K-nearest neighbor smoothing (KNN)

In a rectangular window, choose the K pixels which are closest in value to the center pixel, and average those.

3×3 window \(K = 6 \)
7×7 window \(K = 24 \)

Note: All the spatial avg. filters do badly for salt & pepper noise

Median Filtering

The median of a discrete sequence \(a_1, a_2, \ldots, a_N \) for \(N \) odd is that member of the seq. for which \(\frac{N-1}{2} \) elements are smaller or equal in value, and \(\frac{N-1}{2} \) elts are larger or equal in value.

1D MF: sliding window w/ odd number of pixels.

In the output sequence, center pixel in window replaced by the median of the pixels in the window.

\[
\underbrace{a_1 \leq a_2 \leq \ldots \leq a_{\frac{N+1}{2}} \leq \ldots \leq a_{\frac{N-1}{2}}}_{\text{\(\frac{N-1}{2} \) elements}} \quad \uparrow \quad \underbrace{a_{\frac{N-1}{2}} \leq a_N}_{\text{\(\frac{N-1}{2} \) elements}}
\]

If the window size is even, median is the average of the 2 values in the middle. Can analyze only a little:

\[
\text{med}\{Kf(j)\} = K \text{med}\{f(j)\}
\]

\[
\text{med}\{K + f(j)\} = K + \text{med}\{f(j)\}
\]

But:

\[
\text{med}\{f(j) + g(j)\} \neq \text{med}\{f(j)\} + \text{med}\{g(j)\}
\]

\(\leftarrow \) not additive
Input

3-pt avg filter

3-pt median filter

\[\text{med}\{1,1,1\} = 1 \]

single

triple

triangle

3\times3 \text{ MF}

\begin{align*}
\text{unit 1D step } \ u(n) &= \begin{cases}
1 & n > 0 \\
0 & \text{else}
\end{cases} \\
\text{unit 2D step } &= \text{unit corner} \\
\ u(n,m) &= u(n) u(m) = \begin{cases}
1 & n > 0, m > 0 \\
0 & \text{else}
\end{cases}
\end{align*}

3\times3 \text{ MF takes out corner}

5\times5 \text{ takes out more}

Far from origin, unchanged

\rightarrow \text{ The median filter does NOT affect steps or ramps}

\rightarrow \text{ Pulses less than one-half the window width are gone}

2D Median Filtering

Extend to 2D by using a 2D window of some desired shape

Name some root signals for the 3\times3 MF:

infinite step edge, checkerboard

line of width 2 in any direction
1. **Filter Shape**: can alter shape – cross, or approx. to octagon

One can think of these as an intermediate size of MF, but more profound effect is that cross preserves horiz/vert lines of width 1. Doesn’t help for diagonally oriented lines.

2. **Separable MF**: Filter 1-d vertically then horizontally. This will preserve 2d steps.

3. **Repeated MF**: What happens if you apply 3×3 averaging filter repeatedly? → const. gray

What happens w/ repeated MF? Textured areas may get leveled to an even gray → image looks patchy. But edges still located correctly. → root signal

4. **Sparse MF**: The size or spatial extent of a MF, and the number of pixels used in the computation, are related but not identical.

Sparse 5×5 completely eliminates 3×3 noise blob, whereas a 3×3 square MF (same #ots) only eats away corners.
5. **Weighted MF**:

\[
\begin{array}{c|c|c|c|c}
1 & 1 & 1 & 1 & \text{(a)} \\
3 & 3 & 3 & 1 & \text{(b)} \\
1 & 1 & 1 & 1 & \text{(c)} \\
1 & 1 & 3 & 1 & \text{(d)} \\
1 & 3 & 1 & 1 & \text{(e)} \\
\end{array}
\]

\[\Rightarrow \text{Filter mask specifies the \# of times a pixel's graylevel is repeated in the ordering}\]

Consider this image: \[\begin{array}{c}
0 & 0 & 0 & 0 & 0 \\
5 & 5 & 5 & 5 & 5 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}\] 3x3 MF: \[\begin{array}{c}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
5 & 5 & 5 & 5 & 5 \\
\end{array}\] \[\Rightarrow \text{Line is preserved}\]

(b) preserves vertical edges
(c), (d) preserve diagonal lines
(e) preserves both 1-pixel wide vert & horiz lines
ALL of them eliminate single outlier

6. **Breakdown Value**: of a filter is defined as the percentage of outlier pixels for which the filter is no longer able to remove the outlier noise.

\[\text{Regular MF: breakdown value } = 50\%\]
\[\text{Weighted MF: smaller breakdown value } \Rightarrow \text{less noise attenuation}\]

7. **Alpha-trimmed Mean Filter**: Mean Filt does poorly for outlier noise, well for Gaussian. Med Filt is other way around. Some advantages of both: Alpha-trimmed mean: remove p pixels from each end of the ordered pixels, take mean of the rest.

\[a_1 \leq a_2 \leq \ldots \leq a_{n-1} \leq \ldots \leq (a_{n-1} \leq a_n)\]
8. Other Order Statistic Filters:

midpoint filter \(= \frac{1}{2}(\min f_i + \max f_i) \)

avg of max & min graylevels in the ordered set

Good filter to remove uniform noise

maximum filter \(= \max \text{ value } \) (remove pepper noise)

minimum filter \(= \min \text{ value } \) (remove salt noise)

Median, Mean, Weighted Median, Midpoint Filters are all unbiased filters: average brightness of the filtered image remains the same.

Max & Min are biased filters.

9. Implementation:

Filter

Midpoint \(A_0 = \frac{1}{2} \quad A_{N-1} = \frac{1}{2} \quad \text{all others zero} \)

Max \(A_{N-1} = 1 \quad \text{all others zero} \)

Min \(A_0 = 1 \quad \text{"} \quad \text{"} \quad \text{"} \)

Median \(A_{N-1} = 1 \quad \text{"} \quad \text{"} \quad \text{"} \quad \text{for } N \text{ odd} \)

Alpha-trimmed mean \(A_i = \frac{1}{N-2p} \) for \(i = p \) to \(N-p-1 \)

mean \(A_i = \frac{1}{N} \) for all \(i \)

Inefficient way to compute mean \(\rightarrow \) don't need sort

Also faster to find min, max individually \(\rightarrow \) don't need to sort the whole set of numbers