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Abstract. The estimation of end-to-end distortion plays a key role in
error-resilient video coding and perceptual quality control. The tradi-
tional end-to-end distortion estimation methods are mainly based on the
MSE or MAD values, which sometimes poorly reflect subjective percep-
tion. This paper proposes a novel method to model the end-to-end quality
degradation based on the SSIM index. Using factors extracted from the
encoder, we build the models by considering the source distortion, the
error-propagated distortion and the error-concealment distortion. These
models can be used in joint source-channel coding with rate-distortion
optimization as well as error-resilient video coding based on perception.
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1 Introduction

When compressed videos are transmitted through error-prone networks, the
video quality at the receiver side can be highly affected by packet losses in ad-
dition to compression artifacts. In a packet-loss environment, transmitting the
hybrid-coded video such as H.264 often suffers from error propagation, which
may lead to the well-known drifting phenomenon [1]. Fortunately, estimating
the end-to-end distortion in the error-resilient coding of the encoder can help to
control the errors.

A generalized end-to-end approach has been proposed for video communi-
cation over packet-switched networks [2], in which a set of global distortion
metrics were derived in terms of MAD. Further, a recursive optimal per-pixel
estimate (ROPE) algorithm was proposed to estimate the end-to-end distortion
at the pixel level [3]. Zhang et al. [4] proposed a concise and efficient end-to-
end distortion model, in which the overall distortion is categorized into source,
error-propagated and error-concealment distortion items.

All the previous models calculate the distortions based on MSE or MAD. How-
ever, sometimes these objective measurements poorly reflect perceptual qual-
ity, especially for error-concealed videos. Recently, many objective metrics were
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proved effective for video quality evaluation, such as SSIM [5], JND [6] and VQM
[7] etc. Due to the accuracy of these full-reference metrics, many new methods of
quality evaluation or prediction are proposed based on them in terms of different
applications. In particular, a theoretical framework for end-to-end video quality
prediction for MPEG sequences based on the SSIM index was proposed in [8].
The temporal variations of video quality also have different effects on global
video quality, which is explored using the PSNR and the SSIM indices in [9]. A
network-based model for video packet importance based on the VQM index is
proposed in [10], which considers the effects of both compression artifacts and
packet losses. Some rate-distortion (R-D) optimized techniques for video coding
have been proposed based on the SSIM metric recently [11, 12], yet the channel
distortion is not considered.

SSIM is widely considered to be more reasonable in measuring the perceptual
visual quality than the MSE. We aim to apply the SSIM measurement in the
error-resilient video coding. The challenge is how to estimate the SSIM index at
the encoder side without the decoded lossy video. In this paper, we propose a
model to predict the end-to-end perceptual quality degradation for compressed
videos transmitted in an error-prone environment. We explore the relationship
between the errors in the pixel domain and the visual quality degradation at the
decoder side, and then predict the perceptual quality scores (SSIM) based on
factors extracted from the encoder. We consider the quality scores at the mac-
roblock (MB) level so that the perceptual quality of each MB can be improved
accurately.

The organization of this paper is as follows. Section 2 describes the idea of the
end-to-end distortion estimation at the MB level, based on the algorithm of the
SSIM index. In Section 3, the test sequences and coding configuration are given,
and a new method to model the end-to-end quality degradation of H.264 videos
at the MB level is proposed. Section 4 presents the final models, followed by the
analysis and validation of the experiments. Section 5 concludes the paper.

2 End-to-End Quality Evaluation at the MB Level

Based on the previous method [4], we take the end-to-end distortion as the
comprehensive effect of the source distortion, the error propagation distortion
and the error-concealment distortion, in which the estimate of pixel distortion is
derived by simulating the decoding process multiple times in the encoder. The
problem is that MSE or MAD value is not always consistent with the perceptual
quality degradation.

Wang et al. proposed the SSIM index [5] to measure the subjective similarity
between the original and distorted images. The SSIM index for a still image is
derived based on similarities of local luminance, contrast and structure between
a reference image and a distorted image :

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(1)
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where μx and μy are the means of the luminance values of the original block x
and the reconstructed block y, and σx and σy are the standard deviations. σxy is
the cross correlation, and C1 and C2 are constants used to avoid instability when
the means and variances are close to zero. In implementation, a sliding window
moves pixel by pixel horizontally and vertically through all the rows and columns
of the image until the bottom-right corner is reached. The SSIM index of the
whole image is obtained by averaging the local SSIM indices calculated using a
sliding window of 11× 11 .

To calculate the SSIM quality score for each MB, we have conducted the
experiment with different window sizes and different block sizes. The statistics
show that a 11 × 11 sliding window within a MB balances the subjective per-
ception and computational complexity very well. The values of SSIM are in the
range [0, 1], where 0 corresponds to the worst quality, and 1 is the best quality.
Considering the influence of the chroma, the final SSIM index is obtained by
formula (2):

SSIM = 0.8SSIMY + 0.1SSIMCR + 0.1SSIMCB (2)

Where SSIMY denotes the SSIM index values of the luminance component,
SSIMCR and SSIMCB denote the SSIM values of the color components.

3 End-to-End Distortion Modeling

3.1 Test Sequences and Coding

The SSIM-based end-to-end distortion is modeled based on six coded video se-
quences (Foreman, News, Akyio, Coastguard, Hall and Mobile) which are se-
lected according to various levels of detail and motion types. To cover various
source distortions, we encode each sequence with six different QP values (20,
24, 28, 32, 36, 40). H.264 JM10.2 is adopted as the encoder, with the coding
conditions shown in Table 1.

Table 1. Coding and sequence parameters

settings

Spatial resolution QCIF(176*144)
Duration (frames) 100
Compression standard H.264
GOP structure IPPP...
Frame rate 30
QP values 20, 24, 28, 32, 36, 40
Rate control off
Packet losses 0.03, 0.05, 0.1, 0.2
Concealment frame copy
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To explore the effect of packet losses on the quality of decoded videos, we
randomly drop packets from each sequence until the target packet loss rate is
obtained. We assume the packets of the first frame are conveyed reliably. For
each packet loss rate, each H.264 stream will be decoded as 30 sequences for
30 realizations of the lossy channel. The mean of the quality scores of the 30
sequences is calculated to build the model.

3.2 Modeling Approach

In order to predict the MB-level SSIM scores of the videos, we use a generalized
linear model (GLM) [13], which can be represented as:

g(p) = γ +

P∑

j=1

xjβj (3)

where g(.) is the link function which is chosen depending on the distribution.
The parameter p is modeled as a function of P factors (xj), which denotes the
SSIM score we are trying to predict. γ is the constant term, and β1, β2, . . . βP are
the coefficients of the factors. The coefficients and the constant term are usually
unknown and need to be estimated from the data. Given N observations, one
can fit models using up to N parameters. The simplest model (Null model) has
only one parameter: the constant γ. On the other hand, a full model can have
as many factors as observations.

Five factors are extracted from each MB of each frame at the encoder side:
(1) Ds: the estimated source distortion of each encoded MB.
(2) Dep: the estimated error-propagated distortion of each MB from the ref-

erence frame.
(3) Dec: the error-concealment distortion for each MB.
(4) Qstep: the quantization step (six values) for each sequence.
(5) PLR: the setting of packet loss rate (four values) for each sequence.
Ds, Dep and Dec are calculated based on the method in [4], and the last two

items can be recursively calculated after a frame has been encoded. As discussed
in the literature, the estimation algorithm of Dec depends on the method of error
concealment at the decoder side. To reduce the computation complexity, here
we use the method of frame copy as referred in the JM decoder. The overall
end-to-end distortion of a block can be taken as the sum of that from each pixel.
We extend the block size from 4 × 4 to 16 × 16 by summation, as we aim at
predicting the video quality at the MB level.

Figure 1 gives the distributions of the first three factors and the SSIM scores
for the sequence Foreman when PLR equals 20%. Similar distributions are ob-
tained for other conditions of all the sequences. We use ”log” as the link func-
tion in model building based on the approximately Poisson distribution of SSIM
scores in Figure 1, where the expression of the equation is

g(p) = log(p) (4)
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Fig. 1. The histogram distributions of (a) Ds (b) Dep (c) Dec (d) SSIM scores

Four-fold cross-validation is used to determine a model of the right size. In
cross-validation, the data set is divided into four parts. Then three parts are used
to train the model, and the resulting model is tested on the fourth part which
was left out of the training. This process is repeated four times, with a different
part left out each time. Factors are added into a model in order of importance.
The MATLAB function ”sequentialfs” is used, which performs sequential feature
selection. It selects factors by sorting the importance from all the factors, based
on the mean squared error between predicted values and actual values. The
selection proceeds until there is no improvement in prediction.

4 Experiment Results

4.1 Final Models and the Analysis

As the first exploration, we would like to see if the end-to-end estimation function
in [4] is still valid for SSIM scores instead of MSE. So Ds, Dep, Dec and PLR
are selected as the factors, and the interaction terms are also added in model-
building. With six sequences of 100 frames (99 P frames), we set six QP values
and four PLRs as shown in Table 1. There are 99 MBs per frame. We extract
the factors for each MB, so there are more than 1 million data totally (N = 6 ×
6 × 4 × 99 × 99 =1411344). We randomly select one-tenth of the data to build
the models in case of overtraining.
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Figure 2 shows on the y-axis the correlation between the SSIM scores pre-
dicted by our model and the actual SSIM scores. Here each actual SSIM score
is the mean of thirty SSIM scores from the thirty lossy channels given a certain
PLR. The number of factors included in the model is on the x-axis, in order of
importance. Table 2 gives the factors in order of importance. We can see that Ds

is the most important factor which makes the correlation increase significantly.
It is reasonable that the source distortion due to quantization is the main cause
for quality degradation of the decoded video. PLR*Ds and PLR*Dec are also
useful factors in the model with negative coefficients, which means larger values
lead to lower SSIM scores and worse quality of the MBs. The impact of packet
losses will grow bigger with the increasing PLR as expected. Unlike the con-
clusion in the literature [4], Dep is not an important factor and is excluded in
the final model. The reason is that for an intra MB or a skip MB, there is no
distortion of error propagation from quantization during encoding, Dep will be
zero, as a refreshed value. While the distortion from packet loss results in the
main quality degradation, and the recursive estimating calculation of Dec has
reflected the quality impairment of the error propagation.
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Fig. 2. Correlation between predicted scores and actual SSIM

The first model is built for all MBs, including intra, inter and skip ones.
However, the characteristics of the three types of MBs are quite different. As
concluded in paper [14], the SSIM −Qstep relation model of I frames in H.264
can be modeled accurately with a linear function. That means the SSIM score
of an intra MB can be predicted simply using one factor: Qstep. Therefore, we
carry out this experiment only for Inter MBs. Since Qstep can reflect the source
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Fig. 3. Correlation between predicted scores of the new model and actual SSIM

distortion as a known parameter in the encoder, we replace Ds with Qstep to
build the new model. Figure 3 gives, on the y-axis, the correlation between the
predicted SSIM scores and the actual SSIM scores. Table 3 gives the factors
and corresponding coefficients in order of importance. We can see that Qstep
plays a key role in this model presenting the same impact as Ds. PLR*Dec is
the second important factor having a similar effect as in the first model. Dep is
also included with the negative coefficient, which means there is the distortion
of error propagation from quantization error for an inter MB besides the error-
propagated distortion from packet losses. With these factors (Qstep, Dec, Dep

and PLR), this model gives a better predictive result with lower computational
complexity. Also we can simplify this model further by excluding the last five
factors since the improvement on the correlation is not evident.

Table 2. Factors in order of importance for Model-ALL

Order Factors Coefficients

Intercept 1 -7.54e-002
1 Ds -4.27e-006
2 PLR*Ds -5.19e-006
3 PLR*Dec -1.78e-006
4 Dec 3.13e-007
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Table 3. Factors in order of importance for Model-INTER

Order Factors Coefficients

Intercept 1 4.28e-001
1 Qstep -5.10e-001
2 PLR*Dec -8.85e-006
3 Dep -1.78e-006
4 PLR*Qstep -4.22e-001
5 PLR 2.98e-001
6 Dec 1.24e-007
7 PLR*Dep 3.38e-006

4.2 Validation of the Proposed Models

To validate the proposed models, we perform the experiment with another two
sequences: Suzie and Container, which are not included in the model-building
process. The videos are encoded by randomly setting a coding parameter QP
with JM10.2 encoder. Similarly, given a PLR, a compressed stream suffering
from packet losses by 30 channels is decoded as 30 lossy videos. Figure 4 shows
the decoded videos from one channel. The actual SSIM score of each MB from
the video is calculated by averaging the 30 lossy versions from 30 channel re-
alizations. On the other hand, using the proposed model (Model-ALL), we can
predict the SSIM score of the same MB by means of the effective factors as
shown in Table 2.

Figures 5 and 6 show the estimated and the actual SSIM scores for video
Suzie when QP is 40 and PLR is 5%. Figures 7 and 8 give the comparison for
video Container when QP is 36 and PLR is 20%. To demonstrate the varying
SSIM scores clearly, we randomly pick two segments of 200 MBs (about 2-frame-
length for QCIF format). We can see that there are good correlations between
the estimated SSIM scores by our models and the actual SSIM scores for both
videos. Note that the distributions of the SSIM scores change with the different

Fig. 4. The decoded lossy videos: Suzie and Container
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Fig. 5. The estimated SSIM scores vs. the actual SSIM scores of 200 MBs for video
Suzie

8000 8050 8100 8150 8200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MBnum

S
S

IM

SuzieQP40 P5

 

 

estSSIM
realSSIM

Fig. 6. The estimated SSIM scores vs. the actual SSIM scores of another 200 MBs for
video Suzie
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Fig. 7. The estimated SSIM scores vs. the actual SSIM scores of 200 MBs for video
Container
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Fig. 8. The estimated SSIM scores vs. the actual SSIM scores of another 200 MBs for
video Container
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video contents as expected. For Suzie, the motion is well-distributed in the whole
frame, so the quality scores fluctuate in a certain range, quite regularly. The
quality scores change with an approximate period of 11 MBs, that means the
quality change of each horizontal row of MBs is quite similar as expected. While
there are some evident drops for the quality scores of Container as shown in
Figures 7 and 8. There is a periodicity about 100 MBs for these scores besides
the slight local fluctuations. The reason is that, given a certain QP and one
PLR, the quality degradation of videos happens mainly in the regions with
more details or large motion, i.e. the moving ship in this picture. Thus the MBs
in this region get lower scores while the MBs of other regions (like water surface)
get higher scores. Similar results can be achieved for other settings of QP and
PLR. In short, the proposed model can predict the end-to-end distortion of the
videos well. Although the estimated SSIM scores can not reach the peak or valley
points of the actual scores, as shown in Figures 5 and 6, the variation trend is
very similar. That means the dynamic range of SSIM values is compressed to
some extent. However, our model is supposed to be used in joint source-channel
rate-distortion optimization and error-resilient video coding. On this condition,
we consider the relative quality of a MB given different coding modes, rather
than the absolute scores. So the model is valid to predict and control the video
quality at the MB level.

5 Conclusion

A novel method of modeling the end-to-end video quality degradation at the
MB-level has been proposed in this paper. Considering the varying QP values
and multiple packet loss rates, we have built GLM models to predict the percep-
tual quality degradation of H.264 videos based on the SSIM index. The source
distortion, the error-propagated distortion and the error concealment distor-
tion contribute to the actual quality degradation at the decoder side, especially
for inter MBs. By estimating these distortions in the encoder, given a certain
packet loss rate, we can predict the end-to-end quality using our models. The
experiment results show that the proposed models give a good performance on
perceptual video quality estimation. These models can be used to improve the
perceptual quality of videos in joint source-channel rate-distortion optimization
and error-resilient coding.

References

1. Stuhlmuller, K., Farber, N., Link, M., Girod, B.: Analysis of video transmission
over lossy channels. IEEE J. Select. Areas Commun. 18, 1012–1032 (2000)

2. Wu, D., Hou, Y.T., Li, B., Zhu, W., Zhang, Y.-Q., Chao, H.J.: An end-to-end
approach for optimal mode selection in Internet video communication: theory and
application. IEEE J. Select. Areas Commun. 18(6), 977–995 (2000)

3. Zhang, R., Regunathan, S.L., Rose, K.: Video coding with optimal inter/intra-
mode switching for packet loss resilience. IEEE J. Select. Areas Commun. 18(6),
966–976 (2000)



128 Y. Wang et al.

4. Zhang, Y., Gao, W., Lu, Y., Huang, Q., Zhao, D.: Joint source-channel rate-
distortion optimization for H.264 video coding over error-prone networks. IEEE
Trans. on Multimedia 9(3), 445–454 (2007)

5. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment:
From Error Visibility to Structural Similarity. IEEE Trans. Image Processing 13(4),
600–612 (2004)

6. ATIS: Objective Perceptual Video Quality Measurement Using a JND Based Full
Reference Technique. Alliance for Telecommunications Industry Solutions Techni-
cal Report, T1.TR. 75-2001 (2001)

7. Pinson, M., Wolf, S.: A new standardized method for objectively measuring video
quality. IEEE Trans. on Broadcasting 50(3), 312–322 (2004)

8. Koumaras, H., Kourtis, A., Lin, C.-H., Shieh, C.-K.: A Theoretical Framework for
End-to-End Video Quality Prediction of MPEG-based Sequences. In: Proc. 3rd
Int’l Conf. on Networking and Services, Athens, Greece (2007)

9. Yim, C., Bovik, A.C.: Evaluation of temporal variation of video quality in packet
loss networks. Signal Processing: Image Communication, 24–38 (2011)

10. Wang, Y., Lin, T.-L., Cosman, P.: Network-based model for video packet impor-
tance considering both compression artifacts and packet losses. In: IEEE Globecom
2010 (2010)

11. Ou, T.-S., Huang, Y.-H., Chen, H.H.: SSIM-Based Perceptual Rate Control for
Video Coding. IEEE Trans. on Circuits and Systems for Video Technology 21(5)
(2011)

12. Wang, S., Rehman, A., Wang, Z., Ma, S., Gao, W.: Rate-SSIM Optimization For
Video Coding. In: IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP (2011)

13. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and
Hall (1989)

14. Cui, Z., Zhu, X.: Subjective Quality Optimized Intra Mode Selection for H.264 I
Frame Coding Based on SSIM. In: The Sixth International Conference on Image
and Graphics (2011)


