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Abstract — Principal curves have been defined as
“self consistent” smooth curves which pass through
the “middle” of a d-dimensional probability distribu-
tion or data cloud. We take a new approach by defin-
ing principal curves as continuous curves of a given
length which minimize the expected squared distance
between the curve and points of the space randomly
chosen according to a given distribution. The new
definition makes it possible to carry out a theoreti-
cal analysis of learning principal curves from training
data and it also leads to a new practical construction.

I. INTRODUCTION

Hastie and Stuetzle [1] (hereafter HS) generalized the self
consistency property of principal components and introduced
the notion of principal curves. Consider a d-dimensional ran-
dom vector X = (X, ..., X)) with finite second moments,
and let £(t) = (f1(t),..., fa(t)) be a smooth curve in R?
parametrized by ¢ € R. For any x € R? let t;(x) denote
the parameter value ¢t for which the distance between x and
f(t) is minimized. By the HS definition, f(t) is a principal
curve if it does not intersect itself and

£(t) = E(X[ts(X) = 1),

that is, f(¢) is the conditional expectation of X given that X
is closer to f(t) than to any other point of f.

There remains an unsatisfactory aspect of the definition of
principal curves in the original HS paper as well as in subse-
quent works. Although principal curves have been defined to
be nonparametric, their existence for a given distribution or
probability density is an open question, except for very spe-
cial cases such as elliptical distributions. This also makes it
very difficult to theoretically analyze any estimation scheme
for principal curves. Below we give a new definition of prin-
cipal curves which resolves this problem and which leads to a
new effective algorithm.

II. PRINCIPAL CURVES WITH A LENGTH CONSTRAINT

A curve in d-dimensional Euclidean space is a continuous func-
tion £ : I — R?, where I is a closed interval of the real line.
Let the expected squared distance of X from f be defined by

A(f) = Elinf [X —£1)[”] = BlIX — £(t(X))|I".

We give the following new definition of principal curves.

Definition 1 A curve £* is called o principal curve of length
L for X if £* minimizes A(f) over all curves of length less
than or equal to L.
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A useful advantage of the new definition is that principal
curves of length L always exist if X has finite second moments,
as the next result shows.

Lemma 1 Assume that E||X|> < co. Then for any L > 0
there exists a curve £* with I(f*) < L such that

A(f") = inf{A(f) : I(f) < L}.

III. LEARNING PRINCIPAL CURVES

Suppose that the distribution of X is concentrated on a
closed and bounded convex set K C R?, and we are given
n training points X1, ..., X, drawn independently from the
distribution of X. Let S denote the family of curves taking
values in K and having length not greater than L. For k > 1
let Sk be the set of polygonal curves (broken lines) in K which
have k segments and whose lengths do not exceed L.

Let A(x,f) = min, ||[x — f(t)||> denote the squared dis-
tance between x and f. For any f € S the empirical
squared error of f on the training data is the sample aver-
age A.(f) = L 37  A(Xi,f). Let our theoretical algorithm
choose an fj ,, € S; which minimizes the empirical error, i.e,
let

fi,. = arg min A, (f).
£ES),

The efficiency of the estimator is measured by the differ-
ence J(f ) between the expected squared loss of fr ,, and the
optimal expected squared loss achieved by f*, i.e.,

J(fr,n) = A(fr,n) — AFY).

The next theorem upper bounds the loss of the estimator
in terms of the training data size n.
Theorem 1 Assume that P{X € K} =1 for a compact and
convez set K, let n be the number of training points, and let k
be chosen to be proportional to n'/%. Then the expected squared
loss of the empirically optimal broken line with k segments and
length at most L converges, as n — 0o, to the squared loss of
the principal curve of length L at a rate

J(Frn) = O(n~ 3.

Based on the theoretical learning scheme above, a practical
algorithm [2] for constructing principal curves has been devel-
oped. The new algorithm compares favorably with existing
methods both in terms of complexity and performance.
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