` & !(')�,*
In this paper, we investigate the zero capacity region of
hexagonal

& !(')�+* constraints, i.e., the set of pairs
& !(')�+* with. ]_^�` & !(')�,*/0a$ .

A hexagonal lattice with a
& !(')�+* constraint is topologically

the same as the square lattice with a
& !(')�+* constraint horizon-

tally, vertically, and on the northwest-southeast diagonal. Any
codeword that satisfies the hexagonal

& !,'��+* constraint also sat-
isfies the usual two-dimensional

& !(')�+* constraint. Therefore,.
]_^�` & !(')�,*
b .RZ\[ & !(')�+* for all ! and all � . In particular, since.
Z�[ & !('�!;cdW�*/0a$ (see [4]), we also have
.;]_^�` & !('�!;c�W�*/0e$ .

Also,
. ]�^\` & $,'XW_* is known exactly [1] and is positive. It is

known [5] that
. ]_^�` & !,')!fchg@*/0a$ for all !i�#W , and

1) For !i�jg even,
.R]_^�` & !(')g@!fcaW�*
kh$ ;

2) For !i�#W odd,
. ]�^\` & !(')g@!fcdl�*
km$ ;

3) For any !i�#W , . ]_^�` & !('�nh*Rko$ .
Note that an implication is that

.;]_^�` & gp'�q@* k $ .
Also,

. ]�^\` & $,'�l�*rks$ follows trivially from the fact that. ]_^�` & $+'XW_*tku$ . It can also be shown that
. ]�^\` & W�'�v�*wkx$ .

It has been unknown, however, whether
. ]�^\` & !('�!yczl�* is zero

or positive for !{�"l . We note that a recent result due to
Censor and Etzion [3] shows that

. ]_^�` & !,')!
cdv�*R0r$ for all
even !w�h| (and hence

. ]_^�` & !,')!1c�q�*}0j$ for all odd !i�jq ).
Table I shows the published results for small ! and � ,

including those presented in this paper and in [3].

~X���
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 0 + + + + + + + + + + + + + + + + + + + + + + + +
1 0 0 0 + + + + + + + + + + + + + + + + + + + + +
2 0 0 0 + + + + + + + + + + + + + + + + + + + +
3 0 0 0 0 + + + + + + + + + + + + + + + + + +
4 0 0 0 0 + + + + + + + + + + + + + + + +
5 0 0 0 0 + + + + + + + + + + + + + + +
6 0 0 0 + + + + + + + + + + + + + + +
7 0 0 0 0 + + + + + + + + + + + + +
8 0 0 0 + + + + + + + + + + + + +
9 0 0 0 0 + + + + + + + + + + +

10 0 0 0 + + + + + + + + + + +
11 0 0 0 0 + + + + + + + + +
12 0 0 0 + + + + + + + + +
13 0 0 0 + + + + + + +
14 0 0 0 + + + + + + +
15 0 0 0 + + + + +
16 0 0 0 + + + + +

TABLE I

SUMMARY OF THE HEXAGONAL � ~_����� -CONSTRAINED CAPACITY RESULTS

FOR SMALL
~

AND
�

. A ’+’ INDICATES POSITIVE CAPACITY AND A ’0’

INDICATES ZERO CAPACITY. THE BLANK SPACES ARE UNSOLVED CASES.

II. MAIN RESULTS

In this section, we state the result that
.�]_^�` & !,')!�chl�*10#$

for !E0el+'�v(')q+'���')�+'�W@W . It remains, however, an open problem
whether

.;]�^\` & !('�!icel�*�0�$ is true general. We give proof
sketches for the cases !w0rl,'�v due to space limitations. The
basic idea is to prove that a run of exactly ! zeros can never
occur without violating the

& !,'��+* hexagonal constraint, and
therefore

. ]_^�` & !('�!�c�l�*/0 . ]_^�` & !fcaW@')!�cdl�*/0e$ .



A computer program was written that helps in arriving at
rigorous proofs for the case �i0e!Rc l . The program assumes
the existence of a horizontal string W�$ � W and attempts to derive
a contradiction. If a contradiction is achieved then only runs
of !=ceW , !�cog , or !=cdl zeros in a row are possible, which
is equivalent to the

& !1c�W@'�!
c l�* hexagonal constraint, which
is known to have zero capacity. To arrive at a contradiction,
the program makes (hopefully clever) assumptions about the
values of certain positions.

For example, it may choose a particular location not yet
labeled as $ or W and then assume it must be labeled as
W . This assumption then leads to many consequences in the
form of forced labellings of other locations (in order to avoid
violating the

& !('�!�c�l�* constraint). A contradiction is arrived
at, if for example, a run of length ! cjv is obtained. When
a contradiction is found, the converse of the most recent
assumption is validated, conditioned on all of the previous
assumptions. In this manner a “stack” of pushes and pops of
assumptions keeps track of the state of the proof.

The choice as to which locations to make assumptions
was implemented by picking locations near other “active
locations”, ie. near other locations that have already been
labeled. This technique seems to improve the chances of
quickly finding contradictions.

The procedure uses the following facts:

1) A one forces ! zeros in six directions;
2) A run of !fcdl zeros forces two ones at its ends;
3) Two runs of zeros totaling at least !zc l zeros and

separated by a blank space force a one into that space;
4) A run of

� � v zeros forces on both sides, ! cov Q �

positions after the end of the run, another run of
� Q l

zeros. Indeed, if any of those positions had a one, this
would produce a run of !+cfv zeros. For instance, if !E0 q
and the locations

U & � '�$�*EOe$ b � b v,Y , have label $ ,
then
& Q |+'�$�* ' & Q qp')$�* ' & �,'�$�* , and

& W�$+'�$�* must be zero.

Although the program is limited to a finite array (typically
of size v�$ L v�$ ), all conclusions are valid because the number
of zeros and ones forced can only increase with larger arrays.

Sometimes, the automated procedure finds partial proofs or
“lemmas”, in the form of conditions statements of the form:
“If the label of position � is W , then the label of position�

is W ”. These lemmas can be used by humans to construct
rigorous induction arguments about the hexagonal capacities.

However, several times, the automated procedure actually
created the entire theorem (i.e.

.�]_^�` & !,')!,c
l�*/0e$ ). The formal
proofs were quite long, running thousands or millions of lines
in length. In fact, each “line” in the proof often required
thousands of verifiable sub-steps. Thus billions of steps were
performed in the longer proofs. At present, we do not see a
way to obtain proofs in these cases by hand.

The main results are summarized in the following theorem.

Theorem II.1.
. ]_^�` & !,')!fcdl�*/0e$ for !E0al,'�v(')qp' ��')�+'XW�W .

For the
& l+')|�* constraint, the automated procedure let to a

particularly nice and short proof, which we give below. It is

difficult to realize, from reading the proof, that it was computer
generated in this case.

Proof of Theorem II.1 for ! 0 l : We will prove that no
codeword can contain the string W�$@$�$+W along any line. Suppose
to the contrary that N is a codeword such that W�$@$�$+W appears
horizontally from

& $+'�$�* to
& v,'�$�* . We prove by a sequence of

assumptions and contradictions that this is impossible.

Suppose that N & W@'�W�*f0uW ; this forces a certain number of
zeros but does not lead to a contradiction. Suppose further
that N & gp' Q W_*M0%$ ; this forces N & Q W�' Q W_*M0"N & |+' Q W_*M0 W
and this in turn implies a run of seven zeros in row two,
which is not allowed. Thus, we must have N & gp' Q W�*y0rW . This
creates zeros which force ones, which in turn force zeros, and
so on. Successively, one finds that the following points must
have label one:

& qp' Q g@* and
& l,')g@* ; & qp')l�* , &�� ' Q l�* , & W�' Q l�* , and& Q g+'�l�* ; & Q W�'�v�* and

& |+'�W�* . But then this implies a horizontal
run of seven zeros from

& $+'�v�* to
& |+'�v�* .

Both assumptions N & g+' Q W_*/0e$ and N & gp' Q W_*/0rW led to a
contradiction and we conclude that N & W@'XW_*y0rW is impossible.
Thus, N & W�'XW�*y0a$ . By symmetry, also N & l,' Q W_* 0a$ .

Next, we assume that N & g+'XW_* 0e$ . This forces successively
ones in

& Q g+'XW_* and
& qp'�W�* ; in

& l,' Q g�* ; and in
& gp'�l�* . But this

implies a diagonal run of seven zeros from
& Q gp'�v�* to

& v,' Q g�* .
Thus, we must have N & g+'XW_* 0 W . By symmetry, we must also
have N & gp' Q W_* 0 W . This is impossible.

Hence, N & W@'XW_*y0rW and N & W�'XW_* 0e$ are both impossible and
we conclude that our initial assumption, the run of three zeros,
cannot occur. Therefore,

. ]_^�` & l+')|�*/0 . ]_^�` & v('�|�* 0e$ . �

For the
& v,' ��* constraint, the computer-generated proof is

relatively long and tedious and in fact supplies only a lemma,
but a particularly useful one. Due to space limitations, we omit
many of the proof details.

Proof of Theorem II.1 for !%0 v : We give here a brief
sketch of the proof, emphasizing the automated contribution.
Without loss of generality, we assume there is a horizontal
run of four zeros surrounded by two ones spanning

& $+')$�* to& q+'�$�* . By repeatedly pushing assumptions onto a stack and
popping them off when contradictions result, we are able to
conclude that, under the stated assumption, if N & W@'�W�*t0 W ,
then N & v(' Q W�*#0 W and N & Q W�' Q W�* 0 W . The automated
procedure produces the output shown below and a step-by-
step illustration of it is shown in Figures 1–8.



N & W@'XW_*y0rW ASSUMED
N & v,' Q W_*y0a$ ASSUMED
N & Q W@' Q W�* 0j$ ASSUMED
N & Q W@' Q W�* 0{W FORCED

N & v,' Q W_*y0rW FORCED
N & Q W@' Q W_* 0e$ ASSUMED
N & |+'�W�*y0j$ ASSUMED
N & l+' Q g@*y0j$ ASSUMED
N & l+' Q g@*y0{W FORCED

N & |+'�W�*y0{W FORCED
N & gp' Q l�* 0a$ ASSUMED
N & gp' Q l�* 0rW FORCED

N & Q W@' Q W_* 0 W FORCED.

By induction and symmetry arguments, we can show that
two parallel diagonal lines of ones are forced through

& $+')$�*
and
& qp')$�* . In fact, we can show after a length argument

that the codeword consists of parallel lines of ones and
that one horizontal line determines the whole plane. From
this, it can be shown that the original assumption of four
zeros surrounded by ones is invalid. This then implies that.
]_^�` & v('��@* 0 .R]_^�` & qp'��@*/0j$ . �

We note that for !E0e�p'��,'XW@W , the proofs
.;]_^�` & !('�!yczl�*/0e$

are W�v���$ , v � | � g , and W�$@l�l�����g lines long, respectively.
(Submitted to ISIT06 on January 16, 2006.)
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Fig. 1. First step in the proof of Theorem II.1 that ����������� �
	 ����
 . Solid
dots represent ones and hollow dots represent zeros. An assumption is made
that � 
�
�
�
 � occurs horizontally from � 
���
 � to ��� ��
 � as shown in the box.
All resulting forced bits are also shown. Figures 2–8 continue the process.

Fig. 2. The second assumption made is that ����� � � ��� � , as shown in the
box. All resulting forced bits are also shown.
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violation

Fig. 3. The third and fourth assumptions made are that ����� ��� � ����
 and
��� � � ��� � ����
 , in that order, as shown in the boxes. All resulting forced bits
are also shown. A horizontal string of � zeros occurs from � 
������ � to ��� ����� �
(as indicated by the arrow), which violates the hexagonal ��� ��	 � constraint.
Thus, the most recent assumption, namely ��� � � ��� � ��� 
 is false, given the�

previous assumptions before it. Thus we must have ��� � � ��� � �!� � .

violation

Fig. 4. We have set ��� � � ��� � �!� � , and retained the
�

existing assumptions
shown in boxes. All resulting forced bits are also shown. A horizontal string of
� zeros occurs from � ������" � to ��� 
�����" � (as indicated by the arrow), which
violates the hexagonal ��� ��	 � constraint. Thus, the most recent assumption,
namely ����� ��� � �#�$
 is false, given the % previous assumptions before it.
Thus we must have ����� ��� � �!� � .



violation

Fig. 5. We have set ����� ��� � �!� � , and retained the % existing assumptions
shown in boxes. In addition, we have made

�
new assumptions, namely that

��� � � ��� � ����
 , ��� "�� � ��� 
 , and ��� ����� % ��� 
 , in that order, also shown in
boxes. All resulting forced bits are also shown. A horizontal string of � zeros
occurs from ��% ��� � � to ��� ��� � � (as indicated by the arrow), which violates
the hexagonal ��� ��	 � constraint. Thus, the most recent assumption, namely
��� ����� % � ��
 is false, given the � previous assumptions before it. Thus we
must have ��� ����� % ��� � .

violation

Fig. 6. We have set ��� ����� % �!� � , and retained the � existing assumptions
shown in boxes. All resulting forced bits are also shown. A diagonal string
of � zeros occurs from � ��"�� � � to � � ��� % � (as indicated by the arrow), which
violates the hexagonal ��� ��	 � constraint. Thus, the most recent assumption,
namely ��� "�� � � � 
 is false, given the

�
previous assumptions before it.

Thus we must have ��� "�� � ��� � .

violation

Fig. 7. We have set ��� "�� � � � � , and retained the
�

existing assumptions
shown in boxes. In addition, we have made � new assumption, namely that
��� % ����� � � 
 , also shown in the box. All resulting forced bits are also
shown. A horizontal string of � zeros occurs from � 	���� 	 � to � �
� ��� 	 � (as
indicated by the arrow), which violates the hexagonal ��� ��	 � constraint. Thus,
the most recent assumption, namely ����% ����� � � 
 is false, given the

�
previous assumptions before it. Thus we must have ����% ����� �!� � .

violation

Fig. 8. We have set ��� % ����� �!� � , and retained the
�

existing assumptions
shown in boxes. All resulting forced bits are also shown. A vertical string of
� 
 zeros occurs from � � � ����" � to � � � ��� � (as indicated by the arrow), which
violates the hexagonal ��� ��	 � constraint. Thus, the most recent assumption,
namely ��� � � ��� � �!��
 is false, given the % previous assumptions before it.
Thus we must have ��� � � ��� � ��� � .


