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Abstract— We define a class of networks, called matroidal
networks, which includes as special cases all scalar-linearly solv-
able networks, and in particular solvable multicast networks.
We then present a method for constructing matroidal networks
from known matroids. We specifically construct networks that
play an important role in proving results in the literature, such
as the insufficiency of linear network coding and the unachiev-
ability of network coding capacity. We also construct a new
network, from the Vámos matroid, which we call the Vámos
network, and use it to prove that Shannon-type information
inequalities are in general not sufficient for computing network
coding capacities.

I. INTRODUCTION

In this paper, a network is a finite, directed, acyclic
multigraph with node set ν and edge set ε, together with
a finite set µ called the message set, a source mapping

S : ν → 2µ,

and a receiver mapping

R : ν → 2µ.

For every node x, if S(x) is nonempty, then x is called a
source, and if R(x) is nonempty, then x is called a receiver.
The elements of S(x) are called the messages generated by x
and the elements of R(x) are called the messages demanded
by x. For convenience in definitions of capacity, we will
assume that for each message m, every receiver demanding
m is reachable from at least one source generating m.

An alphabet is a finite set A with at least two elements.
For each network node x, let In(x) denote the union of the
set of messages generated by x with the set of in-edges of
x, and let Out(x) denote the union of the set of messages
demanded by x with the set of out-edges of x.

Let k and n be positive integers, called the source dimen-
sion and the edge capacity, respectively. For every node x, fix
an ordering of In(x) such that all messages in the resulting
list occur before the edges in the list; the resulting ordered
list is called the input list of x. For every edge e = (x, y),
an edge function is a map

fe : (Ak)α × (An)β → An,
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where α and β are the number of messages and edges,
respectively, in the input list of x (note that α and β are
functions of x, whereas k and n are constants). For every
x ∈ ν and m ∈ R(x), a decoding function is a map

fx,m : (Ak)α × (An)β → Ak,

where α and β are the number of messages and edges,
respectively, in the input list of x.

Given an alphabet A, a (k, n) code1 for a network is
an assignment of edge functions and decoding functions to
the network’s edges and receivers, respectively. A message
assignment is a map a : µ → Ak. For any (k, n) code and for
any message assignment, we recursively define the function

c : ε → An

as follows. For every edge e = (x, y), let

c(e) = fe(a(x1), . . . , a(xα), c(xα+1), . . . , c(xα+β))

where x1, . . . , xα are the messages generated by x and
xα+1, . . . , xα+β are the in-edges of x. We say that each
edge e carries the symbol vector c(e).

For a given network, (k, n) code, receiver x, and message
m demanded by x, if for every message assignment a : µ →
Ak we have

fx,m(a(x1), . . . , a(xα), c(xα+1), . . . , c(xα+β))=a(m)

then we say that x’s demand m is satisfied. In other words,
the receiver x can recover an arbitrary instance of the
message m generated by its source. A (k, n) code is said
to be a (k, n) solution if every demand of every receiver is
satisfied.

Special codes of interest include linear codes, where the
edge functions and decoding functions are linear, and routing
codes, where the edge functions and decoding functions
simply copy input components to output components. Special
networks of interest include multicast networks, where there
is only one source node and every receiver demands all of the
source messages, and multiple-unicast networks, where each
network message is generated by exactly one source node
and is demanded by exactly one receiver node. The network
coding terminology used here generally follows that of [3].

If a network has a (k, n) solution over some alphabet,
then we say the ratio k/n is an achievable coding rate for
the network. A network is said to be solvable if it has a
(k, n) solution for the case k = n = 1. (Note that any (k, k)
coding solution on alphabet A yields a (1, 1) coding solution
on alphabet Ak , so we do not need to distinguish between

1Sometimes called a fractional code [11] or simply a code.
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scalar and vector solvability.) A network is said to be scalar-
linearly solvable if it has a linear (k, n) solution for the case
k = n = 1, or vector-linearly solvable if it has a linear (k, n)
solution for the case k = n (here we do need to distinguish).

An important goal in network coding is to find an achiev-
able coding rate which is as large as possible for a network.
The coding capacity of a network with respect to (or over)
an alphabet A and a class C of network codes (a related
definition appears in [15, p. 339]) is

sup{k/n : ∃ (k, n) coding solution in C over A}.

If C consists of all network codes, then we simply refer to the
above quantity as the coding capacity of the network with
respect to A. If the class C of network codes consists of all
routing codes or all linear codes, then the coding capacity is
referred to as the routing capacity or linear coding capacity,
respectively. (In all cases, if the alphabet A is not mentioned,
the capacity is taken to be the supremum of the capacities
over all alphabets A.) The coding capacity of a given network
is said to be achievable if there is some (k, n) solution for
the network for which k/n equals the capacity.

Ahlswede, Cai, Li, and Yeung [2] exhibited a network
whose linear coding capacity is larger than its routing capac-
ity. Li, Yeung, and Cai [12] showed in the special case of
a multicast network (i.e. a network with a single source and
each receiver demanding all messages), the coding capacity
and the linear coding capacity are equal. It was shown in
[3] that for all networks the coding capacity is independent
of the alphabet size. Clearly the routing capacity is also
independent of the alphabet size. However, it was shown in
[4] that the linear coding capacity of a network can depend
on the alphabet size and the largest linear coding capacity
of a network over any finite field alphabet can be smaller
than the network’s coding capacity. It was also shown in [3]
that the routing capacity is always rational, achievable, and
computable by an algorithm.

Although the routing capacity of an arbitrary network
is always computable, there is no known computationally
efficient algorithm for such a task. Unfortunately, it is not
even presently known whether or not there exist algorithms
that can compute the coding capacity or the linear coding
capacity of an arbitrary network. In fact, computing the exact
coding capacity or linear coding capacity of even relatively
simple networks can be a non-trivial task. At present, very
few exact coding capacities have been rigorously derived in
the literature. It is also known that the coding capacity might
not be achievable [5].

As an alternative to determining exact coding capacities,
it can be useful to determine bounds on the coding capacity
and linear coding capacity of a network. One approach to
obtaining capacity bounds (and possibly exact capacities) is
to use information-theoretic entropy arguments. The basic
idea is to assume a network’s source messages are i.i.d.
uniform random variables on some finite alphabet and then
to use standard information theory identities and inequalities
to derive bounds on the largest possible ratio of the source
dimension k to the edge capacity n.

Specifically, we construct a network (from the well-known
Vámos matroid) which we call the Vámos network, and
demonstrate that no collection of Shannon-type information
inequalities can produce an upper bound on the coding
capacity which is as small as an upper bound obtainable
using a certain non-Shannon-type information inequality.
Additionally, for the Vámos network, we compute the exact
routing capacity and the exact linear coding capacity over
every finite field.

The Vámos network is one of many networks that are
closely related to matroids. The field of matroid theory has
had many interesting results discovered over the last several
decades. We explore the connection between matroids and
networks and present a method of constructing networks
from matroids. In addition to the Vámos network, we demon-
strate that some specific known networks can be constructed
from matroids. These include the Butterfly network from
[2], and parts of networks used to establish the insufficiency
of linear network coding in [4] and the unachievability of
network coding capacity in [5].

II. NETWORK FUNDAMENTALS

If a network has nodes ni and nj (on diagrams these will
usually be marked just i and j), then an edge between them
will be written as ei,j .

For any node x ∈ ν and any S ⊆ Out(x), we call the
ordered pair (In(x), S) a dependency of the network. This
terminology reflects the fact that the out-edges and demands
of each node are deterministic functions of the in-edges and
messages generated at the node. Using these, one can deduce
further dependencies. For more on this, see [1], [9], [10].

In order to compute capacity bounds for networks, we will
compute various joint entropies, where we take the network
messages to be independent uniform random variables. In
that case, given a network code, which determines the vectors
carried by the edges from the messages, we will write H(x)
to denote the joint entropy of any collection x of edges and
messages.

III. NETWORKS FROM MATROIDS

In this section, we give a method for building networks
from matroids.

If a matroid M is isomorphic to the vector matroid of a
matrix over a field F , then M is said to be representable
over F or F -representable. A matroid is representable if it
is representable over some field.

A geometric depiction of any particular rank-(m+1) ma-
troid is a diagram in R

m consisting of nodes and undirected
edges, where the nodes are in one-to-one correspondence
with the matroid’s ground set elements, and a collection of j
of the matroid’s ground set elements is dependent if and only
if it corresponds to points in the diagram that are depicted as
lying on a common (j − 2)-dimensional plane2. Geometric
depictions will be given to describe matroids in Figures 3,
4, 6, and 8.

2where a “plane” is sometimes drawn, by necessity, as a circle or other
curved item.
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Fig. 1. The Butterfly network has source nodes n1 and n2 generating
k-dimensional messages x and y, respectively. Receiver nodes n5 and n6

demand messages y and x, respectively. The n-dimensional vector carried
on edge e3,4 is denoted by z.

Definition III.1. Let N be a network with message set µ,
node set ν, and edge set ε. Let M = (S, I) be a matroid
with rank function r. The network N is a matroidal network
associated with M if there exists a function f : µ ∪ ε → S
such that the following conditions are satisfied:

(M1) f is one-to-one on µ.
(M2) f(µ) ∈ I.
(M3) r(f(In(x))) = r(f(In(x) ∪ Out(x))),

for every x ∈ ν.

We call the function f the network-matroid mapping.
Condition (M1) assigns unique matroid ground set elements
to the network messages, and condition (M2) assures that
the network messages correspond to an independent set.
Condition (M3) reflects the fact that the out-edges of each
network node are completely determined by the in-edges and
source messages of the node.

Lemma III.2. For any matroidal network, the polymatroid
upper bound on the capacity is at least 1.

Theorem III.3. If a network is scalar-linearly solvable over
some finite field, then the network is matroidal. In fact, the
network is associated with a representable matroid.

Theorem III.3 suggests a technique for obtaining a net-
work that has a good chance of not being scalar-linearly
solvable. That is, choose a network that is matroidal over
a non-representable matroid. The Vámos matroid defined in
Section III-F is the smallest example of a non-representable
matroid [14, p. 512], providing inspiration to define and
study a “Vámos network”.

The following corollary follows immediately from Theo-
rem III.3 and the fact that all solvable multicast networks are
scalar-linearly solvable over some finite field [12].

Corollary III.4. All solvable multicast networks are ma-
troidal.

A. The M -Network

Here, we demonstrate that not all solvable networks are
matroidal.

We call the network shown in Figure 2 the M -network
(due to its shape). The M -network was discussed in [13] as
an example of a network with no scalar linear solution, but
with a simple vector linear solution.

2w1w w3 4w

u1 4u
u2 u3

2

6

1

3 4 5

7 8 9

a,b c,d

a,d b,db,ca,c

Fig. 2. The M -network. Messages a and b are generated by source n1 and
messages c and d are generated by source n2. The four messages a, b, c, d

are demanded in various pairs at the receivers n6, n7, n8, and n9. The
edges e1,3, e1,4, e2,4, e2,5, e4,6, e4,7, e4,8, and e4,9, are denoted by w1,
w2, w3, w4, u1, u2, u3, and u4, respectively.

Theorem III.5. The M -network is solvable, but is not
matroidal.

The two-dimensional vector-linear solution to the M -
network given in [13] is a simple routing solution and easily
extends to a vector-linear solution over any even vector
dimension. We next show that no other vector dimensions
are possible for vector-linear solutions to the M -network.

Theorem III.6. The M -network does not have any vector-
linear solutions of odd vector dimension.

In particular, the M -network does not have a scalar-linear
solution.
B. Method for Constructing Networks from Matroids

We will next describe a method that can be useful for
constructing a matroidal network associated with a matroid.
Such constructions allow us to transfer various interesting
properties of matroids to networks. As matroid theory is
a field rich in important results, the goal in constructing
matroidal networks is to obtain some analogues for networks.

Let M = (S, I) be a matroid with rank function r. Let
N denote the network to be constructed, µ its message set,
ν its node set, and ε its edge set.

The construction will simultaneously construct the net-
work N , the function

f : µ ∪ ε → S,
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and an auxiliary function

g : S → ν,

where for each x ∈ S, either
(i) g(x) is a source node with message m and f(m) = x;

or
(ii) g(x) is a node with in-degree 1 and whose in-edge e

satisfies f(e) = x.
The construction is carried out in 4 stages; each stage can

be completed in many ways.
Step 1: Create network source nodes n1, n2, . . . , nr(S)

and corresponding messages m1, m2, . . . , mr(S).
Choose any base B = {b1, . . . , br(S)} for M and let
f(mi) = bi and g(bi) = ni.

Step 2: (to be repeated until it is no longer possible).
Find a circuit {x0, . . . , xj} in M, such that
g(x1), . . . , g(xj) have been already defined, but g(x0)
has not yet been defined. Then we will add the follow-
ing:
(i) a new node y and edges e1, . . . , ej , such that ei

connects g(xi) to y, and we define f(ei) = xi.
(ii) another new node n0 with a single in-edge e0

connecting y to n0, and we let f(e0) = x0 and
g(x0) = n0.

Step 3: (to be repeated as many times as desired).
If {x0, . . . , xj} is a circuit in M and g(x0) is a source
node with message m0, then add to the network a new
receiver node y which demands the message m0 and
which has in-edges e1, . . . , ej where ei connects g(xi)
to y and where f(ei) = xi.

Step 4: (to be repeated as many times as desired).
Choose a base B = {x1, . . . , xr(S)} of M and create
a receiver node y that demands all of the network
messages, and such that y has in-edges e1, . . . , er(S)

where ei connects g(xi) to y. Let f(ei) = xi.
Note that after each step above, the network constructed

so far is matroidal with respect to M.
It is clear that after Step 2, the function g has been

completely determined. This is because for each x ∈ S, one
can always create a circuit containing x and some subset of
the starting base B.

It is possible that some circuits cannot be used in Step
3 since they have no element which is mapped by g to a
source message. Hence, after this stage of the construction
there may be dependencies in M which are not reflected in
the properties of the network N . The final stage (Step 4),
however, can at least assure us that all of the independencies
in M are reflected in the properties of N .

C. The Butterfly Network

The Butterfly network in Figure 1 is matroidal associated
with the rank-2 uniform matroid U2,3 geometrically depicted
in Figure 3. The network-matroid mapping (from the network

sources and edges to the matroid) constructed along with the
network has been partially given3 in Figure 1. This network
is known to have a linear solution over any ring alphabet (by
taking z = x + y). One can easily check that the conditions
(M1)–(M3) hold.

x̂ ẑ ŷ

Fig. 3. Geometric depiction of the rank-2 uniform matroid U2,3, which
can be used to construct the Butterfly network. The matroid has ground
set {x̂, ŷ, ẑ} and a set is independent if and only if it does not have three
collinear points in the figure (i.e. iff it has size at most 2).

To illustrate the construction of a network from a matroid,
we next show the steps from Section III-B involved in the
construction of the Butterfly network.

Step 1: We choose a matroid base B = {x̂, ŷ} and
network messages x and y, and we assign f(x) = x̂
and f(y) = ŷ, and g(x̂) = n1 and g(ŷ) = n2.

1

x y

2

Step 2: The only circuit in the matroid is {x̂, ŷ, ẑ}, and
g(x̂) and g(ŷ) have already been defined, but g(ẑ) has
not yet been defined. We add a new node n3 and edges
e1,3 and e2,3, and we define f(e1,3) = x̂ and f(e2,3) =
ŷ. We add another new node n4 with a single in-edge
e3,4 and we let f(e3,4) = ẑ and g(ẑ) = n4.

1

x y

2

3

4

z

Step 3: The only circuit in the matroid is {x̂, ŷ, ẑ} and
g(x̂) = n1 is a source node with message m1. We add a
new receiver node n5 which demands the message m2

and has in-edges e1,5 and e4,5. We repeat this step once
more with the same circuit {x̂, ŷ, ẑ}, but this time using
the source node g(ŷ) = n2 with message m2. We add
a new receiver node n6 which demands the message
m1 and has in-edges e2,6 and e4,6. The result is the
Butterfly network.

Table I lists the dependencies in the uniform matroid U2,3

which are directly reflected in the Butterfly network.
3Any edge coming from a node with only one input will not be labeled

in diagrams, and it can be assumed that any such label equals the label of
the unique input to the node.
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Step Variables Nodes Type
1 {x, y} n1, n2 message
2 {x, y, z} n3, n4 circuit
3 {x, y, z} n5 circuit
3 {x, y, z} n6 circuit
4 none not used

TABLE I
DEPENDENCIES IN THE UNIFORM MATROID U2,3 THAT ARE REFLECTED

IN THE BUTTERFLY NETWORK. THE SECOND COLUMN INDICATES SETS

OF VARIABLES IN THE BUTTERFLY NETWORK CORRESPONDING TO

DEPENDENT SETS IN THE U2,3 MATROID. THE THIRD COLUMN

INDICATES AT WHICH NODES IN THE BUTTERFLY NETWORK THE

CORRESPONDING DEPENDENCY IS ENFORCED.

D. The Fano Network

Figure 4 is a geometric depiction of the well-known Fano
matroid [14]. The network shown in Figure 5, which we
call the Fano network, is a matroidal network associated
with the Fano matroid and is constructed using the technique
described in Section III-B. The network-matroid mapping is
partially shown in Figure 5 where the mapping on the unla-
beled edges is given by the usual convention. The network-
matroid mapping is the identity function on the network
source messages a, b, and c. It is easy to see that there exists a
dependency between any three network variables if and only
if the corresponding three matroid elements are dependent.
Table II lists the dependencies in the Fano matroid which

are directly reflected in the Fano network.
The Fano matroid is known to be F -representable over a

finite field F if and only if F has characteristic two [14].
Correspondingly, the Fano network was shown in [5], to be
solvable if and only if the alphabet size is an integer power
of two. It, in fact, has a linear solution over any finite field of
characteristic two (by taking w = a+b, x = a+c, y = b+c,
and z = a+b+c). The Fano network was used as a building
block to construct a network whose coding capacity cannot
be achieved by the network. The Fano network was also used
as a building block in [4] to construct a solvable network that
is not linearly solvable (in a very general sense).

a

b c

w x

y

z
^

^
^

^

^

^

^

Fig. 4. Geometric depiction of the Fano matroid. The matroid has ground
set {â, b̂, ĉ, ŵ, x̂, ŷ, ẑ} and has rank 3. Any three elements of the ground
set are dependent if and only if they are collinear in the diagram (where
we pretend that points on the drawn circle are also “collinear”).

Step Variables Nodes Type
1 {a, b, c} n1, n2, n3 message
2 {a, b,w} n4, n6 circuit
2 {b, c, y} n5, n7 circuit
2 {w,x, y} n8, n10 circuit
2 {c,w, z} n9, n11 circuit
3 {a, c, x} n12 circuit
3 {b, x, z} n13 circuit
3 {a, y, z} n14 circuit
4 none not used

TABLE II
DEPENDENCIES IN THE FANO MATROID THAT ARE REFLECTED IN THE

FANO NETWORK. THE SECOND COLUMN INDICATES SETS OF VARIABLES

IN THE FANO NETWORK CORRESPONDING TO DEPENDENT SETS IN THE

FANO MATROID. THE THIRD COLUMN INDICATES AT WHICH NODES IN

THE FANO NETWORK THE CORRESPONDING DEPENDENCY IS ENFORCED.

E. The Non-Fano Network

Figure 6 is a geometric depiction of the well-known non-
Fano matroid [14]. The network shown in Figure 7, which we
call the non-Fano network, is a matroidal network associated
with the non-Fano matroid and is constructed using the
technique described in Section III-B. The network-matroid
mapping is partially shown in Figure 7 where the mapping
on the unlabeled edges is given by the usual convention.

Table III lists the dependencies in the non-Fano matroid
which are directly reflected in the non-Fano network.

The non-Fano matroid is known [14] to be F -representable
over a finite field F if and only if F has odd characteristic.
Correspondingly, the non-Fano network was shown in [5], to
be solvable if and only if the alphabet size is odd. It, in fact,
has a linear solution over any alphabet of odd cardinality (by
taking w = a+b, x = a+c, y = b+c, and z = a+b+c). The
non-Fano network was used as a building block to construct
a network whose coding capacity cannot be achieved by the
network. The non-Fano network was also used as a building
block in [4] to construct a solvable network that is not

5
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Fig. 5. The Fano network. Messages a, b, and c are emitted by sources
n1, n2, and n3, respectively, and are demanded by receivers n14, n13,
and n12, respectively. The edges e4,6, e5,7, e8,10 , and e9,11 are labeled
according to the network-matroid mapping by their corresponding ground
set elements in the Fano matroid shown in Figure 4.

linearly solvable (in a very general sense).

F. The Vámos Network

The Vámos matroid is an 8-element rank-4 matroid (S, I)
with

S = {â, b̂, ĉ, d̂, ŵ, x̂, ŷ, ẑ},

and whose dependent sets are the 4-element sets which are
coplanar in the three-dimensional drawing in Figure 8 (i.e.
precisely {b̂, ĉ, x̂, ŷ}, {â, ĉ, ŵ, ŷ}, {â, b̂, ŵ, x̂}, {ĉ, d̂, ŷ, ẑ},
and {b̂, d̂, x̂, ẑ}) and all subsets of S of cardinality at least
5. Note that {â, d̂, ŵ, ẑ} is not considered a coplanar set in
Figure 8.

One of the interesting properties of the Vámos matroid is
the following.

Theorem III.7. [14, p. 170] The Vámos matroid is not
representable.

We call the network shown in Figure 9 the Vámos network;
it is a matroidal network associated with the Vámos matroid
and constructed using the technique described in Section III-
B. The network has 17 nodes and 4 message variables.
Nodes n9, . . . , n13 are receiver nodes, each demanding one
source message, except for n11, which demands two source
messages. The network has 4 hidden source nodes, each

a

b c

w x

y

z

^
^

^

^

^

^
^

^

Fig. 6. Geometric depiction of the non-Fano matroid. The matroid has
ground set {â, b̂, ĉ, ŵ, x̂, ŷ, ẑ} and has rank 3. Any three elements of the
ground set are dependent if and only if they are collinear in the diagram.

Step Variables Nodes Type
1 {a, b, c} n1, n2, n3 message
2 {a, b, c, z} n4, n5 circuit
2 {a, b, w} n6, n9 circuit
2 {a, c, x} n7, n10 circuit
2 {b, c, y} n8, n11 circuit
3 {c,w, x} n12 circuit
3 {b, x, z} n13 circuit
3 {a, y, z} n14 circuit
4 {w,x, y} n15 independent set

TABLE III
DEPENDENCIES IN THE NON-FANO MATROID THAT ARE REFLECTED IN

THE NON-FANO NETWORK. THE SECOND COLUMN INDICATES SETS OF

VARIABLES IN THE NON-FANO NETWORK CORRESPONDING TO

DEPENDENT SETS IN THE NON-FANO MATROID. THE THIRD COLUMN

INDICATES AT WHICH NODES IN THE NON-FANO NETWORK THE

CORRESPONDING DEPENDENCY IS ENFORCED.

generating exactly one of the messages a, b, c, d. As depicted
in Figure 9, source messages are carried on hidden edges
from their hidden source to various other network nodes (e.g.
message c is carried by hidden edges from its hidden source
to nodes n1, n5, n7, n10, and n12).

The network-matroid mapping f : µ∪ε → S defined along
with the network from the matroid in Figure 9 is determined
by: f(u) = û for all u ∈ {a, b, c, d, w, x, y, z}. Table IV lists
the dependencies in the Vámos matroid which are directly
reflected in the Vámos network.

Note 1: As depicted in Figure 9, several of the message
variables a, b, c, d appear above some of the nodes.
This is simply a convenience that makes the depiction
easier to draw. When this happens, it is understood that
there is an unshown edge from the appropriate source
node to the node in question. So, for example, node
n1 actually has four in-edges (not shown), one from
each source node (also not shown).
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Fig. 8. A 3-dimensional geometric depiction of the Vámos matroid.

Step Variables Nodes Type
1 {a, b, c, d} hidden message
2 {a, b, c, d, w} n1, n2 circuit
2 {a, b, x,w} n3, n4 circuit
2 {b, c, x, y} n5, n6 circuit
2 {c, d, y, z} n7, n8 circuit
3 {b, d, x, z} n9 circuit
3 {a, b, c, d, z} n10 circuit
3 {a, b, c, d, y} n12 circuit
3 {a, c,w, y} n13 circuit
4 {a, d, w, z} n11 independent set

TABLE IV
DEPENDENCIES IN THE VÁMOS MATROID THAT ARE REFLECTED IN THE

VÁMOS NETWORK. THE SECOND COLUMN INDICATES SETS OF

VARIABLES IN THE VÁMOS NETWORK CORRESPONDING TO DEPENDENT

SETS IN THE VÁMOS MATROID. THE THIRD COLUMN INDICATES AT

WHICH NODES IN THE VÁMOS NETWORK THE CORRESPONDING

DEPENDENCIES ARE ENFORCED.

Theorem III.8. The Vámos network has routing capacity
2/5, linear coding capacity 5/6 over every finite field, and
coding capacity at most 10/11.

Corollary III.9. Shannon-type information inequalities and
the network entropy conditions are in general insufficient for
determining the coding capacity of a network.

IV. CREATING MULTIPLE-UNICAST MATROIDAL
NETWORKS

In [6], a technique was given for converting arbitrary
networks into multiple-unicast networks. The conversion
procedure preserves the solvability and linear solvability
properties of the original network. In this section, we show
that the conversion process also preserves the property of
a network being matroidal. This conversion technique was
used in [7] to create a multiple-unicast variation of the
Vámos network which witnesses the insufficiency of using

Shannon-type information inequalities for computing the
coding capacity of a multiple-unicast network.

Definition IV.1. A multiple-unicast version of a network N
is a network constructed from N by eliminating multiple
sources as and then assuring every message is demanded by
exactly one node, as described in [6].

Theorem IV.2. Every multiple-unicast version of a matroidal
network is matroidal.

The following definition was given in [6]. (“CSLS” stands
for “coding solvability and linear solvability”.)

Definition IV.3. Two networks N and N′ are CSLS-
equivalent if the following two conditions hold:

1) For any alphabet A, N is solvable over A if and only
if N ′ is solvable over A.

2) For any finite field F and any positive integer k, N is
vector solvable over F in dimension k if and only if
N ′ is vector solvable over F in dimension k.

Lemma IV.4. [6] Every multiple-unicast version of a net-
work is CSLS-equivalent to that network.

Corollary IV.5. Every matroidal network is CSLS-equivalent
to a multiple-unicast matroidal network.

Theorem IV.6. The Multiple-Unicast Vámos network is
matroidal and has coding capacity at most 12/13.

In [8], an algorithm is presented for constructing networks
from collections of polynomials. It was shown that if a
polynomial collection P is solvable over some finite field,
then any network constructed as in [8] from P is matroidal.
Two networks N and N ′ are ls-equivalent if for any finite
field F , N is scalar linearly solvable over F if and only if
N ′ is scalar linearly solvable over F . It is further shown
in [8] that any network is ls-equivalent to a multiple-unicast
matroidal network.
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Fig. 7. The non-Fano network. Messages a, b, and c are emitted by sources
n1, n2, and n3, respectively, and are demanded by receivers n14, n13, and
{n12, n15}, respectively. The edges e4,5, e6,9, e7,10, and e8,11 are labeled
according to the network-matroid mapping by their corresponding ground
set elements in the non-Fano matroid shown in Figure 6.

REFERENCES

[1] M. Adler, N. J. A. Harvey, K. Jain, R. D. Kleinberg, and A. Rasala
Lehman. “On the capacity of information networks”, ACM-SIAM
Symposium on Discrete Algorithms (SODA 06), Miami, FL, January
2006.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow”, IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, July 2000.

[3] J. Cannons, R. Dougherty, C. Freiling, and K. Zeger, “Network routing
capacity”, IEEE Transactions on Information Theory, vol. 52, no. 3,
pp. 777-788, March 2006.

[4] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding
in network information flow”, IEEE Transactions on Information
Theory, vol. 51, no. 8, pp. 2745-2759, August 2005.

[5] R. Dougherty, C. Freiling, and K. Zeger, “Unachievability of network
coding capacity”, joint issue of IEEE Transactions on Information
Theory & IEEE/ACM Transactions on Networking, vol. 52, no. 6, pp.
2365-2372, June 2006.

[6] R. Dougherty and K. Zeger, “Nonreversibility and equivalent construc-
tions of multiple-unicast networks”, IEEE Transactions on Information
Theory, vol. 52, no. 11, pp. 5067-5077, November 2006.

[7] R. Dougherty, C. Freiling, and K. Zeger, “Networks, matroids, and
non-Shannon information inequalities”, IEEE Transactions on Infor-
mation Theory, vol. 53, no. 6, pp. 1949-1969, June 2007.

[8] R. Dougherty, C. Freiling, and K. Zeger, “Linear network codes and
systems of polynomial equations”, IEEE Transactions on Information
Theory, submitted March 15, 2007 (currently under revision).

[9] N. J. A. Harvey, R. D. Kleinberg, and A. Rasala Lehman. “On the
capacity of information networks”, joint issue of IEEE Transactions
on Information Theory & IEEE/ACM Transactions on Networking, vol.
52, no. 6, pp. 2345-2364, June 2006.

abcd

ab

cd

d c

d dd a bc

1

2

3

7

129 10 11 13

8

6

5

4
bc

bc a a

b a bc

x

w

y

z
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