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Egg-laying is an important phase of the life cycle of the nematode Caenorhabditis 
elegans (C. elegans). Previous studies examined egg-laying events manually. This 
paper presents a method for automatic detection of egg-laying onset using deformable 
template matching and other morphological image analysis techniques. Some 
behavioral changes surrounding egg-laying events are also studied. The results 
demonstrate that the computer vision tools and algorithm developed here can be 
effectively used to study C. elegans egg-laying behaviors. The algorithm developed is 
an essential part of a machine vision system for C. elegans tracking and behavioral 
analysis.  
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 1. INTRODUCTION 

   
 The nematode C. elegans is widely used for genetic studies of development, cell 
biology, and gene regulation.  In particular, because of its facile genetics, well-described 
nervous system, and complete genome sequence, it is particularly well suited to analysis 
of the molecular and cellular basis of nervous system function and development.  The 
ability to functionally map the influence of particular genes to specific behavioral 
phenotypes makes it possible to use genetic analysis to functionally dissect the molecular 
mechanisms underlying poorly understood aspects of nervous system function such as 
addiction, learning and sensory perception.  However, many genes with critical roles in 
neuronal function have effects on behavior that are difficult to describe precisely, or occur 
over time scales too long to be compatible with real-time scoring by a human observer.  
Therefore, to fully realize the potential of C. elegans for the genetic analysis of nervous 
system function, it is necessary to develop sophisticated methods for the rapid and 
consistent quantitation of mutant phenotypes, especially those related to behavior.   
 
 One of the most important behaviors for the analysis of neuronal signal 
transduction mechanisms is egg-laying.  Egg-laying in C. elegans occurs when embryos 
are expelled from the uterus through the contraction of 16 vulval and uterine muscles 
[White et al., 1986].  In the presence of abundant food, wild-type animals lay eggs in a 
specific temporal pattern:  egg-laying events tend to be clustered in short bursts, or active 
phases, which are separated by longer inactive phases during which eggs are retained.  
This egg-laying pattern can be accurately modeled as a three-parameter probabilistic 
process, in which animals fluctuate between discrete inactive, active, and egg-laying 
states [Waggoner et al., 1998]. Egg-laying has also been shown to be coordinated with 
locomotion:  specifically, animals undergo a transient increase in global speed 
immediately before each egg-laying event [Hardaker et al., 2001].   Many 
neurotransmitters and neuronal signal transduction pathways have been shown to have 
specific effects on egg-laying behavior; thus it has become an important behavioral assay 
for the analysis of many neurobiological problems in C. elegans.  
 

Computer vision tools [Baek et al., 2002, Geng et al., 2003, Geng et al., 2004] 
have been used successfully in recording, tracking, defining, and classifying C. elegans 
morphology and locomotion behaviors.  Because egg-laying is infrequent, it is well suited 
for analysis by automated imaging methods.  In previous egg-laying studies [Hardaker et 
al., 2001, Waggoner et al., 2000, Zhou et al., 1998], individual worm movements were 
videotaped and the centroid location and time information were saved at 1s intervals 
during recording. The entire videos were later played back and each video frame was 
examined by expert observers to look for egg and egg onset frames. In this paper, we 
present an algorithm that can identify eggs and egg onsets automatically. In addition, by 
combining this information with the features (locomotion, morphology, behavior, shape) 
extracted using our previously developed computer vision methods, we are able to 
uncover relationships between egg-laying events and other characteristics. 
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2. IMAGE ACQUISITION AND SEGMENTATION 

 

2.1 Acquisition of the Video Images 

 Routine culturing of C. elegans was performed as described [Brenner 1974]. All 
worms analyzed in these experiments were young adults; fourth-stage larvae were picked 
the evening before the experiment and tracked the following morning after cultivation at 
22°. All animals used in this study were from the wild-type Bristol (N2) strain. 

 C. elegans locomotion was tracked with a stereomicroscope mounted with a CCD 
video camera [Baek et al., 2002, Geng et al., 2003, Geng et al., 2004]. The video camera 
used only a single eyepiece, so did not have stereo data; the system is equivalent to a 
conventional bright field microscope. A computer-controlled tracker was used to 
maintain the worms in the center of the optical field of the microscope during 
observation.  To record the locomotion of an animal, an image frame of the animal was 
snapped every 0.5 second for at least five minutes (20 minutes or more in the longer 
recordings).  Among those image pixels with values less than or equal to the average 
value minus three times the standard deviation, the largest connected component was 
found.  The image was then trimmed to the smallest axis-aligned rectangle that contained 
this component, and saved as eight-bit grayscale data.  The dimensions of each image, 
and the coordinates of the upper left corner of the bounding box surrounding the image 
were also saved simultaneously as the references for the location of an animal in the 
tracker field at the corresponding time point when the images are snapped.  The 
microscope was fixed to its largest magnification (50 X) during operation.  Depending on 
the type and the posture of a worm, the number of pixels per trimmed image frame 
varied. The number of pixels per millimeter was fixed at 312.5 pixel/mm for all worms.  

 

2.2. Segmentation and tracking of the Worm Body  

 The segmentation process is presented in [Geng et al. 2004]. Briefly, an adaptive 
local thresholding algorithm with a 5x5 moving window was used followed by a 
morphological closing operator (binary dilations followed by erosions).  A corresponding 
reference binary image was also generated by filling the holes inside a worm body based 
on image content information. The difference between these two binary images provided 
a good indication of which image areas are worm body and which are background.  

 Following binarization, a morphological skeleton was obtained by applying a 
skeletonizing algorithm. Redundant pixels on the skeleton were eliminated by thinning. 
To avoid branches on the ends of skeletons, the skeleton was first shrunk from all its end 
points simultaneously until only two end points were left. These two end points represent 
the longest end-to-end path on the skeleton. A clean skeleton can then be obtained by 
growing out these two remaining end points along the unpruned skeleton by repeating a 
dilation operation.  
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 The tracking algorithm is presented in [Geng et al. 2004], and included automatic 
recognition of the head and tail for the worm inside each frame.    

 

3. MODEL-BASED ATTACHED EGG DETECTION  

 

3.1. Image Analysis 

 To find the possible egg locations and limit the search area for deformable 
template matching, we developed a series of morphological image analysis algorithms to 
limit our search area to around 2% of a typical region that a worm body covers. The 
search is greatly expedited and match accuracy is improved by effectively eliminating 
potential false alarms. The flowchart of attached egg detection is shown in Fig. 1. For 
each input video frame, the worm body is first segmented from the background and the 
skeleton (medial axis) is obtained by algorithms described in [Geng et al., 2004]. The 
laying of an egg changes the shape of the binarized worm body (Fig. 2), which can be 
captured by examining the width profile in the middle part of the worm body in the 
following way. For each pixel in the skeleton pixel list, a straight line traversing the worm 
body that passes through that skeleton pixel is calculated. 71 additional lines are also 
calculated at 5-degree intervals to cover a 360 degree radius. The worm body width at 
that skeleton pixel is the shortest of the 72 lines, which has the shortest distance 
traversing the binary image through the skeleton pixel. In the case where the abnormal 
width is caused by an attached egg, one of the two end point locations on the shortest-
distance line is enclosed by that egg. By abnormal width, we mean a difference greater 
than 7.5 pixels/24 µm between median and peak width in the middle part of the body, 
indicating a potential egg event. Fig. 2A shows the frame immediately prior to an egg-
laying event. Fig. 2B shows the egg-laying frame. The corresponding width profiles are 
shown in Fig. 2C and 2D respectively. The solid curves show the width measured along 
the worm skeletons. The horizontal dotted lines in Fig. 2C and 2D show the median width 
for the middle part of the worm body. A second horizontal line in Fig. 2D shows the 
threshold (7.5 pixels above the median width value) that defines abnormal width. The 
width profile curves are normalized to 300 pixels for comparison. Since egg laying is a 
rare event, over 90% of the frames are quickly passed through and not subject to further 
analysis.  

 Since the abnormal width measure can not tell us which side the egg is on (which 
end point the egg encloses), we extract the boundary from both sides of the worm body 
and consider the side that has higher k-curvature values to be the egg side. This way, the 
search area is constrained to only one side of the worm body and half of the search area is 
effectively eliminated. The process starts with isolating the body area containing the 
abnormal width by cutting off the worm body area that is 25 pixels/80 µm before and 
after using the minimal-distance straight lines passing through the skeleton pixels. This 
cutoff area is 51 pixels/160 µm in medial axis and has four boundaries. Two of the 
boundaries are the straight cutoff lines, and the other two are the two sides of the worm  
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Fig. 1. Flowchart of the egg detection process 
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Fig. 2. Width profile change on egg onset. (A) Gray image right before egg onset. (B) Gray image right 

after egg onset. (C) Width profile of (A). The dotted line is the median value of the middle part of the 
width profile. (D) Width profile of (B). The lower dotted line is the median value of the middle part of 
the width profile. The upper dotted line is 7.5 pixels above the lower dotted line. 

body (Fig. 3B). A boundary following algorithm similar to [Sonka et al., 1999] is then 
used to extract the two boundaries along the sides of the worm body (Fig.3C). The k-
curvature ])7,3[( =k  [Jain 1995] of these two boundaries is calculated, and the boundary 
that has higher (for all 5 k-curvature measurements) values is designated as the egg side. 
If neither boundary has all 5 measurements higher, both sides are checked for eggs. The 
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and )(),,( 1,1 ++ iiii yxyx … are the locations of consecutive points that are k pixels apart 

along the worm side boundaries. 

Once the location of the maximal peak is decided, the search region Ω can be 
obtained by region growing out of the egg side end point to enclose the egg center. A 
directional dilation algorithm such as [Borgefors 1986] can be used for this purpose. Here 
we once again take advantage of the worm skeleton. The directional dilation is achieved 
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by applying two constraints in the dilation process: (1) dilation starts from the end point 
and should remain inside the binary worm body; (2) dilation remains outside skeleton 
area (dilated 4 times from skeleton) (Fig. 3D). The dilation process stops when more than 
200 pixels are inside the region. The directional dilation forces the search area to be 
inside the worm body close to the side boundaries rather than close to the skeleton. The 
final search region Ω (Fig. 3E) typically contains between 200 and 250 pixels for each 
frame. In the case that both sides are checked, a total of 400 pixels is checked. Fig. 3 
illustrates the process. 

A B

C D

E F

 

Fig. 3. Illustration of egg detection image analysis. (A) Gray scale image. (B) The cutoff portion containing egg. (C) Two 
boundaries. (D) The highlighted area (gray) shows dilating the skeleton four times. This area is not searched for eggs. (E) The 
highlighted area (white) shows final search region. (F) Best-fit ellipse. 

 

3.2. Deformable template matching 

 Deformable template matching models have been applied to a variety of image 
recognition and analysis applications with success [McInerney et al. 1996, Jain et al. 
1996,1998, Escolano et al., 1997, Fisker et al. 2000]. They enjoy not only the flexibility 
of a parameterized model, but also can be explained in a Bayesian framework. Even 
though the attached eggs could be partially obscured by shadows and/or by the worm 
body, or partially laid, they share many common characteristics. They tend to have oval 
shapes, and are generally brighter in the middle and darker around the boundary. The eggs 
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are more or less similar in size. These characteristics make them ideal for the elliptic 
deformable templates. 

 In an ideal case, the shape of the attached eggs can be modeled by an elliptic 
model such as the one shown in Fig. 4 with 7 parameters )2,1,,,,,( ρρθbayxv = , where 

),( yx are the coordinates of the center, a  and b  are the semi axes and θ  is the rotation 
angle. Together, these 5 parameters control the geometric shape and location of the inner  

ρ1

ρ2

θ
b

a

[x,y]

 

Fig. 4. Ellipse egg model. 

ellipse that captures the bright center part of the egg. 1ρ  equals the ratio between the area 
of the middle band and the inner ellipse, 2ρ  equals the ratio between the area of the outer 
band and the middle ellipse. The middle band encloses the dark exterior part of the egg. 
The outer band covers part of the worm body and part of  the background. By studying 
the homogeneity of the pixels enclosed, the outer band can be used to suppress noise and 
find the best location for the egg. For example, if ),( yx is mistakenly inside the worm 
body, then the outer band will have similar brightness to the worm body (dark).  If ),( yx  
is in the background area, the outer band has similar brightness to the background (light). 
Half worm body and half background inside the outer band indicate a perfect attached egg 
location. To reduce model complexity, we opt to use a simplified model (Fig. 5) that does 
not have the outer band, and use image analysis to restrain the search area. The outer band 
in Fig 4, is only used for deletion purposes when multiple eggs/peaks are detected. In 
these cases, the pixels inside the entire outer ellipse are deleted and the process is 
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repeated to detect additional eggs. The outer band is also shown in Fig. 3, 7 and 8 to mark 
the location of the best-fit ellipse. There are 6 parameters characterizing the shape of the 
simplified elliptic model ),,,,,( ρθbayxv = . 

  

ρ

θ
b

a

[x,y]

 

Fig. 5. Simplified ellipse egg model. 

 

 From a Bayesian framework, we have 
)(

)|()(
)|(

Ep

vEpvp
Evp = , where E is the 

event that the image contains an egg, and )|( Evp  is the probability density function of 
parameter configuration given that an egg is present. There are many ways to define the 
likelihood function. We propose the following model: 

))}()((exp{
1

)|( vv
z

vEp outin βµαµ +−=     (1) 

where )(vinµ  is the mean pixel value inside the inner ellipse, )(voutµ  is the mean pixel 

value in the band around the inner ellipse (Fig. 5), and α , β are weights to be selected to 
give a proper weight for inside and outside areas. For calculating the mean values, the 
pixel intensities are linearly rescaled to go from –1 to +1. z is a normalization constant to 
ensure that )|( vEp  is a proper probability density of unit area. 

 The egg finding problem can then be modeled as finding the most likely 
parameter configuration optv given that there is an egg in the image. Using a maximum a 

posteriori (MAP) estimator, 
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)(

)|()(
maxarg)|(maxarg

Ep

vEpvp
Evpv

vv
opt ==    (2) 

Since the egg can occur in any orientation and location in the search space, it is 
reasonable to assume a uniform prior. For simplicity, we also assume a  and b  are 
uniformly distributed in a narrow range. So Equation 2 is identical to  

))}()((exp{
1

maxarg)|(maxarg vv
z

vEpv outin
vv

opt βµαµ +−==  (3) 

Furthermore, because z is a constant, Equation 3 is identical to 

)}()(max{arg vvv outin
v

opt βµαµ +=      (4) 

The optimal parameter configuration is the parameter v that maximizes the function 
)()()( vvvU outin βµαµ += .      (5) 

We chose 5.0=α , 1−=β , and 8=ρ by feeding a small set of training samples of egg 

and non-egg values of outin µµ ,  into the Classification and Regression Tree (CART) 

algorithm [Breiman et al., 84]. The final model for locating eggs is as follows: 

For a specified search space Ω in the image, find  

)(maxarg),,,,( vUbayxv
v

optoptoptoptoptopt == θ     (6) 

where )()(5.0 vuvuU outin −= . Notice ]5.1,5.1[−∈U . 

 For every pixel ),( cc yx inside the search region Ω, U  is calculated for each 

configuration with a range ( ]180,0[],1.2,9.1[],6.3,4.3[ === θba ). If optU  is greater than 

a threshold value t, the location ),( optopt yx  is marked as the egg location and an egg is 

declared found. 

3.3. Experimental Results 

 The egg detection algorithm was tested on 1,600 5-minute video sequences from 
16 different mutant types (100 videos for each type) and five 20-minute video sequences 
of wild type animals treated with serotonin, which causes an increase in egg laying. The 
data were collected over a 3-year period by different individuals. A laborious manual 
check found 9,000 frames containing 200 different eggs. These eggs cover a wide variety 
of recording conditions, mutant types, sizes, and shapes. 100,000 non-egg frames were 
randomly selected from the rest of the 800,000 frames as non-egg cases. By applying the 
above algorithm with the decision threshold t varying from –1.5 to 1.5, the performance 
result is shown as a ROC curve [Metz 1978] in Fig. 6 and Table 1.  The True Positive 
fraction is over 98% when the False Positive fraction is 1%. Fig. 7 shows some examples 
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of the locations and best-fit ellipses identified by the algorithm. Some failure examples 
are shown in Fig. 8. 
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Fig. 6. A plot of the receiver operating characteristic (ROC) curve with threshold t varying from –1.5 to 1.5.  
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Rate of non-
egg frames 
detected as egg 
(False positive) 

Rate of egg 
frames detected 
as egg (True 
Positive) 

Rate of egg 
frames detected 
as non-egg 
frames (False 
Negative) 

Rate of non-egg 
frames detected 
as non-egg 
frames (True 
Negative) 

 

 

Threshold t 

0.0967 0.9985 0.0015 0.9033 0.35 

0.0947 0.9983 0.0017 0.9053 0.36 

0.0924 0.998 0.002 0.9076 0.37 

0.0893 0.9977 0.0023 0.9106 0.38 

0.0857 0.9972 0.0028 0.9143 0.39 

0.0814 0.9964 0.0036 0.9186 0.4 

0.0769 0.9961 0.0039 0.9231 0.41 

0.072 0.9955 0.0045 0.928 0.42 

0.0663 0.9946 0.0054 0.9337 0.43 

0.0597 0.9927 0.0073 0.9403 0.44 

0.0524 0.9915 0.0085 0.9476 0.45 

0.044 0.9902 0.0098 0.956 0.46 

0.0354 0.9893 0.0107 0.9646 0.47 

0.027 0.9883 0.0117 0.973 0.48 

0.0194 0.9865 0.0135 0.9806 0.49 

0.0131 0.9851 0.0149 0.9869 0.5 

0.0101 0.9826 0.0174 0.9899 0.51 

0.0082 0.9785 0.0215 0.9918 0.52 

0.0065 0.9729 0.0271 0.9935 0.53 

0.0052 0.9658 0.0342 0.9948 0.54 

0.0042 0.9531 0.0469 0.9959 0.55 

 

Table 1: The false positive, true positive, false negative, and true negative values for part of the ROC curve. 
The boldface row is the final threshold used in the egg onset detection. 
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Features Description 

TLMV10MIN Minimal tail movement in 5 seconds 

TLMV10AVG Average tail movement in 5 seconds 

HDMV10AVG Average head movement in 5 seconds 

TLMVHFMIN Minimal tail movement in 0.5 second 

HDMV10MAX Maximal head movement in 5 seconds 

REVSALTIM Total percentage of time worm stays in reversal position 

HTBRDMIN Minimal head and tail area brightness difference 

HTBRRMIN Minimal head/tail brightness 

BANGCRMIN Minimal whole body area angle change rate 

LNWDRMAX Maximal length to width ratio of the bounding box 

BANGCRAVG Average whole body area angle change rate 

TLAMPMAX Maximal amplitude in the tail area 

AMPMAX Maximal amplitude of worm skeleton wave 

HDTLANMIN Minimal head to tail angle 

Table 2: The features changed significantly 40-second before and after egg onsets. 

Features Description Features Description 

HDMVHFMIN Min head movt. in ½ sec WHRATMIN Min width-to-height ratio of MER 

HDMVHFMAX Max head movt. in ½ sec MAJORMIN Min length of major axis 

HDMVHFAVG Average head movt. in ½ sec AMPRMIN Min amplitude ratio 

HDMV10MAX Max head movt. in 5 sec AMPRMAX Max amplitude ratio 

HDMV10AVG Avg. head movt. in 5 sec ANCHRMAX Max angle change rate 

HDMV20MAX Max head movt. in 10 sec ANCHSMAX Max angle change standard deviation 

HDMV20AVG Avg. head movt. in 10 sec CANGCRMIN Min angle change rate in middle sect. 

TLMV10MAX Min tail movt. in 5 sec CANGCRMAX Max angle change rate in middle sect. 

TLMV10AVG Avg.  tail movt. in 5 sec CANGCRAVG Avg. angle change rate in middle sect. 

TLMV20AVG Avg. tail movt. in 10 sec BANGCRMAX Max body angle change rate 

RV20MAX Max reversals in 10 sec HDAMPMIN Min amplitude in head 

RV20AVG Avg. reversals in 10 sec TLAMPMAX Max amplitude in tail 

TOTRV Total reversals in 5 minutes CNTAMPMIN Min amplitude in center 

REVSALTIM Total percentage of time worm 
stays in reversal position 

AVGAMPMIN Avg. amplitude 

TAILBRMIN Min tail brightness HDTLANMAX Max. head to tail angle 

TAILBRAVG Avg. tail brightness TLANGMAX Max. head angle change rate 

Table 3: The features which changed significantly between 40 seconds before an egg onset and 40 seconds 
starting from a randomly selected non-egg frame.
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Fig. 7. Some best-fit results of deformable template matching. Some figures are rotated for plotting. (A) A 
fully laid egg in perfect condition. (B) A half laid egg. (C-D) Stacked eggs,  identified by repeating the 
search. (E-F) Two eggs laid together with close distance. 
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Fig. 8. Some non-egg frames that are identified as eggs. 
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4. EGG ONSET DETECTION AND BEHAVIOR STUDY 

4.1. Egg onset detection 

Egg detection algorithms can be readily incorporated into a broader scheme for egg 
event onset detection (identifying the frames in which the egg first appears). Fig. 8 shows 
one algorithm to accomplish it. The main functions of the egg onset detection routine are 
to use the single frame egg detection result for a sequence. First, we decide whether the 
current egg is a newly laid or a previously laid egg (worms sometimes crawl back to 
previous eggs). This is accomplished by maintaining a list of all existing locations of 
eggs. When the new location is not on the list, an egg onset event is detected. Secondly, 
there are occasions when multiple eggs are laid at the same time. Also, there are cases 
when multiple width abnormalities are detected for a single frame due to multiple newly 
laid and previous eggs that remain near the worm body. The egg onset detection routine 
runs the single frame egg detection routine repeatedly in the search regions after the 
detected egg area (outer ellipse in the template model) is removed from the image in each 
run. This way, clusters of eggs can be detected. The egg onset detection routine also runs 
the abnormal width detection routine repeatedly to find out new search regions to detect 
all the eggs attached to the worm body. 
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Fig. 9. Flowchart of egg event onset detection 
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The onset detection algorithm was tested on 25 videos of 20-minute recordings (500 
minutes, 60,000 total frames). These recordings include 5 serotonin videos previously 
used for the egg detection test and 20 new normal wild type videos. By setting the 
thresholds conservatively (t=0.5) and declaring an egg onset has occurred if one or more 
new eggs is detected in three or more consecutive frames, our algorithm is able to pick up 
all 88 egg onsets in one pass through the videos. There are 131 false alarm onset frames 
for the entire data set of 60,000 frames. The false alarm onsets are easily eliminated by 
inspecting each onset frame visually. Among the 88 onsets detected, there are 6 onsets 
that are delayed from true onsets by 1,2,3,4,10,18 frames respectively. 

4.2. Behavior Study 

 Previous study [Hardaker et al. 2001] indicated significantly increasing 
locomotion activity prior to egg onset. We studied the behavior changes before and after 
55 wild type egg onsets (a fresh 10-hour recording) detected by our onset detection 
algorithm. The behavioral characteristics can be summarized by extracting features 
proposed by the feature extraction system [Baek et al. 2001, Geng et al. 2003, Geng et al. 
2004]. For each feature, we looked for a significant difference in that feature before and 
after the onset frame by using the non-parametric rank sum test on paired data. For each 
of the 55 eggs, we paired the data from 40 seconds before the onset frame with data after 
the onset frame. The 253 features examined include 131 morphological features 
(thickness, fatness, MER, Angle Change Rate, etc), 75 speed features (min, max and 
average speed over 1,5,10,20,30, 40sec, etc), 35 texture features (head, tail, center 
brightness, etc) and 12 other behavioral features (rate of reversals, omega shape, looping, 
etc).  Out of these 253 features, 14 were found to be significant at the .01 significance 
level as shown in Table 2. We also considered the possibility that some features may be 
significantly different both before and after egg laying compared to the values for a worm 
that is not near an egg-laying time. So we also looked at the paired data where the values 
from 40 seconds before an egg-laying onset were paired with the values from an equal 
number of frames starting from a randomly selected non-egg frame, and similarly where 
the values from after an egg-laying onset were paired with the values from an equal 
number of frames starting from a randomly selected non-egg frame. There were 32 (Table 
3) comparisons that were significant at the .01 significance level for before and 32 after 
respectively. We note that, by random chance alone, out of 253 comparisons, we would 
expect to see 2.5 features to show a significant difference at the .01 significance level. 

 Most of the features found to be significantly different were related to speed, 
confirming earlier results that were determined manually. In particular, we found that the 
global centroid movement, as well as the local movement of the tail and head, were all 
significantly larger before the onset compared to after (see Fig. 10). Previous results only 
considered global movement. Local head movement is often related to foraging behavior. 
We also found some differences in brightness parameters. Due to the multiplicity of 
comparisons being made, these remain to be verified when further data are collected. 

5. CONCLUSION  

 We have presented a computer analysis method for attached egg detection and egg 
onset event detection.  The testing results of egg detection on 100,000 frames and 200 
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Fig. 10. Velocity change 125s before and after egg onset. The velocity is a moving average of 10s interval. 
(A) Centroid velocity. (B) Head velocity. (C) Tail velocity. 

eggs from a variety of mutant types and recording conditions illustrate the effectiveness 
of our proposed algorithm. The behavior study of egg onsets confirms the result from 
previous studies and shows promise for new findings.   

 The algorithm proposed is flexible to suit different needs. First, the abnormal 
width criteria (currently 7.5 pixels/24 µm) can be adjusted accordingly if prior knowledge 
of certain egg size and shape for a particular mutant is present, or the purpose is to obtain 
a rough idea of whether an egg is present. Secondly, the same applies to the decision 
criterion t according to the expectation of the false positive and false negative rate. Third, 
the current algorithm was applied on videos with frame rate of 2 Hz. The same algorithms 
can be applied to videos that have different frame rates. With increased frame rates, we 
anticipate an improved detection result. 
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 With more accurate and complex computer vision systems [Baek et al. 2002, 
Geng et al. 2003, Geng et al. 2004] being developed, we anticipate that many more 
behavior features will be discovered. Therefore, we will be able to combine the automatic 
egg onset detection and behavior studies together and explore the temporal correlation 
between egg-laying and other behavioral characteristics more effectively.  Moreover, the 
ability to automatically detect egg-laying events will make it possible to use these 
correlations between other behaviors and egg-laying, which previously could only be 
assayed through time-consuming human analysis of videotapes [Hardaker et al., 2001], as 
automatically-evaluated features for use in phenotype classification and clustering studies 
[Geng et al., 2003]. 

 More generally, egg-laying has historically been an extremely useful assay for 
genetic analysis of diverse aspects of neuromuscular function.  For example, egg-laying 
has provided a behavioral measure for the activity of the Go/Gq signaling network in 
neurons and muscle cells [Bastiani et al., 2003] and for neuromodulation by serotonin, 
acetylcholine, and neuropeptides [Trent et al., 1983; Weinshenker, et al., 1999; 
Waggoner et al., 2000].  The egg-laying assays typically used in genetic studies are 
generally indirect measures of overall egg-laying rate, and consequently allow limited 
inference about the functions of specific mutant genes in the behavior.  Quantitative 
assays of the temporal pattern of egg-laying can in principle make it possible to 
distinguish effects on different egg-laying signal transduction pathways [Waggoner et al., 
1998; Waggoner et al., 2000].  The automated methods for egg detection described here 
should greatly facilitate these more detailed behavioral analyses.  
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