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ABSTRACT

If a low dynamic range (LDR) image or video is inverse tone

mapped to a higher dynamic range, there can be banding arti-

facts in the output high dynamic range (HDR) image or video.

We design a selective sparse filter to remove the banding ar-

tifacts and at the same time preserve edges and details. The

filter is able to reduce other artifacts, such as blocky artifacts

which are due to the compression of the LDR image/video.

The filter is computationally efficient.

Index Terms— Sparse filter, high dynamic range, false

contour removal, debanding, visual enhancement

1. INTRODUCTION

In recent years there is a growing interest in HDR images and

videos as well as HDR displays. HDR, represented in 12+ bit-

depth (i.e., 12 or more bits per color component), provides a

wider range of brightness and a larger color gamut than the

traditional 8-bit LDR, and is thus closer to the human visual

system. However, the majority of existing displays only sup-

port 8-bit image and video content. In order to make the HDR

content compatible with typical LDR displays, the HDR con-

tent is usually converted to LDR by some tone mapping oper-

ator (TMO). Conversely, even today there is limited content

captured in HDR, since HDR devices are not widely spread

yet. So it is necessary to apply an inverse tone mapping op-

erator (iTMO) to the LDR content for presenting on HDR

displays. This area has been investigated in [1, 2, 3, 4].

It is observed that the HDR generated by iTMO usually

suffers from false contours which are also referred to as band-

ing artifacts and ringing artifacts. It happens especially when

iTMO is a one-to-one mapping function. Banding artifacts

usually occur in smooth gradient regions. The cause of the

artifacts is that 8-bit LDR has at most 256 codewords (there

are only 220 codewords in Rec. 601 [5] and Rec. 709 [6]),

and after mapping the HDR also has 256 codewords. But

the 16 bit-depth HDR has a total of 65,536 codewords. Lack

of codewords in the inverse tone mapped HDR results in the

banding artifacts which are visually annoying.

To remove the banding artifacts, i.e., debanding or de-

contouring, some suggested dithering [7, 8, 9], but the out-

put is often not visually pleasant either. Those works aim at

producing the output at the same bit-depth as the original im-

age, so there is no new codeword available. But in our case,

only a few codewords have been utilized in the HDR image

generated by iTMO, so there is extra room to generate new

codewords to smooth the banding artifacts. In [10], this is

achieved by linear interpolation in the banding area after the

banding width is identified by median filtering. The banding

area can be detected by the algorithm in [11]. Some peo-

ple apply low pass filters to increase codewords. Daly and

Feng [12] proposed to predict and reduce false contours by

low pass filtering and quantization. In [13], false contours are

reduced by 1D directional smoothing filters whose directions

are orthogonal to the false contours. This method requires

high computational complexity to detect false contours.

In this paper, we propose a selective sparse filter which

combines smooth region detection and banding reduction. It

was originally designed to remove the banding artifacts, but

later we found it can also reduce some coding artifacts, such

as blocky artifacts. The properties of the inverse tone mapped

HDR are exploited in the filter design. The selection of some

parameters of our filter is based on a piecewise iTMO which

is proposed in [4] and [14]. But our filter can be extended

to other iTMO algorithms with a few changes. We aim at

implementing the filter in hardware.

The rest of the paper is organized as follows: In Sec. 2

we describe our proposed filter and discuss the parameter se-

lection. In Sec. 3, we show the experimental results. Sec. 4

concludes the paper.

2. PROPOSED EDGE-AWARE SPARSE FILTER

Banding artifacts usually occur in the regions of small gra-

dient, and the artifacts appear stepwise. Fig. 1a shows an

example of vertical banding in the right part of the image.

We take one row of pixels and plot the values in Fig. 1b.

The values are normalized to [0, 1]. The steps are where the

banding artifacts lie. To remove the artifacts, we want to

smooth the area by adding more codewords between each

step. One simple method is to apply a low pass filter. A tra-

ditional dense 2D FIR filter can be represented as: y[m,n] =
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Fig. 1: Example of banding artifacts.
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(2u+1)(2v+1)

∑u
i=−u

∑v
j=−v x[m+ i, n+ j], where x[m,n]

is the input signal at row m and column n, and y[m,n] is

the corresponding output signal. The filter averages a total of

(2u+1)(2v+1) input pixels centered at x[m,n]. The 2D fil-

tering is equivalent to applying a 1D (2v + 1)-tap horizontal

filter and a 1D (2u + 1)-tap vertical filter sequentially which

is much more efficient. For simplicity, we use the 1D filters

with the same number of taps and define only the horizontal

1D filter in the following.

In order to remove banding, we have to apply a filter

whose span is wide enough. Fig. 2c shows a signal with

many steps. Fig. 2d-2f show the outputs of the dense filter

with different number of taps. The 9-tap filter is not able to

remove the false contours as there are still many steps left.

The 29-tap filter works better. The banding is almost gone

when the filter has 49 taps. When the span of the filter is not

wide enough, many consecutive pixels of the output will have

the same codeword, because the pixels taken for averaging

are all on the same step. If the step size is uniform, the false

contours can be completely smoothed out when the span of

the filter is 2w − 1, where w is the width of each step. That

means, when the step is wide, we would have to increase the

span of the filter, i.e., increase the number of taps of the filter.

To implement the filtering in hardware, we need to put each

row of pixels into one line buffer for vertical filtering. That

is, the filtering module would need one line buffer for each

tap of the filter. The cost of the dense filter is too high.

2.1. Sparse filter

From the observations above, we learn that to remove band-

ing, the key is to get samples from different steps. A sparse

filter would be more efficient to achieve that. A simple 1D

sparse FIR filter is defined as: y[n] = 1
2u+1

∑u
i=−u x[n+si],

where si is the distance from the original pixel to the sam-

pled input signal. The number of taps is 2u + 1. Fig. 2b

shows a 5-tap sparse filter with the same span as the 13-tap

dense filter in Fig. 2a. The origin is marked by blue. Fig. 2g

shows the filtering results by a 5-tap sparse filter whose span

is 29. Though the output of a sparse filter has some ripples

thus would not be as smooth as the output of a dense filter

with enough taps, the interpolated codewords between each

(a) 13-tap dense filter (b) 5-tap sparse filter, span = 13
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Fig. 2: Performance of dense filter and sparse filter.

two steps can be sufficient to make the banding unnoticeable

to human eyes. Though the memory traffic is increased, the

required memory size of the sparse filter is much smaller than

the dense filter, because the 5-tap sparse filter only requires 5

line buffers, while the dense filter requires more than 29. We

also need fewer adders and multipliers for the sparse filtering.

From our preliminary tests, we found that 5 taps are usu-

ally enough for the sparse filter to remove the banding arti-

facts. Note that increasing the span of the sparse filter may

make the signal smoother, but would not increase the cost.

2.2. Edge-aware selective filter

It is clear that sparse FIR filters can help remove the false con-

tours, but they can also blur true edges and remove details.

Edge-preserving filters, such as the bilateral filter [15, 16, 17]

and guided filter [18], can preserve edges, but they are dense

filters essentially which require high memory cost. To address

this issue, we propose to apply the sparse filter selectively: we

want to apply the filter to the smooth areas only. On one hand,

banding is only observed at smooth areas. On the other hand,

smoothing a smooth area would not cause a loss of many de-

tails even if there is no banding in the area.

Fig. 3 shows the flowchart of our proposed filter. The

original image means the HDR image mapped from the LDR

image by iTMO. For each pixel x[n] in the original image, we

sample three pixels on its left and right side respectively. The

positions of the sampled pixels are denoted as n+si where i ∈
{−3,−2,−1, 1, 2, 3}. For simplicity, x[n] is also denoted as

x[n+ s0] where s0 = 0. We compute the difference between

the central pixel x[n] and each of the sampled pixels x[n +
si] where i �= 0. If the absolute value of the difference is

below a threshold Δ, we determine that the sampled pixel has

a similar value to the central pixel. If the central pixel and

all the sampled pixels have similar values, we determine the
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Fig. 3: Flowchart of proposed edge-aware sparse filter.

area as a smooth area, and we apply the sparse filter to the

central pixel. The sparse filter takes only five inputs: x[n +
s−2], x[n+ s−1], x[n], x[n+ s1], x[n+ s2]. The output y[n]
is the average of them. However, if the difference between

the central pixel and any of the sampled pixels is greater than

the threshold, there may be edges or texture in the area. Then

the sparse filter is not applied, and the original pixel value

remains unchanged: y[n] = x[n].
This selective filter combines edge detection and sparse

filtering. It only requires one line buffer for the horizontal

filtering and seven line buffers for the vertical filtering. The

selection of the threshold Δ for the selective sparse filter is

critical to the debanding performance. Note that the filter-

ing process only takes five pixels, and the extra two pixels

are for edge detection. As mentioned above, banding artifacts

are in the smooth regions, and would not occur near object

boundaries. Therefore, we do not want to involve pixels near

boundaries. In the following, we first describe how to select

the threshold, then explain why the extra two pixels are nec-

essary for the edge and details preservation.

2.2.1. Adaptive threshold

The threshold Δ indicates how much difference we want to

tolerate in the decision process. If Δ is too small, we will only

average pixels with small differences, and thus small areas

would be filtered. In other words, the banding artifacts may

not be removed. If Δ is too large, the filter would be applied

to areas with sharp edges and details, which leads to blurred

edges and loss of details.

One important observation of the banding areas is that the

codewords of the corresponding pixels in the LDR image are

very similar to each other. The difference of the LDR code-

words between the neighboring pixels is 1 or 2 most of the

time. After the inverse tone mapping, the difference between

these neighboring pixels shown on a HDR display becomes

larger and that results in the banding artifacts. Since the input

of our filter is the inverse tone mapped HDR, Δ can be related

to the mapping function.

Assume that the codeword of a pixel in LDR is b where

0 ≤ b ≤ 255 for an 8-bit LDR. The corresponding in-

verse tone mapped HDR codeword is T (b). The difference

between two neighboring HDR codewords is denoted as

dT (b) = |T (b + 1) − T (b)|. In the HDR image, if an area is

relatively smooth, we expect the difference among the nearby

pixels to be roughly within the range of a small number times

dT (b). If a pixel is in a textured area, the difference among

the nearby pixels could be much larger than that.

Since our selection of Δ depends on the iTMO function,

we would like to select one iTMO algorithm from the existing

algorithms for discussion. The piecewise polynomial iTMO

in [4] is selected. Assume that there are K segments in the

iTMO curve in total. The pivot points, i.e., the points at the

boundary of segments, are denoted as sk where 1 ≤ k ≤ K.

The differential function dT (b) is partitioned into K +1 seg-

ments. The mapping slope of each segment can be very dif-

ferent, so selecting different thresholds is necessary for dif-

ferent segments. An empirical result shows that the following

gives a good trade-off between the removal of banding and

the preservation of texture and edges. When the codeword of

the central pixel is T (b), the threshold

Δ = α · max
sk≤T (b)<sk+1

{dT (b)}, (1)

where α is positive. In other words, the threshold depends on

which segment the pixel lies in. The threshold is set to the

maximum differential of the segment multiplied by a factor

α. In our test, it usually works well when α is 2 or 3.

Though the discussion above is based on the piecewise

iTMO, this method can be extended to other iTMO algo-

rithms. The differential function dT (·) of any one-to-one

mapping can be built. The point is that we only allow averag-

ing a few codewords. So the threshold can be set to α ·dT (b),
or α ·max0≤b<255{dT (b)}.

2.2.2. Extra samples for edge preservation

We include seven pixels for edge detection but only take five

pixels for filtering. The reason why we add two more samples

for detection than for filtering is that we observed false ring-

ing introduced to the output image when only five pixels are

used for both detection and filtering. The false ringing usually

occurs near edges.

We again use the patch in Fig. 1a to explain why it hap-

pens. It is clear there is an edge between the dark and bright

regions, and there are banding artifacts in the bright region.

Our goal is to preserve the dark region and the edge, and

smooth the banding on the right part. We set the filter param-

eters s2 = −s−2 = 14, s1 = −s−1 = 7, and set the threshold

Δ to 2H where H is the maximum difference between each

two steps. Fig. 4a shows the mid region of Fig. 1b. We want

to determine whether we want to apply the sparse filter to the

pixel marked by blue circle. The range of [x[n]−Δ, x[n]+Δ]
is marked by dash lines.

Now assume that we only sample the four pixels marked

by green crosses, and we determine to apply the filtering when

the four samples have similar values to the central pixel. In
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Fig. 4: Comparison between 5-sample and 7-sample edge de-

tection.

this case the filtering condition would be satisfied. However,

the leftmost green cross sample is actually at a transition area.

That sample is an outlier, whose value is slightly different

from the others though the difference is still within the thresh-

old. The average of the five pixels would be slightly lower

than the original value which brings an undershoot (marked

by the red circle in Fig. 4c). In the image, it will appear as a

faint false ringing. It may not be very noticeable on a LDR

display, but it can be annoying on a HDR display.

Now we consider two more samples which are marked by

red triangles in Fig. 4a, and we apply the filter only when all

the six samples have similar values as the central pixel. In

this case, the difference between the central pixel and the left-

most sample will exceed the threshold, so the filtering will not

be applied. For the pixel marked by a blue circle in Fig. 4b,

all the samples marked by green crosses and red triangles are

within the threshold. We apply the sparse filtering by aver-

aging only the five central pixels, not all seven pixels. So we

exclude the leftmost sample which is an outlier from the aver-

aging. The filtering result is shown in Fig. 4d. The undershoot

is not introduced, the banding artifacts are smoothed, and the

edge is well preserved. Therefore, we prevent introducing

new artifacts by sampling two more pixels to probe if there is

an edge nearby.

3. EXPERIMENTAL RESULTS

The proposed filter is verified by visual evaluation of ten sam-

ple video clips frame by frame on the Dolby Pulsar HDR

monitor. One example of the performance is shown in Fig. 5.

There are severe banding artifacts in the sky above the sun in

(a) original HDR (b) debanded HDR

Fig. 5: Results. Note that banding artifacts in (a) are more

noticeable on a screen than on paper.

the original image Fig. 5a. We apply the proposed filter with

s1 = −s−1 = 12, s2 = −s−2 = 24, s3 = −s−3 = 27,

and α = 3. The filtered image is shown in Fig. 5b. The ar-

tifacts are smoothed out, and the edges and details are well

preserved. We apply the filter in the YCbCr gamma color

space. Note that this filter can be applied to a single color

component (e.g., luma), or more components (e.g., chroma).

In our tests with many HD videos, we found it best to use

a symmetric filter (s1 = −s−1, s2 = −s−2, s3 = −s−3),

and to set equal distance between neighboring samples in the

central five pixels (s2 = 2s1). The span of the filter depends

on the width of banding. When the banding is very wide, we

need to increase the span of the filter. The farthest samples

on both ends are several pixels away from the next samples.

We obtained good results when s3 = s2 + 5 for nine out of

ten video clips. For the other clip, we found it better to set

s3 = s2 + 3 so that more pixels could be filtered.

An interesting observation is that if there are coding ar-

tifacts (like blocky artifacts) in the video due to low bit rate

compression, our algorithm is able to remove, or at least re-

duce them. That is because pixels in the regions with blocky

artifacts usually have similar values, and our filter can smooth

them out. Note that pixels in those regions can have different

gradient directions, so the algorithms using directional fea-

tures to detect and reduce artifacts may not work well. Our

algorithm does not depend on the direction or gradient, so it

is also effective for the blocky artifacts.

4. CONCLUSION

We proposed an edge-aware selective sparse filter to remove

banding artifacts and reduce some coding artifacts in inverse

tone mapped HDR videos and images. Meanwhile, the filter

is able to preserve edges and details. It combines edge detec-

tion and filtering. No banding map or filtering map is required

to store in memory. We described how to select the threshold

Δ using the inverse tone mapping function. The filter can be

implemented in hardware efficiently. We provided empirical

settings of the filter parameters. How to select the parameters

automatically would be interesting to explore in the future.
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