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Abstract—Two characteristic-dependent linear rank in-
equalities are given for eight variables. Specifically, the first
inequality holds for all finite fields whose characteristic is
not three and does not in general hold over characteristic
three. The second inequality holds for all finite fields
whose characteristic is three and does not in general hold
over characteristics other than three. Applications of these
inequalities to the computation of capacity upper bounds
in network coding are demonstrated.

I. INTRODUCTION

The study of information inequalities is a subfield of

information theory that describes linear constraints on

the entropies of finite collections of jointly distributed

discrete random variables. Historically, the known in-

formation inequalities were orignally all special cases

of Shannon’s conditional mutual information inequality

I(X ;Y |Z) ≥ 0, but later were generalized to other

types of inequalities, called non-Shannon inequalities.

Information inequalities have been shown to be useful

for computing upper bounds on the network coding

capacities of certain networks.

Analagously, the study of linear rank inequalities is a

topic of linear algebra, which describes linear constraints

on the dimensions of collections of subspaces of finite

dimensional vector spaces. In fact, the set of all infor-

mation inequalities can be viewed as subclass of the set

of all linear rank inequalities.

Information inequalities hold over all collections of a

certain number of random variables. In constrast, linear

rank inequalities may hold over only certain vector

spaces, such as those whose scalars have particular field

characteristics.
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In this paper, we present two new linear rank in-

equalities over finite fields, which are not information

inequalities, and with the peculiar property that they

only hold for certain fields, depending on the associated

vector space. The first inequality is shown to hold over

all vector spaces when the field characteristic is anything

but three (Theorem II.1), but does not always hold

when the field characteristic is three (Theorem II.2). In

contrast, the second inequality is shown to hold over

all vector spaces when the field characteristic is three

(Theorem III.1), but does not always hold when the field

characteristic is not three (Theorem III.2). We also show

how these inequalities can be used to obtain bounds on

the capacities of certain networks (Corollaries II.3 and

III.3).

Due to space limitations, we omit the proofs of results

stated in this paper. The full proofs of all such results

can be found in [11].

A. Background

In 2000, Ahlswede, Cai, Li, and Yeung introduced

the field of Network Coding [1] and showed that coding

can outperform routing in directed acyclic networks.1

There are presently no known algorithms to determine

the capacity or the linear capacity of a given network.

In fact, it is not even known if such algorithms exist.

Information inequalities are linear inequalities that

hold for all jointly distributed random variables, and

Shannon inequalities are information inequalities of a

certain form [19]. Both are defined in Section I-B.

It is known [22] that all information inequalities con-

taining three or fewer variables are Shannon inequal-

ities. The first “non-Shannon” information inequality

was of four variables and was published in 1998

by Zhang and Yeung [25]. Since 1998, various other

non-Shannon inequalities have been found, for exam-

ple, by Lněnička [14], Makarychev, Makarychev, Ro-

mashchenko, and Vereshchagin [15], Zhang [23], Zhang

and Yeung [24], Dougherty, Freiling, and Zeger [5], and

1In what follows, by “network” we shall always mean a directed
acyclic network.
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Matúš [16]. Additionally, in 2007, Matúš demonstrated

an infinite collection of independent non-Shannon infor-

mation inequalities [16] and there were necessarily an

infinite number of such inequalities. In 2008, Xu, Wang,

and Sun [20] also gave an infinite list of inequalities but

did not establish their necessity.

There is a close connection between information in-

equalities and network coding [4]. Capacities of some

networks have been computed by finding matching lower

and upper bounds [6]. Lower bounds have been found

by deriving coding solutions. Upper bounds have been

found by using information inequalities and treating

the sources as independent random variables that are

uniformly distributed over the alphabet. One “holy grail”

problem of network coding is to develop an algorithm

to compute the coding capacity of an arbitrary network.

If such an algorithm exists, information inequalities may

potentially play a role in the solution.

It has been shown that linear codes are insufficient for

network coding in general [7]. However, linear codes

may be desirable to use in practice due to ease of

analysis and implementation. It has been shown that the

coding capacity is independent of the alphabet size [3].

However, the linear coding capacity is dependent on

alphabet size, or more specifically the field characteristic.

In other words, one can potentially achieve a higher rate

of linear communication by choosing one characteristic

over another. To provide upper bounds for the linear

coding capacity for a particular field one can look at

linear rank inequalities [10]. Linear rank inequalities are

linear inequalities that are always satisfied by ranks2 of

subspaces of a vector space. All information inequalities

are linear rank inequalities but not all linear rank in-

equalities are information inequalities. The first example

of a linear rank inequality that is not an information

inequality was found by Ingleton [13]. Information in-

equalities can provide an upper bound for the capacity

of a network, but this upper bound would hold for

all alphabets. Therefore, to determine the linear coding

capacity over a certain characteristic one would have to

consider linear rank inequalities.

All linear rank inequalities up to and including five

variables are known and none of these depend on the

vector spaces’ field characteristics [8]. The set of all

linear rank inequalities for six variables has not yet

been determined. Characteristic-dependent linear rank

inequalities are given, for example, in [2] and [10].

An inequality is given in [10] which is valid for

2Throughout this paper, we will use the terminology “rank” of a
subspace to mean the dimension of the subspace (i.e. the rank of a
matrix whose columns are a basis for the subspace), in order to parallel
the terminology of matroid theory.

characteristic two and another inequality is given which

is valid for every characteristic except for two. These

inequalities are then used to provide upper bounds for

the linear coding capacity of two networks.

In the present paper, we give two characteristic-

dependent linear rank inequalities on eight variables. One

is valid for characteristic three and the other is valid for

every characteristic except for three. These inequalities

are then used to provide upper bounds for the linear

coding capacity of two networks.

It is our intention that the techniques presented here

may prove useful or otherwise motivate further progress

in determining network capacities.

B. Information Theory and Linear rank Inequalities

Let A,B,C be collections of discrete random vari-

ables over a finite alphabet X , and let p be the probability

mass function of A. The entropy of A is defined by

H(A) = −
∑

u

p(u) log|X | p(u).

The conditional entropy of A given B is

H(A|B) = H(A,B)−H(B), (1)

the mutual information between A and B is

I(A;B) = H(A)−H(A|B), (2)

and the conditional mutual information between A and

B given C is

I(A;B|C) = H(A|C) −H(A|B,C). (3)

Definition I.1. Let q be a positive integer, and let

S1, . . . , Sk be subsets of {1, . . . , q}. Let αi ∈ R for

1 ≤ i ≤ k. A linear inequality of the form

α1H({Ai : i ∈ S1}) + · · ·+ αkH({Ai : i ∈ Sk}) ≥ 0
(4)

is called an information inequality if it holds for all

jointly distributed random variables A1, . . . , Aq .

A Shannon information inequality is any information

inequality that can be expressed as a finite sum of the

form
∑

i

αiI(Ai;Bi|Ci) ≥ 0

where each αi is a nonnegative real number. Any in-

formation inequality that cannot be expressed in the

form above will be called a non-Shannon information

inequality.

Linear rank inequalities are closely related to informa-

tion inequalities. In fact, in order to describe linear rank
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inequalities we will borrow notation from information

theory to use in the context of linear algebra in the

following manner.

Suppose A and B are subspaces of a given vector

space V , and let 〈A,B〉 denote the span of A ∪B. We

will let H(A) denote the rank of A, and let H(A,B)
denote the rank of 〈A,B〉. The meanings of some other

information theoretic notation in the context of linear

algebra then follows from (1)-(3). Specifically, note that

the conditional entropy notation H(A|B) denotes the

excess rank of subspace A over that of subspace A∩B,

or equivalently, the codimension of A∩B in A; and the

mutual information notation I(A;B) denotes the rank of

A ∩B.

A linear rank inequality over a vector space V is

a linear inequality of the form in (4), that is satisfied

by every assignment of subspaces of V to the variables

A1, . . . , Aq .

All information inequalities are linear rank inequalities

over all finite vector spaces, but not all linear rank

inequalities are information inequalities. For background

material on these concepts, the reader is referred to

Hammer, Romashchenko, Shen, and Vereshchagin [12].

The first known example of a linear rank inequality

over all finite vector spaces that is not an information

inequality is the Ingleton inequality [13]:

I(A;B) ≤ I(A;B|C) + I(A;B|D) + I(C;D).

C. Network Coding

A network is a finite, directed, acyclic multigraph with

messages and demands. Network messages are arbitrary

vectors of k symbols over a finite alphabet A. Each

network edge carries a vector of n symbols from A.

Each message originates at a particular node called the

source node for that message and is required by one

or more demand nodes. When we draw a network, a

message variable appearing above a node indicates the

message is generated by such node3, and a message

variable appearing below a node indicates the message is

demanded by such node, For a given network, the values

of k and n can be chosen in order to implement certain

codes and to obtain certain throughput k/n.

The inputs to a network node are the vectors carried

on its in-edges as well as the messages, if any, generated

at the node. The outputs of a network node are the

packets carried on its out-edges as well as any demanded

3We note that in Figures 1 and 2, for convenience, we label source
messages above nodes lying in both the top and bottom layers in each
diagram. This is meant to indicate that there is, in fact, a separate (but
hidden) distinct node for each such source message, whose out-edges
go directly to the nodes labeled by the source message in the top and
bottem layers.

messages at the node. Each output of a node must be

a function only of its inputs. A coding solution for

the network is an assignment of such functions to the

network edges. When the values of k and n need to be

emphasized, the coding solution will be called a (k, n)-
coding solution. The capacity of a network is defined

as:

C = sup{k/n : ∃ a (k, n)-coding solution}.

A solution is called a linear solution, if the alphabet

A is a finite field and the edge functions are linear

(i.e. linear combinations of their input vectors where the

coefficients are matrices over the field).

The linear capacity is defined the same as the capacity

but restricting solutions to be linear. It is also easily

verified that if x is a message, then H(x) = k, and

if x is a vector carried by an edge, then H(x) ≤ n.

Information inequalities can be used to obtain capacity

bounds for networks. In the proofs of Corollaries II.3

and III.3, we obtain bounds on the capacities of networks

by using linear rank inequalities, instead of information

inequalities. In those cases, certain vector subspaces will

be used instead of random variables.

II. A LINEAR RANK INEQUALITY FOR FIELDS OF

CHARACTERISTIC OTHER THAN 3

In this section, we use the known T8 matroid to

construct a “T8 network”, and then in turn we use the

T8 network to guide a construction of a “T8 linear rank

inequality” that is shown to hold for all vector spaces

having finite scalar fields of characteristic not equal to

3. Then we show that the T8 inequality does not nec-

essarily hold when such scalar fields have characteristic

3. Finally, we determine the exact coding capacity of

the T8 network and its linear coding capacity over finite

field alphabets of characteristic 3, as well as a linear

capacity upper bound for finite field alphabets whose

characteristic is not 3.

The T8 matroid [18] is a vector matroid which is

represented by the following matrix, where column de-

pendencies are over characteristic 3:









A B C D W X Y Z

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0









.

The T8 matroid is representable over a field if and only

if the field is of characteristic 3. Figure 1 is a network

whose dependencies and independencies are consistent

with the T8 matroid. It was designed by the construction
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Fig. 1. The T8 network has source messages A,B,C, and D gen-
erated at hidden source nodes with certain hidden out-edges pointing
to corresponding displayed nodes n1, n3, n5, and n9–n15 (which are
labeled by incoming messages above such nodes). The nodes n9–n15

each demand one message, as labeled below such nodes.

process described in [6], and we will refer to it as the

T8 network. Theorem II.1 uses the T8 network as a

guide to derive a linear rank inequality valid for every

characteristic except for 3. We refer to the inequality in

the following theorem as the T8 linear rank inequality.

Theorem II.1. Let A,B,C,D,W,X, Y , and Z be sub-

spaces of a vector space V whose scalar field is finite

and of characteristic other than 3. Then the following is

a linear rank inequality over V :

H(A) ≤ 8H(Z)+29H(Y )+3H(X)+8H(W )−6H(D)

−17H(C)−8H(B)−17H(A)+55H(Z|A,B,C)

+35H(Y |W,X,Z)+50H(X |A,C,D)

+49H(W |B,C,D)+18H(A|B,D, Y )+7H(B|D,X,Z)

+H(B|A,W,X)+7H(C|D,Y, Z)+7H(C|B,X, Y )

+3H(C|A,W, Y )+6H(D|A,W,Z)

+49(H(A)+H(B)+H(C)+H(D)−H(A,B,C,D)).

The next theorem demonstates that the inequality in

Theorem II.1 does not in general hold for vector spaces

with finite fields of characteristic 3.

Theorem II.2. There exists a vector space V with a

finite scalar field of characteristic 3 such that the T8

inequality in Theorem II.1 is not a linear rank inequality

over V .

The following corollary uses the T8 linear rank in-

equality to derive capacities and a capacity bound on the

T8 network. Note that although the T8 network itself was

used as a guide in obtaining the T8 linear rank inequality,

subsequently using the inequality to bound the network

capacity is not circular reasoning.

The proof of Corollary II.3 makes use of the T8 linear

rank inequality.

Corollary II.3. For the T8 network, the linear coding

capacity is at most 48/49 over any finite field alphabet of

characteristic not equal to 3. The linear coding capacity

over finite field alphabets of characteristic 3 and the

coding capacity are both equal to 1.

III. A LINEAR RANK INEQUALITY FOR FIELDS OF

CHARACTERISTIC 3

In the T8 matroid, W + X + Y + Z = (3, 3, 3, 3),
which equals (0, 0, 0, 0) in characteristic 3. We define

the non-T8 matroid to be the T8 matroid except that we

force the T8’s characteristic 3 circuit {W,X, Y, Z} to be

a base in the non-T8 matroid. Figure 2 is a network that

we call the non-T8 network, whose dependencies and

independencies are consistent with the non-T8 matroid.

The non-T8 network was designed by the construction

process described in [6]. Theorem III.1 uses the non-

T8 network as a guide to derive a linear rank inequality

valid for characteristic 3. The new linear rank inequality

can then be used to prove the non-T8 network has linear

capacity less than 1 if the field characteristic is 3.

Theorem III.1. Let A,B,C,D,W,X, Y , and Z be

subspaces of a vector space V whose scalar field is finite

and of characteristic 3. Then the following is a linear

rank inequality over V :

H(A) ≤ 9H(Z)+8H(Y )+5H(X)+6H(W )−4H(D)

−12H(C)−11H(B)−H(A)+19H(Z|A,B,C)

+17H(Y |A,B,D)+13H(X |A,C,D)

+11H(W |B,C,D)+H(A|W,X, Y, Z)+H(A|B,W,X)

+7H(B|D,X,Z)+4H(B|C,X, Y )+7H(C|D,Y, Z)

+5H(C|A,W, Y )+4H(D|A,W,Z)

+29(H(A)+H(B)+H(C)+H(D)−H(A,B,C,D)).

The next theorem demonstates that the inequality in

Theorem III.1 does not in general hold for vector spaces

with finite fields of characteristic other than 3.

Theorem III.2. For each prime number p 6= 3 there

exists a vector space V with a finite scalar field of
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Fig. 2. The Non-T8 Network has source messages A,B, C, and
D generated at hidden source nodes with certain hidden out-edges
pointing to corresponding displayed nodes n1, n3, n5, n7, and n9–
n14 (which are labeled by incoming messages above such nodes). The
nodes n9–n15 each demand one message, as labeled below them.

characteristic p such that the non-T8 inequality in The-

orem III.1 is not a linear rank inequality over V .

Corollary III.3. For the non-T8 network, the linear

coding capacity is at most 28/29 over any finite field

alphabet of characteristic equal to 3. The linear coding

capacity over finite field alphabets of characteristic not

3 and the coding capacity are all equal to 1.
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