
ISIT 2003, Yokohama, Japan, June 29 – July 4, 2003

Self-Synchronization of Huffman Codes1

Christopher F. Freiling
Department of Mathematics
California State University
San Bernadino, CA 92407
cfreilin@csusb.edu

Douglas S. Jungreis
Center for Commun. Research

4320 Westerra Court
San Diego CA 92121

jungreis@ccrwest.org

François Théberge
Dept. of National Defense
CSE/DND, P.O. Box 9703
Ottawa, K1G 3Z4, Canada

f theberge@hotmail.com

Kenneth Zeger
Dept. of Electrical & Comp. Eng.

Univ. of California, San Diego
La Jolla, CA 92093-0407
zeger@ucsd.edu

Variable length binary codes have been frequently used for com-
munications since Huffman’s important paper on constructing mini-
mum average length codes. One drawback of variable length codes
is the potential loss of synchronization in the presence of channel
errors. However, many variable length codes seem to possess a “self-
synchronization” property that lets them recover from bit errors.

In particular, for some variable length codes there exists a cer-
tain binary string (not necessarily a codeword) which automatically
resynchronizes the code. That is, if a transmitted sequence of bits is
corrupted by one or more bit errors, then as soon as the receiver by
random chance correctly detects a self-synchronizing string, the re-
ceiver can continue properly parsing the bit sequence into codewords.
Most commonly used binary prefix codes, including Huffman codes,
are “complete”, in the sense that the vertices in their decoding trees
are either leaves or have two children. An open question has been
to characterize which prefix codes and which complete prefix codes
have a self-synchronizing string. In this paper, we prove that almost
all complete prefix codes have a self-synchronizing string.

Capocelli, Gargano, and Vaccaro [1] proved that a variable-length
code is statistically synchronizable iff it has a self-synchronizing
string. They also gave an algorithm that determines whether a code
has a self-synchronizing string. Capocelli, et al. [2] gave an algo-
rithm for constructing prefix codes with self-synchronizing strings
such that the average length of the code is close to optimal. They
also provided a method for constructing prefix codes with a self-
synchronizing codeword and whose rate redundancy is low.

Ferguson and Rabinowitz [3] found sufficient conditions for the
existence or non-existence of self-synchronizing strings for Huffman
codes for many classes of source probabilities, but required the syn-
chronizing strings to be Huffman codewords. They also examined the
problem of finding, for a given set of codeword lengths, a Huffman
code with the shortest possible self-synchronizing codeword. Mont-
gomery and Abrahams [4] showed how to construct variable length
codes with a self-synchronizing string, whose average length is close
to that of a Huffman code.

A prefix code is complete if for every ���������
	��� , the string ���
is a prefix of some codeword if and only if ��	 is a prefix of some
codeword. Huffman codes are examples of complete prefix codes.

A binary tree is a finite directed acyclic graph such that every
node has out-degree zero or two, one node (called the root node and
denoted � ) has in-degree zero, and all other nodes have in-degree one.
Whenever an edge leads from one node to another, these nodes are re-
ferred to respectively as the parent and child. The edges leading from
a parent to its children are labeled ’0’ and ’1’, and the corresponding
children are called the 0-child and 1-child. A leaf is a node with no
children. A non-leaf node is called internal. A branch is a path from
the root to a leaf, and each branch is identified with the sequence of
zeros and ones that label this path. In particular, the zero branch is
the branch associated with the all zeros codeword. Each node of a
tree is identified with the label of the path to the node from the root.

1This research was supported in part by the National Science Foundation.

In particular, the root node is identified with the empty string.
A complete prefix code can be conveniently represented by the

binary tree whose branches are its codewords. To decode a binary se-
quence, one places a pointer at the root, and proceeds through the bit
sequence. For each 0-bit, the pointer is moved to its 0-child, and for
each 1-bit the pointer is moved to its 1-child. Whenever the pointer
reaches a leaf, the symbol in � that is represented by that leaf’s path
is output, and the pointer is reset to the root.

A simple but useful fact is that for every node � in a binary tree,
there exists a nonnegative integer � such that � ��� is the root node,
where �� is the string of � zeros. This is because we can traverse
down a binary tree from � along 0-children, eventually hitting a leaf
node.

Recall that in the decoding procedure, we keep a pointer to a node
in the tree; for each bit of data, we move the pointer from a node to
one of its children, and when we reach a leaf, we move the pointer
back to the root. In this way, any string of data-bits moves the pointer
from one node to another. We define this formally:

In the decoding procedure, the location of the pointer depends on
the entire set of bits that have been decoded; however, knowing the
most recently decoded bits provides some information about the lo-
cation of the pointer. In particular, there are certain strings that bring
multiple nodes to one node.

A string � �������
	�� � is self-synchronizing for a complete prefix
code if it brings every internal node to the root. Therefore, if we are
decoding a data stream and we have just decoded a self-synchronizing
string, then the pointer is back at the root, regardless of what bits
preceded the self-synchronizing string.

Let � be a collection of binary codes and let � be some property
that each such code may or may not have. For each positive inte-
ger � let ��� ��! be the number of codes in � with � codewords that
have property � , and let "#� ��! be the number of codes in � with �
codewords. We say that almost all codes in � have property � if$&%&')(+*-, �.� �/!10�"#� �/!32 	 . The main result of this paper is the fol-
lowing theorem.

Theorem 1 Almost all complete prefix codes have a self-
synchronizing string.

REFERENCES

[1] R. M. Capocelli, L. Gargano, and U. Vaccaro. On the characterization of
statistically synchronizable variable-length codes. IEEE Transactions on
Information Theory, 34(4):817–825, July 1988.

[2] R. M. Capocelli, A. A. De Santis, L. Gargano, and U. Vaccaro. On the
construction of statistically synchronizable codes. IEEE Transactions on
Information Theory, 38(2):407–414, March 1992.

[3] T. J. Ferguson and J. H. Rabinowitz. Self-synchronizing Huffman codes.
IEEE Transactions on Information Theory, 30(4):687–693, July 1984.

[4] B. L. Montgomery and J. Abrahams. Synchronization of binary source
codes. IEEE Transactions on Information Theory, 32(6):849–854,
November 1986.


