
Network Coding for Computing

Rathinakumar Appuswamy, Massimo Franceschetti, Nikhil Karamchandani, and Kenneth Zeger

Abstract— The following network computation problem is con-
sidered. A set of source nodes in an acyclic network generates
independent messages and a single receiver node computes a
function f of the messages. The objective is to characterize the
maximum number of times f can be computed per network
usage. The network coding problem for a single receiver network
is a special case of the network computation problem (taking f
to be the identity map) in which all of the source messages must
be reproduced at the receiver. For network coding with a single
receiver, routing is known to be rate-optimal and achieves the
network min-cut upper bound. We give a generalized min-cut
upper bound for the network computation problem. We show
that the bound reduces to the usual network min-cut when f
is the identity and the bound is tight for the computation of
“divisible functions” over “tree networks”. We also show that
the bound is not tight in general.

I. INTRODUCTION

We consider the problem where a set of source nodes
in a network generates independent messages and a single
receiver node computes a function f of these messages.
The objective is to characterize the maximum rate of com-
putation, that is the maximum number of times f can be
computed per network usage.

In its most general form, computing a function over a net-
work involves communicating possibly correlated messages,
to a specific destination, at a desired fidelity with respect to
a joint distortion criterion dependent on the given function
of interest. As noted in [8], this combines the complexity
of source coding of correlated sources, with rate distortion,
different possible network collaborative strategies for com-
putation and communication, and the inapplicability of the
separation theorem demarcating source and channel coding.
The overwhelming complexity of the problem naturally leads
to simplifications that are aimed at obtaining some partial
answers.

We present a simplified, yet a very natural model of
network computation that is closely related to network coding
[1], [19]. Network coding is a widely studied communication
mechanism in the context of network information theory. In
this framework, some nodes in the network are labeled as
sources and some as destinations. Each destination needs to
reproduce a subset of all the messages generated by some
source nodes, and all nodes can act as relays and encode the
information they receive, together with the information they
generate if they are sources, into codewords which are sent

This work was supported by the National Science Foundation and the
UCSD Center for Wireless Communications

The authors are with the Department of Electrical and Computer
Engineering, University of California, San Diego, La Jolla, CA 92093-
0407 rathnam@ucsd.edu, massimo@ece.ucsd.edu,
nikhil@ucsd.edu, zeger@ucsd.edu

on their output edges. In existing computer networks, the
encoding operation is a very simple one: at each node, the
codeword sent over an output edge consists of symbols either
received by the node, or generated by it if it is a source. Such
a simple scheme is denoted as routing. In many instances,
allowing more complex encoding schemes than routing has
been shown to be advantageous in terms of communication
rate [1], [11], [15]. However, when independent sources need
to send messages to a single receiver node, routing is known
to be rate-optimal [12]. The network coding setup with a
single receiver corresponds to the special case of our function
computation problem when the function to be computed is
the identity, that is when the receiver wants to reproduce all
the messages generated by the sources. Our aim is to extend
this classic setup to computation of functions different from
the identity.

Other approaches to network computation have also ap-
peared in the literature. Some authors have restricted the
analysis to simple graphs and certain specific channels, while
allowing the sources to have an arbitrary joint distribution.
For example, the problem of determining the maximum rate
of computation of a function of two variables in a simple
two-node network with side information at the receiver
has been considered by Orlitsky and Roche [16] (some
extensions appear in [3], [4]); and recently the computation
rate of functions over multiple-access channels has been
considered by Nazer and Gastpar [14]. A related question has
been addressed by Gallager [7], who has considered the total
number of transmissions required to compute the identity and
parity functions on a complete graph, where each source
node has a single binary input and each transmission is
received by each other node via a binary symmetric channel
of given transition probability.

All source values and channel errors are assumed to be
independent in space and time. This formulation was first
posed as an open problem by El Gamal [6]. Gallager provides
an upper bound on the order of growth of the required
number of transmissions with the number of nodes in the
network. Such an order of growth is crucial to determine the
scalability of the network, a topic of much current interest.
This bound for the identity function has been shown to be
tight by Goyal, Kindler, and Saks [9]. Motivated by multi-
hop wireless communication networks, Ying, Srikant, and
Dullerud [20] proposed a variation of El Gamal’s problem
in which each source message can have more than just two
values, the function to be computed can be an arbitrary
symmetric function, and the network is a connected random
geometric graph [17], rather than a complete graph. In their
model, when a node transmits, the message is received

1

by all of its neighbors within a certain fixed range, over
independent binary symmetric channels of a given transition
probability. They provide an upper bound which was later
shown to be tight by Dutta, Kanoria, Manjunath, and Rad-
hakrishnan [5]. Finally, a different communication model,
named protocol model, has been considered by Girdhar
and Kumar [8]; and Gupta, Subramanian, and Shakkottai
[10]. This is an interference model in which each node can
transmit a message composed of a given number of bits, and
this can be received by all of its neighbors within a certain
fixed range, without error. However, messages can collide at
receiving nodes and be erased.

In the present work we consider wired, rather than wireless
networks. In contrast to [5], [7]–[10], [20], this implies that
there is no notion of interference and colliding messages.
Furthermore, we assume independent sources, and all com-
munication occurs over reliable links. Our model is close to
the work of Ramamoorthy [18], who considered computing
the parity of n binary sources by two receiver nodes over
an arbitrary directed acyclic graph; he considered the issue
of existence of a solution, rather than the rate at which the
solution can be computed.

The main contributions of the present paper are summa-
rized in Section I-B, after formally introducing the network
model in the next section. The remaining sections contain
proofs of these results. A brief summary is as follows. A
cut-set upper bound on the maximum rate of computation
over networks is presented in Section II. In Section III, we
show that this bound is achievable for the class of divisible
functions over tree-networks. However, this bound may not
be tight in general, as we show in Section IV by means of
an example.

A. Network model and preliminaries

In this paper, a network N consists of a finite, directed
acyclic multigraph G = (V , E), a set of source nodes
S ⊂ V , and a receiver T ∈ V . Such a network is denoted
by N = (G,S, T). We will assume (without any loss of
generality) that if a network node has no in-edges, then it
is a source node. An alphabet is a finite set of size at least
two. Associated with the sources are messages, which are
symbols of a fixed alphabet1 The objective of the receiver is
to compute a function of these messages.

Let A and B be arbitrary alphabets. For each m ≥ 1, a
computable function of order m is any map of the form

f : Am → B

whose range has size at least two.

Example I.1. If Bm = Am for m = 1, 2, . . ., then the
identity maps

f (m) (x1, . . . , xm) = (x1, . . . , xm)

form a family of computable functions.

1For simplicity we assume each source has associated with it exactly one
message, but all of the results in this paper can readily be extended to the
more general case.

Example I.2. Let A = {0, 1, . . . , q − 1}. If Bm =
{0, 1, . . . , (q − 1)m} for m = 1, 2, . . . and q ≥ 2, then the
arithmetic sum functions

f (m) (x1, . . . , xm) =

m
∑

i=1

xi

form a family of computable functions.

If a network has sources S, then a target function is any
computable function of order |S|.

The network computation problem consists of a network,
together with a target function f , whose arguments are the
network source messages. The goal is to compute f at the
receiver T .

We will view each network source node as generating a
vector of k alphabet symbols (e.g. modeling a source output
over k consecutive time units). Every out-edge of each node
carries a vector of n alphabet symbols, which is a function of
the vectors carried by the in-edges to the node and the node’s
message vectors if it is a source. The objective of the receiver
is to construct a vector of k alphabet symbols, such that
for each i = 1, . . . , k, the i-th component of the receiver’s
computed vector equals the value of the target function f

applied to the i-th set of source messages.
Let S = {µ1, . . . , µ|S|} and fix a mapping α : S → Ak.

For each m = 1, . . . , |S|, we say that the k-dimensional
α(µm) is a message vector that is generated by the source
µm. The i-th component of α(µm) is denoted by (α(µm))i.

For a given network with a target function f : A|S| → B,
for each k ≥ 1 define a map

fk : Ak|S| → Bk

component-wise by

fk(x1, · · · ,xk) = (f(x1), · · · , f(xk)). (1)

If
xi =

(

(α(µ1))i, (α(µ2))i, . . . , (α
(

µ|S|

)

)i

)

,

then for each i = 1, . . . , k, the i-th component of
fk(x1, · · · ,xk) corresponds to computing f for the i-th set
of source messages.

Let Ei(v) and Eo(v) denote the set of in-edges and out-
edges respectively, of the node v. For each network edge
e = (v, u) ∈ E , an encoding function ge is a mapping

ge :

{

An|Ei(v)| ×Ak → An if v ∈ S

An|Ei(v)| → An otherwise.

A decoding function ψ (at the receiver T) is a mapping

ψ : An|Ei(T)| → Bk.

A (k, n) network code (with respect to a particular alphabet
A) for a single-receiver network is a collection of encoding
functions for each network edge, together with a decoding
function at the receiver.

For each edge e, let ze ∈ An denote the vector carried by e
and denote the in-edges of the receiver by e1, e2, . . . , e|Ei(T)|.
A (k, n) network code is called a solution for computing f

2

if for each i = 1, 2, . . . , k, we have
(

ψ
(

ze1 , · · · , ze|Ei(T)|

))

i
=

f
(

(α(µ1))i , · · · ,
(

α
(

µ|S|

))

i

)

or equivalently

ψ
(

ze1 , · · · , ze|Ei(T)|

)

= fk (x1,x2, · · · ,xk) (2)

where

xi =
(

(α(µ1))i, (α(µ2))i, . . . , (α
(

µ|S|

)

)i

)

.

A routing solution is a network coding solution in which
the nodes are restricted to transmit only symbols that they
have either received or generated. A solution with k = n = 1
is said to be scalar.

We define the coding capacity of a single-receiver network
N with respect to a target function f as

Ccod(N , f) = sup
{k

n
: ∃(k, n) network coding

solution for computing f
}

.

The routing capacity Crout(N , f) is defined similarly by
restricting the set of allowable encoding functions. Note that
the capacities Ccod(N , f) and Crout(N , f) are inherently tied
to the specific alphabet A corresponding to the domain Am

of the target function f . In contrast, for ordinary network
coding (i.e. when the target function is the identity map),
the coding capacity and routing capacity are known to be
independent of the coding alphabet used [2].

A set of edges C ⊂ E is said to separate some sources
µm1 , . . . , µmd

from the receiver T , if for each i = 1, . . . , d,
every path from µmi

to T contains at least one edge in C.
For any set of edges C ⊂ E , let SC denote the set of sources
separated from the receiver by C. Such a set of edges C is
called a cut.

For any cut C, define the quantity

RC,f

= max
ai∈A

s.t. µi 6∈SC

∣

∣

{

f(a1, . . . , a|S|) : aj ∈ A ∀j s.t. µj ∈ SC

}∣

∣ .

(3)
The quantity RC,f counts the maximum number of distinct
values the target function f can assume, while fixing the
messages at each of the sources in S −SC , over all possible
ways of fixing the messages at the sources in S − SC .

Example I.3. For the identity map, RC,f = |A||SC |.

Example I.4. Let q ∈ Z, q ≥ 2, and A = {0, 1, . . . , q − 1}.
Then, for the arithmetic sum function, RC,f = (q−1) |SC |+
1.

For any network N and target function f , we define min-
cut(N , f) as

min-cut(N , f) = min
C ⊂ E

{

|C|

log|A|RC,f

}

. (4)

For the special case when f is the identity map, we have
that RC,f = |A||SC |. Thus, min-cut(N , f) reduces to the
classical definition of the minimum cut [13] of G, which we
denote by

min-cut(N) = min
C ⊂ E

{

|C|

|SC |

}

. (5)

Figure 1 illustrates an example of a cut C.

PSfrag replacements

SC

T

C

Fig. 1. Illustration of a cut. Here, SC represents the set of sources separated
by the set C from the receiver T .

Consider the cut C which separates the set of sources
SC from the receiver T . When the target function f is the
identity map, a solution for computing f must transport
through the cut enough information to be able to reconstruct
the messages of all µ ∈ SC . Thus |C| edges, each of
capacity n, must carry enough information to reconstruct
all |SC | k-dimensional message vectors. This implies that
n |C| ≥ k |SC | and therefore (5) is an upper bound on the
usual coding capacity. In fact, Lehman and Lehman [12]
showed that for any single-receiver network, the routing
capacity is equal to the coding capacity.2

A sequence of computable functions f (1), f (2), . . . is said
to be monotone if for all integers s, t, and m satisfying
1 ≤ s < m ≤ t, for every permutation π of {1, 2, . . . , t},
there exists am ∈ A such that

∣

∣

∣

∣

∣

f (t)

(

t
∏

m=1

Aπ(m)

)∣

∣

∣

∣

∣

≥
∣

∣

∣f
(s)(As)

∣

∣

∣ (6)

where

Am =

{

A for 1 ≤ m ≤ s

{am} for s < m ≤ t.

Remark I.5. For monotone sequences of functions, if the
number of inputs is increased from s to t, then for any choice
of t − s inputs one can find certain fixed assignments of
variables to such inputs so that the number of possible out-
puts cannot decrease. For example, for the “sum” function,

2The proof given in [12] considers only scalar solutions, but it easily can
be extended to vector solutions.

3

the number of possible outputs does not decrease if we sum
three rather than two numbers, even if we fix any one of the
three inputs. Sequences of identity, maximum, or minimum
functions are all monotone.

In what follows, if t ≥ 1, x = (x1, . . . , xt) ∈ At, and
Q = {i1, i2, . . . , ij} ⊂ {1, . . . , t}, where i1 < i2 < . . . < ij ,
then we denote by (x)Q the vector (xi1 , xi2 , . . . , xij

).
A sequence of computable functions f (1), f (2), . . . is said

to be divisible if it is monotone and if for any t ≥ 1 and
any partition Π = {Q1, . . . , Qγ} of {1, . . . , t}, there exists
a function gΠ such that for any x ∈ At,

f (t)(x) = gΠ

(

f (|Q1|)((x)Q1) , . . . , f
(|Qγ |)

(

(x)Qγ

)

)

. (7)

Examples of divisible sequences of functions include the
identity, maximum, and sum function sequences. A related
definition of divisible functions appears in [8].

If a sequence f (m) : Am → Bm (for m = 1, 2, . . .) of
computable functions in a network is divisible (respectively
monotone), then we say the target function f (|S|) itself is
divisible (respectively monotone).

Remark I.6. Divisible target functions can be computed in
networks in a divide-and-conquer fashion as follows. For
any arbitrary partition {Q1, . . . , Qγ} of {1, . . . , |S|}, the
receiver T can evaluate the target function f by combin-
ing evaluations of f (|Q1|), . . . , f (|Qγ |). Further, for every
i = 1, . . . , γ, the target function f (|Qi|) can be evaluated
similarly by partitioningQi and this process can be repeated.

Lemma I.7. Let N be any single-receiver network with a
cut C. If f is a monotone target function, then

RC,f ≥
∣

∣

∣f (|SC |)
(

A|SC |
)∣

∣

∣ .

Proof. Let I = {m : µm ∈ SC}. The result follows from
(6), by choosing s = |I |, t = |S|, and π to be a permutation
of {1, . . . , |S|} such that π(I) = {1, . . . , |SC |}.

We call a directed graph G = (E ,V) a multi-edge tree, if
∀v ∈ V ,

|{u : (v, u) ∈ Eo(v)}| ≤ 1.

That is, each non-receiver node points to exactly one node
(see Figure 2 for example).

Fig. 2. An example of a multi-edge tree.

B. Contributions

The main results of this paper are the following:
• Theorem II.1 establishes that for any single-receiver

network N and target function f , the min-cut is an
upper bound to the coding capacity:

Ccod(N , f) ≤ min-cut(N , f).

• Theorem III.1 establishes that for any multi-edge tree
network and any divisible target function f , the min-cut
bound is tight, namely

Ccod(N , f) = min-cut(N , f).

• Theorem IV.1 establishes that there exist divisible target
functions such that on some networks the min-cut is not
achievable, i.e.,

Ccod(N , f) < min-cut(N , f).

II. MIN-CUT UPPER BOUND ON THE CODING CAPACITY

In this section, we show that the maximum achievable rate
for computing a target function f is bounded above by the
min-cut(N , f) of the network.

Theorem II.1. For any single-receiver network N and target
function f , Ccod(N , f) ≤ min-cut(N , f).

Proof. Consider any (k, n) coding solution for computing
the function f over G. Let a cut C ⊂ E separate the sources
in SC from the receiver. Let the collection {A∗

µm
: µm ∈

S} achieve the maximum in (3), where, ∀ µm ∈ S − SC ,
A∗

µm
= {a∗µm

}. Now, define the collection

Φ =

|S|
∏

m=1

A∗
µm
.

Further, ∀ µm ∈ S − SC , define an k-length vector a
∗
µm

=
(a∗µm

, · · · , a∗µm
). Now, let {e1, . . . , e|Ei(T)|} be the in-edges

of the receiver. We have,

|A||C|n

(a)

≥
∣

∣

∣

{{

ze1 , · · · , ze|Ei(T)|

}

: ∀ µm ∈ S − SC , α(µm) = a
∗
µm

}∣

∣

∣

≥
∣

∣

∣

{

ψ
(

ze1 , · · · , ze|Ei(T)|

)

: ∀ µm ∈ S − SC , α(µm) = a
∗
µm

}∣

∣

∣

(b)
=

∣

∣

∣

∣

∣

∣

fk

k
∏

j=1

Φ

∣

∣

∣

∣

∣

∣

(c)
= |f (Φ)|k

(d)
= Rk

C,f . (8)

In the chain of inequalities above, (a) follows
from the fact that having fixed the source vectors
{α(µ) : µ ∈ S − SC} , the vectors on the in-edges
of the receiver, ze1 , ze2 , . . . , ze|Ei(T)|

, are only a function of
the edge-vectors on the cut C; (b) follows from the fact
that the network code is a solution, as defined in (2); (c)
follows from the definition of the function fk in (1); and

4

(d) follows from the definition of RC,f and the fact that the
collection

{

A∗
µm

: µm ∈ S − SC

}

attains the maximum in
(3). From (8), it follows by taking logarithms of both sides,
that

k

n
≤

|C|

log|A|RC,f

.

Therefore,
Ccod(N , f) ≤

|C|

log|A|RC,f

.

Since the cut C is arbitrary, the result follows.

III. ACHIEVABILITY OF THE MIN-CUT BOUND

In this section we show that the min-cut bound is tight for
every divisible function f and network N = (G,S, T) such
that G is a multi-edge tree.

Theorem III.1. Let N = (G,S, T) be an arbitrary single-
receiver multi-edge tree network. If f is a divisible function,
then

Ccod(N , f) = min-cut(N , f).

Proof. From Theorem II.1, it suffices to show that
Ccod(N , f) ≥ min-cut(N , f). For ease of notation, hence-
forth for each v ∈ V − {T}, we denote the set SEo(v) by
Sv .

Lemma III.2. Let N = (G,S, T) be an arbitrary single-
receiver multi-edge tree network. If f is a divisible function,
then

Ccod(N , f) ≥ min
v ∈ V−{T}

{

|Eo(v)|

log|A|

∣

∣f (|Sv|)
(

A|Sv|
)∣

∣

}

.

Proof. We show that for any ε > 0, there exists a (k, n)
network code which achieves a rate of at least

min
v ∈ V−{T}

{

|Eo(v)|

log|A|

∣

∣f (|Sv |)
(

A|Sv |
)∣

∣

}

− ε.

Let each source µ ∈ S generate a message α(µ) ∈ Ak.
For 1 ≤ i ≤ k, let xi ∈ A|S| denote the i-th set of source
messages, i.e.,

xi =
(

(α(µ1))i , . . . ,
(

α
(

µ|S|

))

i

)

.

The receiver T needs to evaluate

fk(x1, · · · ,xk) = (f(x1), · · · , f(xk)).

For any node v ∈ V , let

I (v) = {u ∈ V : Eo(u) ⊂ Ei(v)} .

Since the graph G is a multi-edge tree, for any node v ∈
V − {T}, the following recursive condition holds:

Sv =

{v} ∪
⋃

u∈I(v)

Su if v ∈ S

⋃

u∈I(v)

Su otherwise.

Next ∀u ∈ I (v), let Qu = {j : µj ∈ Su} and Π denote
the partition {Qu : u ∈ I(v)}. Since f belongs to a divisible

function family, we have from (7) that for every x ∈ A|Sv|,
there exists a gΠ, such that

f (|Sv |) (x) =

gΠ
(

f (1) ((x)j) ,
{

f (|Su|) ((x)Qu
) : u ∈ I(v)

})

if v = µj for some j ∈ [|S|],

gΠ
({

f (|Su|)((x)Qu
) : u ∈ I(v)

})

otherwise.

where we view the term
{

f (|Su|) ((x)Qu
) : u ∈ I(v)

}

in
the equation above as an ordered list of elements that are
arguments of gΠ. Now, our scheme has each node v ∈
V − {T} compute the value of f (|Sv |) ((x)Qv

), for every
set of source messages, and then forward on its out-edges
information from which the result can be deduced. It suffices
that for each node v ∈ V − {T}, there exists an injection

hv :
k
∏

i=1

f (|Sv|)
(

A|Sv |
)

→ An|Eo(v)|

so that when distinct function values are computed at the
node, distinct vectors are forwarded on its out-edges. Such
maps exist if for each node v ∈ V − {T},

∣

∣

∣f
(|Sv |)

(

A|Sv|
)∣

∣

∣

k

≤
∣

∣

∣A|Eo(v)|
∣

∣

∣

n

,

or equivalently by taking logarithms of both sides,
k

n
≤

|Eo(v)|

log|A|

∣

∣f (|Sv |)
(

A|Sv |
)∣

∣

.

For the above inequality to hold it is sufficient to have

k

n
≤ min

v ∈ V−{T}

{

|Eo(v)|

log|A|

∣

∣f (|Sv |)
(

A|Sv |
)∣

∣

}

. (9)

Next, for any given ε > 0, we can choose k, n large enough,
so that (9) holds and

k

n
≥ min

v ∈ V−{T}

{

|Eo(v)|

log|A|

∣

∣f (|Sv |)
(

A|Sv|
)∣

∣

}

− ε,

and the proof is complete.

Next, from the definition of min-cut(N , f) in (4) and by
considering the cut Eo(v) for every node v ∈ V − {T}, we
have

min-cut(N , f) ≤ min
v ∈ V−{T}

{

|Eo(v)|

log|A|REo(v),f

}

≤ min
v ∈ V−{T}

{

|Eo(v)|

log|A|

∣

∣f (|Sv |)
(

A|Sv|
)∣

∣

}

(10)
where the last inequality follows from Lemma I.7. From
Lemma III.2 and (10), the proof is now complete.

IV. UNACHIEVABILITY OF THE MIN-CUT BOUND: AN
EXAMPLE

The proof of the following theorem is omitted here, but
will be given in full in a future publication.

5

Theorem IV.1. There exists a divisible function f and
a network N for which the coding capacity Ccod(N , f)
is strictly less than the min-cut(N , f), i.e, Ccod(N , f) <

min-cut(N , f).

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow”, IEEE Transactions on Information Theory, vol. IT-
46, no. 4, pp. 1204–1216, July 2000.

[2] J. Cannons, R. Dougherty, C. Freiling, and K. Zeger, “Network routing
capacity”, IEEE Transactions on Information Theory, vol. 52, no. 3,
pp. 777-788, March 2006.

[3] V. Doshi, D. Shah, M. Medard, and S. Jaggi, “Graph coloring
and conditional graph entropy,” Proceedings of the Fortieth Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA,
Nov. 2006.

[4] V. Doshi, D. Shah, M. Medard, and S. Jaggi, “Distributed functional
compression through graph coloring,” Proceedings of the Data Com-
pression Conference, Snow Bird, Utah, March 2007.

[5] C. Dutta, Y. Kanoria, D. Manjunath, J. Radhakrishnan, “A tight lower
bound for parity in noisy communication networks,” Proceedings of
the twentieth ACM-SIAM Symposium on Discrete Algorithms (SODA
2008), pp. 1056–1065, San Francisco, CA, January 2008.

[6] A. El Gamal, Open problem presented at the 1984 Workshop on
Specific Problems in Communication and Computation sponsored by
Bell Communication Research.

[7] R. G. Gallager, “Finding parity in a simple broadcast network,” IEEE
Transactions on Information Theory, vol. 34, no. 2, pp. 176-180, March
1988.

[8] A. Giridhar and P. R. Kumar, “Computing and communicating
functions over sensor networks,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 4, pp. 755–764, April 2005.

[9] N. Goyal, G. Kindler, M. Saks, “Lower bounds for the noisy broadcast
model,” Proceedings of the 46th annual IEEE Symposium on Foun-
dations of Computer Science (FOCS ’05), pp. 40–49, Pittsburgh, PA,
October 2005.

[10] P. Gupta, S. Subramanian, and S. Shakkottai, “Scaling bounds for
function computation over large sensor networks,” Proceedings of
the 2007 IEEE International Symposium on Information Theory (ISIT),
Nice, France, June 24-29, 2007.

[11] N. Harvey, R. Kleinberg, A. R. Lehman, “On the capacity of in-
formation networks,” IEEE Transactions on Information Theory &
IEEE/ACM Transactions on Networking (joint issue), vol. 52, no. 6,
pp.2345–2364, June 2006.

[12] A. R. Lehman and E. Lehman, “Complexity classification of network
information flow problems,” Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 142–150, 2003.

[13] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms,” Journal of the
ACM, vol. 46, no. 6, pp. 787-832, Nov. 1999.

[14] B. Nazer, and M. Gastpar, “Computing over multiple-access channels,”
IEEE Transactions on Information Theory, vol. 53, no. 10, pp. 3498-
3516, Oct. 2007.

[15] C. K. Ngai, R. W. Yeung, “Network coding gain of combination
networks,” Proceedings of the IEEE Information Theory Workshop,
San Antonio, Texas, October 2004.

[16] A. Orlitsky, J. R. Roche, “Coding for computing,” IEEE Transactions
on Information Theory, vol. 47, no. 3, pp. 903-917, March 2001.

[17] M. D. Penrose, “Random Geometric Graphs”, Oxford University Press,
2003.

[18] A. Ramamoorthy, “Communicating the sum of sources over a net-
work,” Proceedings of the IEEE International Symposium on Informa-
tion Theory, Toronto, Canada, 2008.

[19] R. W. Yeung, A First Course in Information Theory, Kluwer, 2002.
[20] L. Ying, R. Srikant, and G. E. Dullerud, “Distributed Symmetric

function computation in noisy wireless sensor networks,” IEEE Trans-
actions on Information Theory, vol. 53, no. 12, pp. 4826-4833, Dec.
2007.

In the proceedings of the Forty-Sixth Annual Allerton
Conference on Communication, Control, and Computing,
held September 23 - September 26, 2008 in Monticello,
Illinois

6

