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1 Introduction

In this paper a reversible (lossless) image
compression technique is presented which is
robust in an ATM environment to packet
loss and to non-sequential packet receipt.
In a clinical imaging environment, imagers
(for instance, magnetic resonance (MR) im-
agers) must be interconnected to archival
databases and to visualization workstations;
ATM (asynchronous transfer mode) networks
offer great capabilities for these interconnec-
tions. However, increased performance can be
obtained if the images are compressed prior to
transmission. For medical images, reversible
compression schemes have legal advantages,
and possibly diagnostic advantages as well,
over irreversible methods. While there are
many techniques for reversibly compressing
images, few if any of these are suitable under
packet loss.

In ATM networks, packets from multiple
inputs are statistically multiplexed to the out-
put. Packets have a small, but finite, prob-
ability of being lost. For most lossless im-
age compression algorithms, loss of a single
packet in transmission can preclude useful re-
construction of the image and thus require
retransmission of the lost packet or the en-
tire image file. This increases the total im-
age transmission latency and can seriously
compromise the service quality required by
the end user. Previous work on packetiza-
tion for compressed images has focused ex-
clusively on lossy compression, and the strate-
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gies have generally involved forward error cor-
rection, layered coding, and resilient coding
(see, for example, [1, 2]). The image com-
pression approaches presented in this paper
have been tailored such that they are com-
pletely reversible when no packets are lost and
they produce a small reconstruction error in
the case of lost packets. We use two methods
for lossless compression. The first uses lin-
ear prediction in the pixel domain to decor-
relate the image, followed by Huffman coding
of the residuals. The second method uses the
multiresolution sequential (S) transform, with
Huffman coding of the coefficients. Results
are presented for 8-bit grayscale magnetic res-
onance images.

2 Pixel linear prediction

With pixel-domain linear prediction, an image
is typically scanned in raster scan order, and
past pixel values are used to predict the cur-
rent pixel value. The difference is calculated
between the actual and predicted pixel val-
ues, and this residual is coded with a lossless
(entropy) code. The decoder is able to form
the same prediction as the encoder. If this bit
stream were packetized as it stands, a packet
loss would render the decoder unable to match
the encoder’s prediction after the position of
the lost packet, and the process would derail.
Derailment can be entirely avoided if we only
use pixels within the same packet to form the
prediction.

We use three different pixel encoding or-
ders: serpentine raster scans within a strip
of width two, four, or six. The goal is to



take advantage of higher spatial correlations
between neighboring pixels and increase the
order of the predictor. Two of the prediction
scan patterns are shown in Figure 1. They
proceed from left to right across the width of
the image. After the right edge of the image
is reached a new scan then begins on the left
edge.

Figure 1: Prediction Scan Patterns Used:
(left) serpentine raster within 2-pixel wide
strip (2-Scan) and (right) within 4-pixel wide
strip (4-Scan)

In the strip of width two, the packet begins
with a few bytes that indicate the z and y
spatial coordinates of the pixel A, and the in-
tensity value of the pixel A. Then A is used to
predict B, and that residual is encoded. Next
A and B are used to encode C. For predicting
pixel D, we can make use of a 3rd order predic-
tor: A,B,C are available to predict D. Thus,
after the very beginning of the packet, the pre-
diction will alternate between a 2nd and 3rd
order predictor; the average order of the pre-
dictor is 2.5. In the case of the 4-Scan, within
the strip of width 4, each column makes use of
4th order prediction twice, and 2nd order and
3rd order prediction once each. The average
order of the predictor is 3.25. For the 6-Scan,
the average order of the predictor is 3.5. With
a space-filling curve such as a Peano scan [5],
it is difficult to say exactly what the average
order of the predictor is for the approximately
80 pixels that fit in a packet, since it would de-
pend on where in the scan pattern the packet
begins. However, for a group of 80 pixels, the
Peano scan would allow for prediction orders
ranging from 1 to 7 (permitting only the 8 spa-

tially adjacent neighbors for prediction), with
an average order between 3.23 and 3.51. So,
the 6-scan is essentially equivalent to a Peano
scan in this respect.

Training sets consisting of 9-10 MRI brain
scan images were used to optimize the predic-
tion coeflicients. The images are all of size
256 x 256 with 8 bits per pixel (bpp). The
Wiener-Hopf equations which satisfy the prin-
ciple of orthogonality and thus optimize the
prediction coefficients in a minimum mean-
squared error sense were employed [3]. The
resulting optimized prediction coefficients for
the 2-Scan are shown in Table 1. For exam-
ple, in predicting pixel C, one takes weights
of 0.089 for A and 0.914 for B. Pixel B is
weighted more heavily since it is a horizontal
neighbor, whereas pixel A is only a diagonal
neighbor, thus it is farther away by /2.

Case | Coeff | Value
1 1A | 0.089
1B 0.914

2 2A 0.721
2B -0.522

2C 0.800

3 3C 0.209
3D | 0.774

4 4C 0.743
4D -0.520

4E 0.824

Table 1: 2-Scan Optimized Prediction Coeffi-
cients

The optimized prediction coefficients were
then used to generate a residual training se-
quence from the original training sequence.
A Huffman code for this residual training se-
quence was then generated. It is assumed that
the Huffman codebook for this family of med-
ical images is stored in advance by both the
encoder and the decoder.

The Huffman encoded image was then
placed into ATM packets of 53 bytes. Five
bytes are assumed to be used for header in-
formation, and 48 bytes are available for the
image data. Each packet begins with the row



and column position of the first pixel in the
packet followed by the actual value of the
first pixel. This first pixel becomes the seed
value for the prediction sequence within the
packet. By including this initial information,
each packet becomes self contained (indepen-
dently reconstructable). Additionally, each
packet has equal importance a priori. In the
event of lost packets, the missing pixel values
are estimated by linearly interpolating from
the surrounding reconstructed values.

Depending on where in the scan pattern
the new packet begins, the standard predic-
tion cases may not apply to the initial pixels
in the packet because the pixels normally used
in the standard cases may now be in the end
of the previous packet. Repeated first order
prediction was used for the initial pixels until
a standard case was reached.

When using a variable length code, the
codewords do not typically completely fill the
entire 48 byte packet. There is wasted space
at the end of the packet which gets filled with
whatever portion of the next codeword can be
fit in. That is, if there are N bits remaining in
the packet, and the next pixel to be encoded
has a binary Huffman codeword with length
M > N, then we just fill the packet with the
first N of those M bits. Since the code is a
prefix code, these N bits cannot be mistaken
for an actual codeword.

3 Sequential transform

In a second method, we tried subband cod-
ing to decorrelate the image. The sequen-
tial (S) transform, which retains integer coeffi-
cients and has therefore proven useful for loss-
less compression, was performed on both the
rows and columns of the image. The S trans-
form (similar to the Haar transform) gener-
ates a low passed (sum) and high passed (dif-
ference) output. Given a sequence of integers
¢[n],n =0,..., N—1, the low and high passed
outputs are given by:

] = floor (c[?n] + ;[Qn + 1]) 1)
h[n] = ¢[2n] — c[2n + 2] (2)
forn=0,...,N/2—1.

Applying the S transform first to the rows
and then to the columns results in the im-
age being divided into four subband images.
The variance in the resulting LH, HH and HL
subbands is lower than that in the original im-
age. The variance of the high frequency com-
ponents can be further reduced by predicting
the high frequency values based on low fre-
quency components and previously computed
high frequency components and then generat-
ing the prediction residuals. The prediction is
carried out using equations (3)—(5).

Alln]=1n—-1]—I[nl,n=1,2,... (3)

1
h = Z JAln+1i] — Bhin+1],n=2,3,...

* A (4)
ha[n] = h[n] — floor(h[n] +1/2)  (5)

In [6], a 4th order predictor was found empir-
ically to work well with smooth medical im-
ages, with prediction coefficients as follows:
a_1 = —1/16, ag = 4/16, oy = 8/16, B =
6/16.

The LL subband is a lower resolution ver-
sion of the original image formed from mean
values. This LL subband can be further de-
composed by again applying the S transform
with or without the prediction. This process
can be repeated to create a multiresolution
pyramid structure. When prediction is used
in conjunction with the S transform, it is re-
ferred to as the S+P transform.

The decomposition was tried with one, two,
and three level decompositions. These were
tried both with and without prediction. In
each case, separate Huffman codes were cre-
ated for each level of the pyramid. For exam-
ple, one code was created for the HL{, HH;
and LH; subbands combined. The LL sub-
band was given its own Huffman code.



Each ATM packet again begins with the
row and column position of the starting pixel.
Thus the scheme is tolerant of packets being
received out of order. The sequence in which
the encoded image is packetized consists of
trees following the parent/descendant order.
For example, a parent pixel from the LHj
band is followed by the four descendent pixels
in the L H5 band and the 16 descendents in the
LH; band. Each set of three trees (from LH,
HL, and HH subbands) is preceded by a sin-
gle coefficient from the LL subband. Thereby
each packet carries equal weight, on average.

When two-dimensional prediction as de-
scribed by equations (3)—(5) was used, it
was not possible to make the packets self-
contained for prediction. Too many coefhi-
cients are involved in the prediction; they can-
not be encompassed in a packet of only 48
bytes. When prediction was used only in one
dimension, and only of 2nd order, the pre-
diction could be self-contained, but less com-
pression was obtained. Using the S trans-
form alone, with no prediction, also allowed
the packets to be self-contained.

Regardless of the prediction used, in the
event of a lost packet, the missing coefficients
in the subbands must be replaced by some val-
ues prior to performing the inverse transform.
In this work, we replaced missing coefficients
in any high frequency subband by zero. In
the LL subband, since the values are not zero
mean and they have greater correlation be-
tween neighoring values than do coefficients
in the higher subbands, missing coefficients in
the LL band were linearly interpolated from
the four surrounding coefficients. In practice,
a reconstruction scheme for missing subband
coefficients such as that used in [4] could be
used.

4 Results and Conclusions

The methods were evaluated using two 256 x
256, 8 bpp, MR brain images. The compres-
sion results for the linear prediction cases,
both before and after the packetization pro-

Method | Avg. bpp | bpp | PSNR
Pred. | before | after | after
Order | pack | pack | 1 loss
2-Scan 2.5 502 | 5.31 | 59.6
4-Scan 3.25 4.89 5.21 59.1
6-Scan 3.5 4.85 | 519 | 56.9

Table 2: Compression Results

cess, are shown in Table 2. The difference be-
tween the rates before and after packetization
is caused by the bytes used for the z,y posi-
tion information for the starting pixel, and by
the wasted space at the end of each packet.
Also shown is the peak signal-to-noise-ratio
(PSNR) resulting after reconstruction from a
single lost packet. Each value shown repre-
sents the average over 2500 simulations of lost
packets. One of the test images, with an ex-
ample of a lost packet for the 4-Scan case, is
shown in Figure 2. The corresponding recon-
structed image, shown in Figure 3, is visually
indistinguishable from the original. Table 2
suggests the trend that with a wider strip, a
higher average predictor order can be used,
and this leads to better compression, but also
a wider strip results in lower PSNR in the
event that a packet is lost, since the interpo-
lation for missing pixels is being performed
across a greater distance.

The compression achieved by the subband
decomposition schemes prior to packetization
is shown in Table 3. The column labeled lev-
els indicates the number of levels of subband
decomposition. Several trends are apparent.
Taking the S transform alone does not provide
as much compression as using 1-D prediction
in conjunction with the S tranform. Using
1-D prediction does not perform as well as us-
ing 2-D prediction. Increasing the number of
levels of decomposition results in greater com-
pression, as expected.

The subband methods did not perform
as well as the pixel-domain linear prediction
methods. Some of the subband methods (the
S+P transform involving 2-D prediction, or
involving 1-D prediction and three levels of



Figure 2: Original test image with location of
lost packet for 4-Scan case

decomposition) provided greater compression
than the 4-Scan, however, the coefficients in-
volved in the prediction could not be fit into
48-byte packets. When the prediction was not
self-contained, loss of a single packet could
produce errors which propagated over a large
region, and which were visually objectionable.
The PSNR values were in the range of 30 to
58 dB. The other subband methods (involving
no prediction at all, or involving only one or
two levels of decomposition) could be packe-
tized in a self-contained way; however, these
methods provided no compression advantage
over the simpler pixel-domain linear predic-
tion methods.
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