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Linearity and Solvability in Multicast Networks
Randall Dougherty, Chris Freiling, and Kenneth Zeger

Abstract— It is known that for every solvable multicast
network, there exists a large enough finite field alphabet
such that a linear solution exists. We prove: (i) every binary
solvable multicast network with at most two messages has
a binary linear solution; (ii) for more than two messages,
not every binary solvable multicast network has a binary
linear solution; (iii) a multicast network that has a solution
for a given alphabet might not have a solution for all larger
alphabets.

I. INTRODUCTION

A multicast network is a directed acyclic multigraph
containing a single source node and a collection

of destination nodes. The source node emits a message
from a fixed alphabet on each of its out-edges and each
destination node tries to recover all of the messages.

Each node in the graph receives an alphabet symbol on
each of its in-edges and transmits a symbol on each of its
out-edges. Each transmitted symbol is computed for an
out-edge by a fixed function of the symbols received by a
node. A multicast network is solvable with respect to the
alphabet if the edge-functions can be assigned in such a
way that the source messages can always be recovered
at each destination node. The set of edge-functions and
destination node functions constitutes a network code.
A network code is called a solution if it allows each
destination node to recover all the messages.

Ahlswede, Cai, Li, and Yeung [1] introduce the con-
cept of network coding and give a condition based on
the max-flow min-cut theorem for the solvability of
multicast networks. Li, Yeung, and Cai [3] study network
codes that are linear when the message alphabet is the
underlying set of a finite field. They show that any
solvable multicast network has a linear solution provided
the finite field alphabet is of large enough cardinality.

Although linear solutions are guaranteed by [3] for
large enough finite field alphabets, their results do not
guarantee the existence of a linear solution for a solvable
multicast network if the alphabet size is fixed, nor
do they consider alphabets whose cardinalities are not
integer powers of primes. In recent independent work,
Riis (in collaboration with Ahlswede) [5] shows there
there exists a multicast network with five messages that
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is solvable over the binary field but which has no linear
solution over the binary field. Their network is based
on the nonlinear Nordstrom-Robinson

���������	�
���
error-

correcting code. It has been unknown whether binary
solvable multicast networks with three or four messages
necessarily were linearly solvable.

We address the fixed alphabet issue for binary alpha-
bets, namely when each edge in a multicast network
carries a single bit. Proofs of all lemmas are omitted.

It can be useful to impose an algebraic structure on
the alphabet  , such as a ring or a field. In such a case,
a code is linear (respectively, affine) with respect to  ,
if each edge function is linear (respectively, affine) over . If ������ , then a solution is called a binary solution,
and the network said to be binary solvable.

II. LINEAR CODES SUFFICE FOR TWO MESSAGES

A function ��������� is homogeneous if � ������� � � ��
. A solution is homogeneous if the label of every edge

is homogeneous.

Lemma II.1. For a given finite field alphabet and mul-
ticast network, if there exists a solution, then there exists
a homogeneous solution. Furthermore, if there exists an
affine solution, there there exists a linear solution.

Theorem II.2. Every binary solvable network with at
most two messages has a binary linear solution.

Proof. A multicast network with exactly one message is
solvable if and only if there is a directed path from the
source node to every destination node, in which case a
linear solution simply labels every edge in all such paths
with the single message.

By Lemma II.1, one may assume without loss of
generality that a solution to a solvable multicast network
is homogeneous. So assume a binary solvable multicast
network with exactly two messages  and ! and a
homogeneous solution.

It suffices to prove that every binary solvable multicast
network that has at most two messages and only

�
-

input edge-functions has a linear solution. This is true
because any " -input boolean function is logically equiv-
alent to some circuit consisting of only

�
-input boolean

functions, the linearity of which implies the linearity of
the multi-input configuration. Thus we assume all edge-
functions have exactly two inputs.

The bit passed along each edge of the network is a
function of the two messages  � ! . The collection of all
possible functions is given by
# � ���$�  � ! �  �%&! �  $! �  $!�%& �  $!'%(! �  $!�%& )%&! �+*
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For any ��� #
, let � � � � � #

be the linear function
defined by

� � � � � � � if � is linear $!'% � if � is not linear
*

The function � � � � “linearizes” � by deleting the  ! term
if it appeared in the polynomial. If we can replace each
edge function � with � � � � we will be done, since the
messages themselves are linear functions, with � �  � �  
and � � ! � � ! . It only remains to show that this can
be accomplished using linear functions at each node.
That is, we need to show that if � ��� ��� are homogeneous
boolean functions, then � � � ��� ���	��� is a linear function of� ��� � and � ���	� , a fact that can be readily checked. 	

III. LINEAR CODES DO NOT SUFFICE FOR MORE
THAN TWO MESSAGES

The circuit shown in Figure 1 will be used as a
building block in part of Theorem III.3.
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Fig. 1. Diagram of the circuit ����� ��� � where � , � ,  , ! are labels of
the indicated edges. The nodes "$# and "&% are destination nodes, and
the other nodes are interior nodes. The quantity ! is called the output.

Lemma III.1. If the circuit ')(�* +�* , appears in a multicast
network with three messages, then for any homogeneous
binary solution the edge label - must be . %0/ .

The majority vote function is a 1 -input boolean func-
tion 2 defined for all . � / �43 �65 � by7 � . � / �83 � �9.:/ %0/ 3 % 3 . *

A set of functions � � � * * * � �<;��	>=��  is complete
if every input can be recovered from the set of outputs.
A 1 -input boolean function � is majority-linear if there
exists a complete set of 1 -input linear boolean functions. , / , 3 such that � � 7 � . � / �43 � .
Lemma III.2. If . , / , 3 , and - are linear functions
such that

� . � / �83 � and
� . � / � - � are complete, then the

following sets are also complete:
(a)

� . %0/ � .�% 3 � 7 � . � / �83 �
�
(b)

� . � / � 7 � . � / �83 � � 7 � . � - � . %0/ %?- �
�
(c)

� / � 7 � . � / �43 � � 7 � . � . %0/ �83 � � 7 �@3 � .�%A/ � . % 3 � �
(d)

� / � 7 � . � / �43 � � 7 � . � / % 3 �83 � � 7 � / � .�%0/ � .�% 3 �
�
(e)

� / � 7 � / �43 � . %0/ % 3 � � 7 ��3 � . %0/ � / % 3 � �7 ��3 � . %A/ � . % 3 �
� .

Theorem III.3. For every BDCE1 , there exists a binary
solvable multicast network with B messages that does
not have a binary linear solution.

Proof. We prove the result for B �F1 ; it is straightfor-
ward to extend it to all BGCH1 by adding to our networkBJIK1 nodes which each receive one out-edge from
the source, and then copy their inputs to all destination
nodes. Throughout this proof, edge labels will be called
“linear” (respectively, “majority-linear”) to mean that
they are linear (respectively, majority-linear) functions of
the source messages  , ! , L . Define a multicast networkM � with three messages  , ! , L and a code over the
binary alphabet to consist of the following components:

(i) A source node N with 1 out-edges labeled  � ! � L .
(ii) Circuits '$O * PQ* R , ' PQ* R<* O , ' R<* O * P with output edge-

functions  % ! , !$%SL ,  %TL , respectively.
(iii) Circuit 'UO<V PW* RX* P with output  % !$%SL .
(iv) A 1 -input,

�
-output interior node �ZY ��[ �@\'�4] �4^ � for

each complete set of linear inputs
��\ �8] �_^��

, and
with output edge-function

7 �@\'�8] �4^ �
.

(v) A 1 -input destination node �ZY � [ �@\'�4] � 2 � � for each
complete set of inputs

��\ �8] � 2 � � , where
\

and]
are linear and 2 � is majority-linear.

(vi) A ` -input destination node �aYcb [ ��\ �8] � 2 � � 2(� �
for each complete set of inputs

��\ �8] � 2 � � 2 � � ,
where

\
and

]
are linear and 2 � and 2(� are

majority-linear.
(vii) A ` -input destination node �aYcd [ �@\'�8] �4^ � for

each linear complete set
��\'�4] �_^��

, where��] � 7 �@\'�8] �4^ � � 7 �@\'�8\ % ] �_^ � �7 �@^ �4\ % ] �8\ % ^ �
� is a complete set of inputs.
(viii) A ` -input destination node �ZYce [ �@\'�4] �4^ � for each

linear complete set
��\ �8] �_^��

, where is a complete
set of inputs.

(ix) A ` -input destination node �aYgf [ �@\'�8] �4^ � for
each linear complete set

��\'�4] �_^��
, where��] � 7 �@] �4^ �4\ % ] % ^ � � 7 ��\ % ] �8] % ^ �4^ � �7 �@^ �4\ % ] �8\ % ^ �
� is a complete set of inputs.

(x) A
�
-input, multiple-output interior node �ZYch [ ��\ �

for each
\

that is linear or majority-linear. Each
edge-function on the out-edges of �ZYch [ ��\ � is the
identity function. The node’s in-edge comes from
the component which generates

\
; the out-edges

lead to all other components which use
\

as input.

The code described in the definition of
M � is a

solution. This follows from the fact that every destination
node is defined to have a complete set of inputs.

We next show that the multicast network
M � does not

have a binary linear solution. Assume to the contrary,
that there exists a linear solution. We may assume
without loss of generality that the source’s three out-
edges are labeled with the messages  � ! � L (otherwise
the out-edges could be equivalently relabeled).

Then each edge of the digraph which is labeled by
some (possibly nonlinear) function gets replaced by
some linear function. Also, no edge already labeled with
a linear function can be replaced by anything other than
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itself, since these edges only come from the output of
a ' -circuit. So only the majority-linear functions can
potentially get replaced by linear functions in

M � .
Note that if

\
,
]

,
^

, � are linear functions
and

7 ��\ �8] �_^ �
is replaced by � somewhere, then7 �@\'�8] �4^ �

must be replaced by � everywhere in
M � .

We use the notation
7 �@\'�4] �4^ ��� � to mean that

the nonlinear edge label
7 ��\ �8] �4^ �

occurs in the given
solution for

M � and is replaced everywhere it occurs by
the linear label � in the linearly labeled network. If �
is a set of linear functions then the notation

7 �@\'�4] �4^ �� � will mean that there exists � ��� such that7 �@\'�8] �4^ ��� � .

Lemma III.4. In the multicast network
M � , the follow-

ing replacement rules hold:
(a) For every complete set of linear functions

��\'�4] �_^��
,

we cannot have
7 �@\'�4] �4^ �����

.
(b)

7 ��\'�4] �_^ ��� �Q\'�8] �4^ �4\ % ] % ^�� , for all
complete sets of linear functions

��\'�4] �_^��
.

(c) If
7 ��\ �8] �4^ ��� \

, then
7 ��] �4^ �4\ % ] % ^ �	�\ % ] % ^ .

(d) If
7 ��\'�4] �_^ ��� \ % ] % ^ , then7 ��] �4^ �8\ % ] % ^ �
� \

.
(e) If

7 ��\ �8] �4^ ��� \
, then

7 ��\ �8] �4\ % ] % ^ �
� ]
.

(f) If
7 ��\ �8] �4^ ��� \

, then
7 �@\'�4] � � ��� ��\ �8] �

for all linear � such that
�Q\'�4] � � � is complete.

(g) If
7 �@\'�8] �4^ ��� �Q^ �4\ % ] % ^�� , then

7 ��\'�4] � � �� � � �8\ % ] %� � for all linear � such that��\'�4] � � � is complete.
(h) If

7 ��\'�4] �_^ ��� ��\ �8\ % ] % ^�� , then7 ��\ � � �4] % ^ %�� ��� �Q\'�8\ % ] % ^��
for all

linear � such that
��\ � � �4] % ^ %�� � is complete.

(i) If
7 ��\ �8] �_^ ��� �Q] �4^��

, then7 ��\ � � �4] % ^ %�� ��� � � �8] % ^ %�� � for all
linear � such that

��\ � � �4] % ^ %�� � is complete.

By Lemma III.4b, either there exists a complete set of
linear functions

��\ �8] �_^��
such that

7 �@\'�8] �4^ �	� \
,

or else
7 ��\'�4] �_^ ��� \ % ] % ^ for every complete

set of linear functions
�Q\'�8] �4^��

.
First, let us assume (in Cases 1 and 2, below) that��\ �8] �4^��

is a complete set of linear functions such that7 �@\'�8] �4^ ��� \
. Then

7 �@\'�8\ % ] �4^ �
� �Q\'�_^��
by

Lemma III.4f. We show that this leads to a contradiction.
Case 3 handles the remaining possibility.

Case 1:
7 �@\'�4] �4^ ��� \

and
7 ��\'�4\ % ] �_^ ��� \

:
Lemma III.2c (taking .(� \

, / � ]
,
3 � ^

) implies� Y d [ ��\ �8] �_^ � is a destination node of
M � , as shown.
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� ���

]
7 ��\'�4] �_^ �

7 ��\ �8\ % ] �_^ �
7 � ^ �8\ % ] �8\ % ^ �

Then
7 �@\'�8\ % ] �4^ ��� \

and Lemma III.4g (tak-
ing � � \ % ^ ) give

7 � ^ �8\ % ^)�4\ % ])��� ��\ %^ �8] �
. Lemma III.4f and

7 �@\'�4] �4^ ��� \
im-

ply
7 ��\ �8] �4\ % ^ ��� ��\ �8] �

. Lemma III.4h and7 �@\'�8\ % ] �4^ � � \
imply

7 �@\'�8] �8\ % ^ � ���\ �8] % ^�� . Thus
7 �@\'�4] �8\ % ^ �
� \

. Lemma III.4f
and

7 ��\'�4\ % ] �_^ �
� \
imply

7 �@\'�8\ % ] �8\ % ^'�� �Q\'�4\ % ] �
. Lemma III.4f and

7 ��\'�4] �4\ % ^ �� \
imply

7 �@\'�8\ % ] �8\ % ^'�
� �Q\'�8\ % ^�� . Thus7 �@\'�8\ % ] �8\ % ^ �!� �Q\'�4\ % ] ��" �Q\'�8\ % ^�� ���\'�
. Lemma III.4g and

7 �@\'�4\ % ] �8\ % ^ �
� \
im-

ply
7 �@^ �4\ % ^)�8\ % ]���� ��] �_^��

. Thus we conclude
that

7 �@\ % ^)�8\ % ] �_^ �!� �Q] �4^��#" ��] �8\ % ^�� ���] �
. Together, these imply that the labels of the four

inputs to the destination node � Y d [ ��\ �8] �4^ � above lie
in the set

��\'�4] �
, which is not complete, contradicting

the solvability of
M � . So Case 1 is impossible.

We omit the proofs that Cases 2 and 3 are also
impossible.

Case 2:
7 ��\ �8] �_^ ��� \

and
7 �@\'�4\ % ] �4^ ���J^

.

Case 3:
7 ��\ �8] �_^ ��� \ % ] % ^ for every complete

set of linear functions
��\ �8] �4^��

.
Since all three cases are impossible, there is no linear

solution to the given network, even though it is solvable.	
IV. SOLVABILITY FOR DIFFERENT ALPHABET SIZES

If a network is solvable for a particular alphabet  ,
then it is clearly solvable, using Cartesian products, for
any alphabet of cardinality $ %$ & and any integer ' C �

.
So, in this sense, solvability becomes somewhat “easier”
as the alphabet size grows. In fact, the Li-Yeung-Cai
linearity result in [3] guarantees not only a linear solution
to a solvable network for large enough cardinality, but
also a linear solution for any finite field larger than some
specific size. This tends to add support to the notion that
larger alphabets make solvability easier. However, the
main result in this section shows that it is possible for a
multicast network to be solvable for a certain alphabet
but not solvable for some larger alphabet.

Theorem IV.2 considers network solutions with arbi-
trary alphabet sizes. No specific algebraic structure (e.g.
a ring or field) is imposed on the alphabet, and hence
the result does not depend on the notion of linearity.

First, we present a lemma about latin squares. A
latin square of order � is an ��( � square matrix,
each row and column of which is a permutation of the
integers

�+��� * * * � � � . Two latin squares
� . & ; � and

� / & ; �are orthogonal if each ordered pair
� . & ; � / & ; � is distinct,

for all ' and ) .
Lemma IV.1 ([2]). Orthogonal latin squares exist if and
only if the order of the matrices is neither

�
nor * .

The following theorem follows immediately from
Lemma IV.3, which makes use of the multicast networkM � shown in Figure 2.

Theorem IV.2. A multicast network that has a solution
for a given alphabet might not have a solution for all
larger alphabets.
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Fig. 2. Multicast network 
 % with messages � , � , source node  , and�
destination nodes. The edge labels � # , � % , ��� , ��� are functions of� , � , and each of the

�
possible pairs of them constitute the in-edges

of a unique destination node.

Lemma IV.3. The multicast network
M � is solvable if

and only if the alphabet size is neither
�

nor * .
Proof. The network

M � is solvable for a specific alpha-
bet  � � . � � * * * .�� ��� � if and only if each of the * pairs� �
&
� � ; � , for

��� ' � ) � ` and '��� ) , is complete (so
that the pair

�  � ! � can be recovered for each destination
node). Let � � be the $ %$ ( $  $ square matrix whose entry
in the '���� row and ) ��� column is � if

�
�
� . & � . ; � �F."! .

Let us now temporarily assume
� � �  and

� � � ! , i.e.
the projection functions.

Clearly
� � � � � � � is complete. The pair

� � � � � b � is
complete if and only if for each . & �  , no two elements
of the '���� row of � b are the same (for otherwise !
could not be uniquely recovered from  and

� b ), i.e.
every row of � b must contain each of the integers in�+�+� * * * � $ %$ � exactly once. Similarly, the pair

� � � � � b �
is complete if and only if every column of � b contains
each of the integers in

� ��� * * * � $ %$ � exactly once. Thus,
the pairs

� � � � � b � and
� � � � � b � are both complete if

and only if � b is a latin square of order $ %$ . A similar
argument shows that the pairs

� � � � � d � and
� � � � � d � are

both complete if and only if � d is a latin square of order$ %$ . Now, the pair
� � b � � d � is complete if and only if for

all ' � ) � � ��� * * * � $  $ � , the ordered pair of
� ' � ) � ��� entries

in � b and � d does not repeat at any other location in the
two matrices (i.e. allowing unique recovery of ' and )
given the

� ' � ) � ��� entries), if and only if each of the $ %$ �
pairs of integers from

�+�+� * * * � $ %$ � appears exactly once
in the matrices � b and � d at the same positions. Hence,
all * pairs

� �
&
� � ; � are complete if and only if � b and� d are orthogonal latin squares. So, by Lemma IV.1 we

conclude that
M � is solvable for all alphabets  such

that $ %$#�� � �	� * � , and is not solvable for $ %$�� � ��� * �
under the assumptions

� � �  and
� � � ! .

Now let us relax the assumptions that
� � �  and� � � ! and suppose that

M � has a solution. Let $ � � �

and L � � � . Then the pair
� $ � L � is complete, so that and ! can each be recovered from $ and L . Thus,

since
� b and

� d are each functions of  and ! , they are
also functions of $ and L . Formally, since the mapping� � � � � � � �  � �  � is a bijection, it has an inverse % ,
and then

� b and
� d can be identified with &� b � � b�' %

and &� d � � d(' % , respectively. Matrices &� b and &� d can
be defined for &� b and &� d analogously as before. Now
the same argument as earlier implies that the * pairs� $ � L � , � $ � &� b � , � $ � &� d � , � L � &� b � , � L � &� d � , � &� b � &� d � are
each complete if and only if the matrices &� b and &� d are
orthogonal latin squares. Thus, if

M � were solvable for$ %$&� � ��� * � then there would exist a pair of orthogonal
latin squares of order

�
or * , contradicting their known

nonexistence. 	
Note that if we allow coding over two units of time

(i.e., two uses of the network) then a linear solution
exists, by choosing edge-function vectors

� � �*) O,+O.-0/ ,� � �1) P +P2-0/ , � b �3) �544 � / ) O,+O -0/ %6) �744 � / ) P +P8-8/ , � d �9) � �4 � / ) O,+O -0/ %) �54� � / ) P +P -0/ , where the message vectors are ) O,+O.-0/ and ) P +P -0/ .
This vector solution is valid for any alphabet size by
viewing  as the ring of integers modulo $ %$ (i.e., � �  � � ! � � ! � �� ). This is true even though

M � does
not have a scalar solution for $ %$&� � �	� * � .

The multicast network in Figure 2 was one member
in a family of networks used in [4] to show that the
minimum alphabet size of multicast network solutions
might have to be at least about the square root of the
number of destination nodes. It was also used in inde-
pendent work in [5] in examining codes over multiple
time units, where a binary vector linear solution was
given. Our characterization of which alphabet sizes admit
solutions to

M � gives some more insight about the role
of alphabet sizes and solvability.
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