## **Optimal Rate Allocation for Shape-Gain Gaussian Quantizers**<sup>1</sup>

Jon Hamkins Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr. Pasadena, CA 91109-8099 email: hamkins@jpl.nasa.gov

Abstract — We derive the optimal rate allocation of the shape and gain components of a certain shape-gain quantizer for the Gaussian source. The rate allocation results are of particular interest because the shape-gain quantizer addressed in this paper is the best vector quantizer known for the memoryless Gaussian source at rates of three or higher.

## I. INTRODUCTION

An important goal in source coding is to design quantizers that have both low implementation complexity and performance close to the distortion-rate function of a source. One promising new vector quantizer for the Gaussian source performs within 1 dB of the ratedistortion function for rates of 2 and higher and has an encoding complexity which is linear in the rate [1].

A shape-gain vector quantizer decomposes a source vector X into a gain g = ||X|| and shape S = X/g, which are quantized to  $\hat{g}$  and  $\hat{S}$ , respectively, and the output is  $\hat{X} = \hat{g}\hat{S}$  (see Figure 1). A wrapped spherical vector quantizer for the Gaussian source [1] contains a gain codebook that is the globally optimal scalar quantizer for the generalized Rayleigh-distributed gain g = ||X||, and a shape codebook obtained by mapping a (k-1)-dimensional lattice  $\Lambda$  onto the unit k-dimensional sphere  $\Omega_k$  in such a way that distance properties of  $\Lambda$ are nearly preserved. As a result, the distortion of the shape codebook for a source uniformly distributed on  $\Omega_k$  is nearly the same as the distortion performance of  $\Lambda$  for a uniform source in  $\mathbb{R}^{k-1}$ . Furthermore, it turns out that the distortion of the overall shape-gain quantizer for the memoryless Gaussian source decomposes into a gain distortion  $D_g = \frac{1}{k} E[(g - \hat{g})^2]$  which is easily numerically computed by evaluating a one-dimensional integral, and a shape distortion  $D_s = \sigma^2 E[||S - \hat{S}||^2] \approx (k - 1)\sigma^2 G(\Lambda) V(\Lambda)^{\frac{2}{k-1}}$ , where  $\sigma^2$  is the variance of the Gaussian source,  $G(\Lambda)$  is the normalized second moment of a Voronoi region of  $\Lambda$ , and  $V(\Lambda)$  is its volume.

## II. ALLOCATION OF SHAPE AND GAIN RATES

Let *R* be the transmission rate of the shape-gain VQ and let the shape code rate  $R_s$  and gain code rate  $R_g$  satisfy  $R_s + R_g = R$ . For a numerical solution, the optimal bit allocation between shape and gain codebooks can be converged upon by evaluating  $D_s + D_g$  for each rate allocation and using a gradient descent algorithm.

We analytically determine the optimum rate allocation for asymptotically high rates. For general shape-gain quantizers this is an unsolved problem. Since the transmission rate R, the shape quantizer rate  $R_s$ , and the gain quantizer rate  $R_g$  are related by  $R = R_s + R_g$  we can write the shape and gain distortions as

$$D_s \approx (k-1)\sigma^2 G(\Lambda) V(\Lambda)^{\frac{2}{k-1}} \approx C_s 2^{-2R_s\left(\frac{k}{k-1}\right)}$$
(1)

$$D_g \approx C_g 2^{-2R_g k} = C_g 2^{-2k(R-R_s)} \tag{2}$$

Kenneth Zeger Department of Electrical and Computer Engineering University of California, San Diego La Jolla, CA 92093-0407 email: zeger@ucsd.edu



: 1: Geometrical view of shape-gain encoder.

Ids for large R and  $R_s$  from Bennett's integral [2], and  $C_g$  are constants that are independent of  $R_s$  and  $R_g$ . The ce of  $R_s$  and  $R_g$  is given in the following theorem.

Let  $X \in \mathbb{R}^k$  be an uncorrelated Gaussian vector with zero mean and component variances  $\sigma^2$  and let  $\Lambda$  be a lattice in  $\mathbb{R}^{k-1}$  with normalized second moment  $G(\Lambda)$ . Suppose X is quantized by a k-dimensional shape-gain vector quantizer at rate  $R = R_s + R_g$ (where  $R_s$  and  $R_g$  are the shape and gain quantizer rates) with independent shape and gain encoders and whose shape codebook is a wrapped spherical code constructed from  $\Lambda$ . Then as  $R \to \infty$ , the minimum mean squared quantization error D decays as

$$D \approx C_s \left(\frac{k}{k-1}\right) \left(\frac{C_g}{C_s}(k-1)\right)^{1/k} \cdot 2^{-2R}$$
(3)

and is achieved by

$$R_s = \left(\frac{k-1}{k}\right) \left[ R + \frac{1}{2k} \log_2\left(\frac{C_s}{C_g} \cdot \frac{1}{k-1}\right) \right]$$
(4)

$$R_g = \left(\frac{1}{k}\right) \left[ R - \frac{k-1}{2k} \log_2\left(\frac{C_s}{C_g} \cdot \frac{1}{k-1}\right) \right]$$
(5)

where 
$$C_s = \sigma^2 \cdot (k-1)G(\Lambda) \left(\frac{2\pi^{k/2}}{\Gamma(k/2)}\right)^{\frac{2}{k-1}}$$
 and  $C_g = \sigma^2 \cdot \frac{3^{k/2}\Gamma^3(\frac{k+2}{6})}{8\Gamma(k/2)}$ .

Note that for large *R*, the optimal allocation of transmission rate between the shape quantizer and the gain quantizer is approximately  $R_s \approx (1 - \frac{1}{k})R$  and  $R_g \approx \frac{1}{k}R$ , as intuition would indicate. This corresponds, to within 1% when  $R \ge 5$ , of what was observed in the numerical rate allocation optimization.

## References

- J. Hamkins and K. Zeger, "Asymptotically dense spherical codes part I: Wrapped spherical codes," *IEEE Trans. Inform. Theory*, vol. 43, pp. 1774–1785, Nov. 1997.
- [2] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Boston, MA: Kluwer Academic Publishers, 1993.

<sup>&</sup>lt;sup>1</sup>This work was supported in part by the National Science Foundation. The first author conducted this research while at the University of Illinois at Urbana-Champaign.