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ABSTRACT

The small screen of mobile devices and bandwidth limitations
of communication networks greatly affect users’ quality of
experience (QoE), especially for soccer video, which is char-
acterized by rapid movement and small objects. In this pa-
per, a Compressed-domain Soccer Video Quality assessment
Model (CSVQM) is proposed based on the fact that soccer
video includes three distinct scene types, which cause differ-
ent concerns for viewers. To reduce complexity and oper-
ate in real-time, all model parameters are derived from the
compressed video stream without resorting to complete video
decoding. The validation shows that CSVQM significantly
outperforms conventional models in terms of accuracy, con-
sistency, and complexity.

Index Terms— Mobile video, QoE, modeling, soccer
video, scene-aware, compressed-domain

1. INTRODUCTION

In mobile video, small viewing size and transmission band-
width limitations significantly affect a user’s quality of expe-
rience (QoE), which is particularly important for fast-moving
sports. Soccer video has rapid movement and small objects,
which often cause unpleasant viewing experiences. However,
due to limited network resources, it is necessary to optimize
video quality based on user requirements and network condi-
tions. Therefore, quality assessment for soccer video is indis-
pensable to improving users’ QoE.

Full reference metrics, such as PSNR, SSIM [1], and MS-
SSIM [2] are widely used as QoE metrics, and rely on full ac-
cess to the original video. No reference metrics operate with-
out any reference video. Pixel-domain no reference metrics
use information from reconstructed video to estimate users’
QoE at the receiving terminal [3]. However, pixel-domain
metrics are unable to meet the requirements for low complex-
ity and real-time operation. For networked video applications,
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compressed-domain no reference metrics are often preferred
as a low complexity, real-time solution [4] , [5] to predict the
video quality and optimize end-to-end transmission.

Many video quality assessment metrics consider video
content characteristics and content types, such as news,
sports, animation, music, comedies and movies [6], [7]. Soc-
cer, like many other sports videos, has distinctive typical
scene types. However, it is different from many non-sports
video [8], and common quality assessment methods cannot
predict soccer video quality accurately because they ignore
the influence of different scene types.

In this paper, a Compressed-domain Soccer Video Quality
assessment Model (CSVQM) is proposed. The main contri-
butions of this paper can be summarized as follows: 1) The
different reactions of audiences to close-up, medium shots,
and long shots, are considered in our model to precisely
estimate QoE. 2) Our QoE model is a compressed-domain
method. The model factors are extracted and estimated di-
rectly from the compressed video streams. Compared with
pixel-based methods which must fully decode the video, the
complexity of our proposed model is substantially reduced.
As a result, our QoE model is applicable to transmission ap-
plications with stringent real-time requirements.

The rest of the paper is structured as follows. Section
2 introduces the testing methodology. Section 3 presents a
compressed-domain soccer video quality assessment model.
Section 4 provides validation of the proposed model, and con-
clusions are drawn in Section 5.

2. TESTING METHODOLOGY

2.1. Test tool and test videos

The Samsung A5 is used as test equipment to represent a gen-
eral Android mobile phone. The size of the screen is 5 inches,
and the display resolution is 1280×720.

We selected 24 high resolution and high bitrate soccer
videos of length 8-10 seconds as sources from close-up,
medium shot and long shot soccer videos; each scene type
includes eight videos. Fifteen of the 24 (five of each scene
type) were used to establish the QoE model, as shown in Fig-
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Fig. 1. Soccer video contents. The first group: Close-up soccer videos (Close1 to Close5). The second group: Medium shot
videos (Medium1 to Medium5). The last group: Long shot videos (Long1 to Long5).

ure 1. The other nine (three of each scene type) were used for
validation.

To produce the test videos, high-resolution (1280×720)
videos were converted into low-resolution (848×480,
576×320) videos with the same aspect ratio. Afterwards,
the videos were encoded at three spatial resolutions (SR) and
seven different bitrates (BR) (listed in Table 1), at 25 fps, us-
ing an H.264 coder in High Profile with an IPPP Group of Pic-
ture (GOP) structure of size 10. An appropriate starting QP
was set for each version. We obtained 504 video sequences in
total, with 315 used to establish the QoE model and 189 used
to validate it.

Table 1. Encoding parameters
SR BR(kb/s)

320p 256 320 384 512 640 768 1024
480p 384 512 640 768 1024 1280 1536
720p 768 1024 1280 1536 2048 2560 3072

2.2. Procedure

Our test method used a stimulus procedure based on Abso-
lute Category Rating (ACR). Before the video quality test,
we explained the purpose of the experiment and the rating
principles to the participants. Forty non-expert participants,
between 20 and 30 years old, including 20 women and 20
men, were involved in the experiment. Eleven levels of MOS
were used as the rating scale.

Because of the huge number of test video sequences, par-
ticipants and video sequences were divided into two groups.
Each participant assessed twelve contents, 252 video se-
quences in total. To reduce fatigue effects, each test was
divided into three time periods with a 5-minute break in be-

tween. Half of the participants were asked to rate a fixed video
set in the first time period, and the other half rated the same
video set in the last time period. The distributions of these two
rating sets are not significantly different (p>0.05) based on a
t-test, which revealed there is no significant impact of display
order or fatigue on MOS for our testing setup. Test videos
were shown in full screen. Participants rated each video se-
quence immediately after viewing. Tests were performed in a
laboratory room with typical office lighting conditions. The
subject sits on a chair and the viewing distance is 40 cm from
the mobile phone which stands on a table. It took approxi-
mately an hour to complete 252 video sequences.

The ratings were used to calculate the MOS of each video
sequence. There is inherent variability amongst participants
in the quality judgment of a given video. The standard devia-
tion and 95% confidence interval of each MOS are calculated,
to determine the degree of uncertainty of the participants’ rat-
ings.

3. COMPRESSED-DOMAIN SOCCER VIDEO
QUALITY ASSESSMENT MODEL

3.1. Model predictors

3.1.1. Video coding parameters

We select the spatial resolution and bitrate as the predictors of
video coding parameters.

LBR (Logarithm Bitrate): As predictor, we use a value
LBR = log10(BR) instead of bit rate. Figure 2 shows the
relationship between the LBR and QoE of the video sequence
Close1. QoE increases with the increase of LBR in the be-
ginning and remains the same when the LBR is large enough.
Even at high bitrate, the highest QoE cannot be achieved be-
cause of the limitation of the resolution.

SSR (Scaled Spatial Resolution): QoE increases with the
increase of resolution when the coding bitrate is large enough.



Fig. 2. Impact of LBR and SSR on QoE.

We selected resolutions that are commonly used on the net-
work: 320p, 480p, 720p. Each spatial resolution was scaled
by 720p, so the SSR values are 0.4, 0.6, and 1.

From Figure 2, only video with 720p resolution and high
coding bitrates can achieve Grade nine.

3.1.2. Content characteristic parameters

Video content is strongly related to the compression com-
plexity that the encoder encounters when encoding video se-
quences with a large amount of detail, complex textures and
complex movements [9]. Video with higher compression
complexity leads to a lower QoE than other videos under
the same coding conditions. Hence, we employed Residual
pixel values, Intra 4×4 MBs Proportion in I frames and Mo-
tion Vector Magnitude in P frames to represent the richness
of spatial texture and the motion characteristic of the video
sequence.

RPVI (Residual Pixel Values in I frame): For intra mode,
the residual pixel values are used for prediction; therefore, the
residual pixel values can predict the spatial statistical depen-
dencies. The prediction RPVI is subdivided into 4×4 blocks.
In our study, RPVI is calculated using the quantized coeffi-
cients and QP as follows [6]
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where Z represents the matrix of quantized coefficients, and⊗
indicates that each element of the left matrix is multiplied

by the element in the same position in the right matrix. Here,
HT means the Hadamard transform; in the Intra 16×16 mode,
the DC coefficients of 4×4 blocks form a new matrix, which
will be Hadamard-transformed, and EMB is the estimated en-
ergy of an MB. Meanwhile, SI is the set of MBs in the I
frame, and N is the number of pixels we used to calculate
RPVI.

IMPI (Intra 4×4 MBs Proportion in I frame): The In-
tra 4×4 mode is based on predicting each 4×4 luma block
separately; it works well in coding complex texture. Hence,
the average proportion of MBs encoded in Intra 4×4 mode is
employed to represent the richness of spatial texture together
with RPVI.

MVM (Motion Vector Magnitude): The MV of inter-
coded MBs in P frames can be employed to evaluate the mo-
tion characteristic [10]. We use the magnitude of the MV; a
large MVM indicates rapid movement, which is related to a
low QoE. MVM is calculated by

MVM =

∑Nt

j=1

√∣∣∣MV j
x

∣∣∣2 + ∣∣∣MV j
y

∣∣∣2
Nt

, (3)

where MV j
x and MV j

y denote the horizontal and vertical val-
ues of an MV, and Nt is the total number of MVs.

3.1.3. Semantic scene parameters

Soccer video can be divided into three categories. Close-up
soccer scenes focus on the facial expressions and the move-
ment of the upper bodies of the players. Medium shots always
have rapid movement showing players shooting or running
with the ball. Long shots show half the field or the full field.

ST (Scene Type): ST, including STcloseup, STmedium,
STlong, is used to denote whether a video belongs to the scene
type of close-up, medium shot or long shot. Figure 3 illus-
trates users’ QoE for these three scene types at three spatial
resolutions. Figure 3(a) shows that long shot videos have the
lowest perceived quality at 768k and 1024k. For long shots,
viewers require high definition because of the small fore-
ground objects. High resolution is not necessary for close-ups
because of the large foreground object. Figure 3(b) and 3(c)
show that medium shots nearly always have the lowest per-
ceived quality among the three scene types. That is because
medium shot soccer videos have rapid movement. Hence, we
conclude that both background proportion and motion activity
intensity have a great influence on the users’ QoE, so we use
them to represent the characteristics of the three scene types.

To represent the background proportion and motion activ-
ity intensity of the video, we introduce Horizontal and Ver-
tical Motion Vectors Proportion (HVMVP) and MVM. While
shooting long shots, the camera usually moves either hori-
zontally or vertically; hence, the proportion of horizontal and
vertical MVs can be utilized to approximate the proportion of
background. Horizontal MVs include all MVs within the an-
gle range of 345◦ to 15◦ and 165◦ to 195◦ and vertical MVs
include all MVs within the angle range of 75◦ to 105◦ and
255◦ to 285◦, as shown in Figure 4. HVMVP is calculated as

HVMVP =

∑Nsq

j=1 (N
j
hor +N j

ver)/N
j
fra

Nsq
, (4)



Fig. 3. Impact of video scene types on QoE: (a) 320p; (b) 480p; (c) 720p.

Fig. 4. Horizontal and vertical MVs

whereN j
hor andN j

ver are the number of horizontal or vertical
MVs in frame j, N j

fra is the total number of MVs in frame j,
and Nsq is the number of frames in a sequence.

Table 2 shows the background proportion (BP), HVMVP
and MVM for example video contents. We calculated the pro-
portion of background MBs in the whole picture. From Ta-
ble 2, we observe that HVMVP can approximately represent
the proportion of background. A video sequence with a large
or a small value of HVMVP can be determined to be a long
shot or a close-up. When the value of HVMVP is neither large
nor small enough, MVM, which reflects the intensity of tem-
poral change, is selected to resolve this situation. When the
MVM of a video sequence is not large enough, we can dis-
criminate it as a non-medium shot.

Table 2. BP, HVMVP and MVM for example video contents
Video contents BP(%) HVMVP(%) MVM

Close1 68.56∼79.50 63.21 12.44
Close3 67.92∼74.97 79.58 35.55
Close4 74.91∼75.60 75.27 2.38

Medium1 82.77∼86.98 84.87 51.50
Medium2 76.86∼89.06 71.89 51.15
Medium3 69.68∼89.12 80.87 67.77

Long1 94.97∼95.72 93.82 12.40
Long2 91.63∼98.23 92.38 45.12
Long4 93.96∼95.22 84.59 6.07

Fig. 5. Soccer scene classification method
Our soccer scene classification method is shown in Fig-

ure 5. We set the thresholds based on our experiments. TLong ,
TClose and TLong−Close are set to be 88%, 71% and 81%, re-
spectively. TMedium is set to 36, 40, and 44 for 320p, 480p,
and 720p, respectively. Using these thresholds, this soccer
scene classification method achieves 98.02% accuracy for all
504 video sequences. Even if the method fails to classify the
soccer video scene in some cases, the scene type we deter-
mined for the soccer video still has the characteristics that
have impact on the users’ QoE.

3.2. Model establishment

The next step of QoE modeling is to map the relationship be-
tween QoE and the various parameters. We use LBR to be our
main QoE prediction parameter and the MOS to be the out-
come factor. According to the relationship between MOS and
LBR shown in Figure 2, the QoE can be formulated as

QoE = α×

{
− exp (

min(LBR− β, 0)
γ

)
2
}
, (5)



where α, β, γ are empirical parameters. The α parameter es-
timates the maximum value of QoE. From Figure 2, we know
that α varies under different spatial resolutions, spatial tex-
tures and scene types. So α is defined as

α = 9 + log(SSR)× (a+b× IMPI) , (6)

and it is affected by SSR, IMPI and ST, and achieves Grade 9
(highest MOS for an encoded video) only when SSR=1.

Parameter β estimates the LBR value above which viewers
can no longer have better QoE. β is defined as

β = c+ d× SSR+ e×MVM, (7)

where β is affected by motion and coding factors, including
SSR and MVM. We use a linear parameter function to repre-
sent the relationship between β and QoE predictors because
of its simplicity and accuracy.

Parameter γ estimates the slope factor of the model. It
is mainly affected by the spatial textures and coding factors,
including IMPI, RPVI and SSR. We also use a linear parame-
ter function to represent the relationship between γ and QoE
predictors. So parameter γ is defined as

γ = f + g × SSR+ h×RPVI + i× IMPI. (8)

Consequently, the QoE is formulated as

QoE = (9 + log(SSR)× (a+b× IMPI))

×
{
− exp

(
min(LBR−(c+d×SSR+e×MVM),0)

f+g×SSR+h×RPVI+i×IMPI

)2}
.

(9)

We obtain the model coefficients shown in Table 3. Coef-
ficient a has three values depending on the three scene types.
The R2 value of 0.9765 indicates a good fit.

Table 3. Coefficient values
a b c d e

0.8881/2.1419/2.8420 3.5012 2.5821 0.6749 2.7722×10−3

f g h i
0.6588 -0.2486 -2.5145×10−4 -0.3465

4. VALIDATION OF THE PROPOSED MODEL

4.1. Model validation over other videos

We validate CSVQM over 189 test videos mentioned in Sec-
tion 2.1. Figure 6 shows the performance of CSVQM. The
x and y axes represent the model-predicted MOS and the ob-
served MOS, respectively. These scatter plots are distributed
near the diagonal line. This indicates that, using CSVQM, the
perceived soccer video quality can be accurately measured.

To further evaluate the performance of the model, four
statistical evaluation metrics suggested by the VQEG were
employed. The Pearson linear correlation coefficient (PCC),

Fig. 6. Scatter plot of observed MOS and predicted MOS for
validation

the Spearman rank order correlation coefficient (SROCC), the
Root Mean Square Error (RMSE) and the Outlier Ratio (OR)
are computed between the observed values and the model-
predicted values. The RMSE is used to test the accuracy of
the models; smaller RMSE means greater accuracy. The PCC
is considered as a metric to measure the linearity between two
variables. The SROCC indicates monotonicity between two
variables. The values of PCC or SROCC are between -1 and
1; a higher absolute value means a relatively stronger lin-
ear relationship or monotonicity. The OR tests consistency;
a smaller value of OR means the predictions of the model are
more consistent. These metrics do not take into account the
subjective uncertainty.

To provide more insight into the subjective test, we eval-
uate the model performance using the epsilon-insensitive
RMSE (RMSE∗) statistical metric, which considers the un-
certainty of the subjective scores [11]. This is a RMSE
that considers the confidence interval of the individual MOS
scores. It is calculated like the traditional RMSE, but small
differences to the target value are not counted. This RMSE∗

considers only differences related to an epsilon-wide band
around the target value. This epsilon is defined as the 95%
confidence interval of the subjective MOS value. As shown
in Figure 6, the PCC and the SROCC each has a value close
to 1, RMSE is 0.439, RMSE∗ is 0.213 and OR is 0.041.

4.2. Prediction performance comparison

We compare the prediction performance of CSVQM with sev-
eral other metrics, including the pixel-domain full reference
video quality metric SSIM [1], the pixel-domain no reference
VMOS model [3], the compressed-domain no reference met-
ric P.1202.1 [4] and the hybrid model in [12]. The perfor-
mance evaluation in terms of PCC, SROCC, RMSE, RMSE∗

and OR is provided in Table 4. The improvement of our
model in terms of accuracy, consistency, linearity and mono-
tonicity compared to other models is statistically significant.



Table 4. Performance Comparisons of Model

Metric PCC SROCC RMSE OR RMSE*
SSIM [1] 0.876 0.880 0.920 0.137 0.752

VMOS [3] 0.912 0.927 0.637 0.084 0.498
P.1202.1 [4] 0.943 0.903 0.646 0.086 0.454
Hybrid [12] 0.961 0.942 0.562 0.055 0.329

CSVQM 0.984 0.981 0.439 0.041 0.213

4.3. Model complexity comparison

Model complexity includes complexity for decoding and
for obtaining QoE predictors. To implement CSVQM, we
only need partial decoding of the encoded video and obtain
compressed-domain information from the bitstream, which
reduces the decoding complexity compared to the FR, pixel-
domain NR and hybrid metrics. The complexity for obtain-
ing the QoE predictors of our model is macroblock level.
To obtain the QoE predictors, we only need to calculate the
information of each macroblock. However, to obtain the
predictors of SSIM, VMOS, and the hybrid model in [12],
we need to calculate pixel-level information, which requires
256 (16×16) times as many computations as the macroblock
level. Hence, the computational complexity of our model is
much lower.

5. CONCLUSION

We propose a compressed-domain soccer video QoE assess-
ment model that considers three scene types (close-up, long
shot, medium shot). All the model prediction factors can be
obtained from the compressed domain without resorting to
full decoding, enabling real-time use to predict users’ QoE
in advance. Residual pixel values, Intra 4×4 MBs Propor-
tion in I frames and Motion Vector Magnitude in P frames are
employed to represent video spatial texture and motion char-
acteristics. Soccer scene types are carried through into our
model because of viewers’ different ratings of different scene
types. To distinguish the soccer scene types, a classification
method is proposed, by calculating MVs. The compressed-
domain soccer video quality assessment model maps the re-
lationship between the multiple QoE prediction factors and
MOS.

Our CSVQM can achieve excellent prediction perfor-
mance; the improvement of our model in terms of accuracy,
consistency, linearity and monotonicity compared to other
models is statistically significant. Additionally, our model
has low implementation complexity in the aspects of decod-
ing and obtaining QoE predictors.
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