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of these bounds is the well known Shannon lower bound[1]. For Xn having an absolutely continuous distributionwith density f and a �nite di�erential entropyh(Xn) = � Z f(x) log f(x)dxthe Shannon lower bound states thatRXn(D) � 1nh(Xn)� 12 log(2�eD)where the logarithm is base 2. The right hand side equalsRXn(D) if and only if Xn can be written as a sum oftwo independent random vectors, one of which has in-dependent and identically distributed (i.i.d.) Gaussiancomponents with zero mean and variance D. In moregeneral cases, the Shannon lower bound is strictly lessthan RXn(D) for all D > 0, but it becomes tight in thelimit of small distortions in the sense thatRXn(D) = 1nh(Xn)� 12 log(2�eD) + o(1) (1)where o(1)! 0 as D ! 0 ([2] [3] [4]).One important feature of the Shannon lower bound isthat it easily generalizes to stationary sources. Let X =fXig1i=1 be a real stationary source and for each n, letXn denote the vector of the �rst n samples of X . Therate-distortion function of X is de�ned byRX (D) = limn!1RXn(D) (2)(the limit is known to always exist [1]). The quantityRX (D) represents the minimum achievable rate in cod-ing X with distortion D. Let Xn = (X1; : : : ; Xn) have adensity and �nite di�erential entropy h(Xn) for all n,and assume that the di�erential entropy rate h(X ) =limn!1 1nh(Xn) is �nite. Then the generalized Shannonlower bound [1] isRX (D) � h(X )� 12 log(2�eD) (3)and just as in the �nite dimensional case, this lower boundbecomes asymptotically tight in the limit of small distor-



tions ([3] [4]).For source distributions without a density the Shan-non lower bound has no immediate extension. How-ever, Rosenthal and Binia [5] have demonstrated thatthe asymptotic behavior of the rate-distortion function(which for sources with a density is given by (1)) can stillbe determined for more general distributions. They con-sidered the case when the distribution of Xn is a mixtureof a discrete and a continuous component with nonneg-ative weights 1 � � and �, respectively, where the con-tinuous component is concentrated on an L-dimensionallinear subspace of Rn and has a density with respect tothe Lebesgue measure on that subspace. Equivalently,we are given an n-dimensional random vector X(1) witha discrete distribution, and another n-dimensional ran-dom vector X(2) which is obtained by applying an or-thogonal transformation to X 0 = (X 01; : : : ; X 0L; 0; : : : ; 0),where the L-dimensional random vector (X 01; : : : ; X 0L) hasa density. Let � be a binary random variable with distri-bution P(� = 0) = 1� � and P(� = 1) = �, and let � beindependent of (X(1); X(2)). It is assumed that Xn canbe written in the formXn = (1� �)X(1) + �X(2): (4)The main result of [5] shows that as D ! 0, the rate-distortion function of Xn with such a mixed distributionis given asymptotically by the expressionRXn(D) = 1nH(�) + 1� �n H(X(1)) (5)+ �nh(X 0)� �L2n log�2�enD�L �+ o(1)where H(�) and H(X(1)) denote discrete entropies andh(X 0) is the di�erential entropy of X 0. We note here thatRosenthal and Binia made an error in the derivation (seeequation (27) in [5]) and in fact arrived at an incorrect for-mula instead of the correct expression (5). Their asymp-totic expression exceeds (5) by the nonnegative constant�L2n log� 1��.Although the mixture model Rosenthal and Binia con-sidered can be very useful for modeling memoryless sig-nals encountered in certain practical situations, its usein modeling information sources with memory and mixedmarginals is rather limited. In particular, it is easy tosee that a source fXig1i=1 cannot be ergodic if for all n,the samples Xn = (X1; : : : ; Xn) have a mixture distribu-tion in the form of (4) with 0 < � < 1. Thus in general(5) cannot be used to obtain the asymptotic behavior ofRX (D) for stationary and ergodic sources with memoryand mixed marginals, although such source models are ofpractical interest, for example, in lossy coding of sparseimages [6].In this paper we propose a more general mixture modeland provide an extension of (5) to this class of source

distributions. Our model has the advantage of allowingstationary and ergodic information sources. We assumethat the distribution of Xn is a mixture of �nitely manycomponent distributions such that each component hasa certain number of coordinates with a discrete distribu-tion while the remaining coordinates have a joint density.More formally, let fX(j), j = 1; : : : ; Ng be a �nite col-lection of random n-vectors such that for each j exactlydj coordinates of X(j) have a discrete distribution (thedj-dimensional vector formed by these \discrete coordi-nates" is denoted bX(j)) and the remaining cj = n � djcoordinates have a joint density (the cj-dimensional vec-tor formed by these \continuous coordinates" is denoted~X(j)). Without loss of generality, we assume that X(j)and X(j0) do not have all their discrete coordinates in thesame positions if j 6= j0. Let V be a random variabletaking values in f1; : : : ; Ng which is independent of theX(j)'s. Our model for Xn assumes that Xn = X(V ), thatis, if V = j, then Xn = X(j). Note that V is a functionof Xn with probability 1.Let h( ~X(j)j bX(j)) denote the conditional di�erential en-tropy of the continuous coordinates of X(j) given its dis-crete coordinates, and let H( bX(j)) denote the entropy ofthe discrete coordinates. Our main result, Theorem 1,shows that as D ! 0,RXn(D) = 1nH(V ) + 1n NXj=1 �jH( bX(j)) (6)+ 1n NXj=1 �jh( ~X(j)j bX(j))� �2 log(2�eD=�) + o(1)where �j = P(V = j) and � = 1nPNj=1 �jcj . Note thatthe quantity n� is the average number of \continuouscoordinates" of Xn. Formula (6) proves that n� is alsothe so-called rate-distortion dimension of Xn [7].To illustrate the application of this result to sources withmemory, let Z = fZig1i=1 be an arbitrary binary sta-tionary source. We construct another stationary sourceX = fXig1i=1 in the following manner. If Zi = 0, let Xihave a �xed discrete distribution P , while if Zi = 1, let Xihave a density f . We assume that the generating proce-dure is memoryless so that the Xi are conditionally inde-pendent given fZig1i=1. Then the process fXig1i=1 is sta-tionary. Note that the distribution of Xn does not havethe binary mixture form of (4) if n � 2. Thus (5) cannotbe used to obtain the asymptotic behavior of RXn(D) forn � 2 except when fZig is memoryless, in which caseRXn(D) = RX1(D). On the other hand, for all n, thedistribution of Xn has a mixture form for which (6) ap-plies. As a consequence of this fact, Corollary 1 showsthat as D ! 0,RX (D) = H(Z) + (1� �)H(P ) + �h(f)� �2 log(2�eD=�) + o(1) (7)



where H(Z) = limn 1nH(Zn) is the entropy rate of Z ,H(P ) and h(f) are the discrete and di�erential entropiesof P and f , respectively, and � = P(Zi = 1).The above construction can be used to model the for-mation of sparse images which have a large number ofzero-valued pixels [6]. In this case, P is concentrated onthe single value zero (i.e., Xi = 0 if Z = 0) and thefraction of nonzero pixels is controlled by the parame-ter � = P(Zi = 1). The wide range of possible choicesfor the stationary binary process fZig and the density fmakes it possible to accurately model the image charac-teristics. Then formula (7) can be used to compare theperformance of a practical coding scheme with the idealperformance given by rate-distortion function.2 Sources with Mixed DistributionLet fX(j) = (X(j)1 ; : : : ; X(j)n ), j = 1; : : : ; Ng be a �nitecollection of Rn -valued random vectors such that eachX(j) has dj coordinates which have discrete distribution,and cj = n � dj coordinates which have a joint den-sity. More formally, let Aj = faj1; : : : ; ajdjg be a subset off1; : : : ; ng of size dj such that aj1 < aj2 < � � � < ajdj , andlet Bj = fbj1; : : : ; bjcjg = f1; : : : ; ng nAj , bj1 < bj2 < � � � <bjcj be the complement of Aj in f1; : : : ; ng. We assumethat the dj-dimensional random vectorbX(j) = (X(j)aj1 ; : : : ; X(j)ajdj ) (8)which is chosen from among the coordinates of X(j) bythe index set Aj has a discrete distribution with a �niteor countably in�nite number of atoms, while the cj di-mensional random vector~X(j) = (X(j)bj1 ; : : : ; X(j)bjcj ) (9)has an absolutely continuous distribution with a density.We also allow dj = n (X(j) has a discrete distribution)and dj = 0 (X(j) has an n-dimensional density).Let the source vector Xn have a distribution which is amixture of the distributions of the X(j) with nonnegativeweights �1; : : : ; �N (PNj=1 �j = 1). This means that forany measurable B � Rn ,P(Xn 2 B) = NXj=1 �jP(X(j) 2 B): (10)Equivalently, we can de�ne an index random variableV taking values in f1; : : : ; Ng, which is independent ofthe X(j) and has the distribution P(V = j) = �j ,j = 1 : : : ; N . If Xn is de�ned byXn = X(V ) (11)(i.e., if V = j, then Xn = X(j)) then Xn has a distribu-

tion given by (10).Without loss of generality we will assume that if j 6=j0, then X(j) and X(j0) do not have their discrete (andconsequently their continuous) coordinates at the samepositions, i.e., Aj 6= Aj0 if j 6= j0. For otherwise, bymixing the distributions of X(j) and X(j0) with weights�j=(�j + �j0) and �j0=(�j + �j0 ), one would obtain anew distribution which, when assigned the weight �j +�j0 , could replace X(j) and X(j0) in the de�nition of Xn.Therefore, we can assume that N � 2n since there are 2ndi�erent possibilities for choosing discrete coordinates.In what follows we require that Xn satisfy the followingmild conditions.(a) All X(j) have �nite second moments EkX(j)k2 <1,j = 1; : : : ; N .(b) For each X(j), j = 1; : : : ; N , the conditional di�er-ential entropy h( ~X(j)j bX(j)) is �nite, and the entropyof the discrete coordinates H( bX(j)) is �nite.The next theorem is proved in [8]Theorem 1 Assume Xn is of the mixture form (11) suchthat each component X(j) has dj coordinates with a dis-crete distribution and cj = n�dj coordinates with a jointdensity. Suppose the X(j) satisfy (a) and (b). Then theasymptotic behavior of the rate-distortion function of Xnrelative to the normalized squared error is given as D ! 0byRXn(D) = 1nH(V ) + 1n NXj=1 �jH( bX(j)) (12)+ 1n NXj=1 �jh( ~X(j)j bX(j))� �2 log(2�eD=�) + o(1)where � = 1nPNj=1 �jcj and o(1)! 0 as D ! 0.Remark Kawabata and Dembo [7] de�ned the rate-distortion dimension of Xn bylimD!0 nRXn(D)� 12 log(D)provided the limit exists. The rate-distortion dimensionof Xn with an n-dimensional density is n by (1). It iseasy to see that if Xn has a discrete distribution, its rate-distortion dimension is zero. The result of Rosenthal andBinia in (5) demonstrates that if the continuous com-ponent of Xn has an L-dimensional density and weight�, then its rate-distortion dimension is �L. Theorem 1shows that for the mixed distributions we consider, therate-distortion dimension islimD!0 nRXn(D)� 12 log(D) = n�



where n� = PNj=1 �jcj . Thus the expected number ofthe continuous coordinates of Xn is also the e�ective di-mension of Xn in the rate-distortion sense.Example One immediate application of Theorem 1 con-cerns processes which are obtained by passing a binarystationary source through a memoryless channel. LetZ = fZig1i=1 be an arbitrary stationary source takingvalues in f0; 1g, and consider a time-invariant memory-less channel with binary input and real valued output.The output of the channel has a discrete distribution Pif the input is 0, and an absolutely continuous distribu-tion with density f if the input is 1. We will assume thatH(P ) and h(f) are �nite.Suppose the stationary process X = fXig1i=1 is generatedas the output of this channel if the input is fZig1i=1. Fixn � 1. Since the channel is memoryless, X1; : : : ; Xn areconditionally independent given Zn. For zn 2 f0; 1gn, letX(zn) be a random n-vector having distribution equal tothe conditional distribution of Xn given Zn = zn, andlet d(zn) and c(zn) denote the number of 0's and 1's, re-spectively, in the binary string zn. Then the coordinatesX(zn)i for which zi = 0, form a d(zn)-dimensional i.i.d.random vector bX(zn) with a discrete marginal distribu-tion P , and the X(zn)i for which zi = 1, form a c(zn)-dimensional i.i.d. random vector ~X(zn) with marginaldensity f . It follows that Xn has the type of mix-ture distribution considered in Theorem 1 with 2n com-ponents X(zn) indexed by zn, where X(zn) has weightP(Zn = zn). Therefore, we can apply Theorem 1 withV = Zn and �(zn) = P(Zn = zn) to obtain that asD ! 0,RXn(D) = 1nH(Zn) + 1n Xzn2f0;1gnP(Zn = zn)H( bX(zn))+ 1n Xzn2f0;1gnP(Zn = zn)h( ~X(zn)j bX(zn))��2 log(2�eD=�) + o(1) (13)where � = 1n Xzn2f0;1gnP(Zn = zn)c(zn)= 1nE[c(Zn)] = P(Zi = 1)since fZig is stationary. Moreover, by independence,we have H( bX(zn)) = d(zn)H(P ) and h( ~X(zn)j bX(zn)) =c(zn)h(f). Since we also have1n Xzn2f0;1gnP(Zn = zn)d(zn) = 1� �
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