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ABSTRACT OF THE DISSERTATION

Topics in Network Communications

by

Jillian Leigh Cannons
Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2008

Professor Kenneth Zeger, Chair

This thesis considers three problems arising in the studyebfork communica-
tions. The first two relate to the use of network coding, wthie third deals with wireless
sensor networks.

In a traditional communications network, messages aréeileas physical com-
modities and are routed from sources to destinations. N&teading is a technique that
views data as information, and thereby permits coding betweessages. Network coding
has been shown to improve performance in some networks. ftedpic considered in
this thesis is the routing capacity of a network. We formakfine the routing and coding
capacities of a network, and determine the routing capdgrtyarious examples. Then,
we prove that the routing capacity of every network is achlids and rational, we present
an algorithm for its computation, and we prove that everiorat number in(0, 1] is the
routing capacity of some solvable network. We also show ttatcoding capacity of a
network is independent of the alphabet used.

The second topic considered is the network coding capaanitigiua constraint on
the total number of nodes that can perform coding. We prosae ékiery non-negative,



monotonically non-decreasing, eventually constantprati-valued function on the non-
negative integers is equal to the capacity as a functioneohtimber of allowable coding
nodes of some direct acyclic network.

The final topic considered is the placement of relays in wsglsensor networks.
Wireless sensor networks typically consist of a large nunobemall, power-limited sen-
sors which collect and transmit information to a receiversmall number of relays with
additional processing and communications capabilitieskbea strategically placed to im-
prove system performance. We present an algorithm for qaélays which attempts
to minimize the probability of error at the receiver. We miod@mmunication channels
with Rayleigh fading, path loss, and additive white Gaussiaise, and include diversity
combining at the receiver. For certain cases, we give gewmrgscriptions of regions of
sensors which are optimally assigned to the same, fixeds.ekigally, we give numerical

results showing the output and performance of the algorithm

Xi



Chapter 1
Introduction

The study of data communications was revolutionized8 by Shannon’s sem-
inal paper “A Mathematical Theory of Communication” [26h&non’s work introduced
the framework of information theory (e.g., see [8]), andbbshed both the rate at which
data can be compressed and the rate at which data can beittadsmer a noisy chan-
nel. Equipped with this knowledge, the field of digital cormuations (e.g., see [24])
addresses the question of how data should be transmittedstlily of network communi-
cations builds further upon these foundations by examimfaggmation exchange amongst
members of a set of sources and receivers.

This thesis considers three topics in two subfields of ndtwommunications. The
first two relate to the use of network coding (e.g, see [31Ricis a technique that permits
coding between streams of transmitted information. Thedttopic deals with wireless
sensor networks (e.g, see [17]), which typically are graaffsmmall, data-collecting nodes
that transmit information to a receiver. Both of these a@asetwork communications
have emerged in the last decade and have since garneredarahde attention.

1.1 Network Coding

A communications network can be modeled by a directed, acyulltigraph. A
subset of the nodes in the graph are source nodes, which@miesnode messages. Sim-
ilarly, a subset of the nodes are sink nodes, which demaraifigpgource node messages.
Each source message is taken to be a vectdr ®f/mbols, while each edge can carry a



vector ofn symbols. Traditionally, network messages are treated ysigdl commodities,
which are routed throughout the network without replicatio alteration. Conversely, the
field of network coding views network messages as informatihich can be copied and
transformed by any node within the network. Specificallg ¥hlue on each outgoing edge
of a node is some function of the values on its incoming edged é€mitted messages if
it is a source). A goal in network coding is to determine a ngdunction for each edge
in the network such that each sink can perform decoding tipesato determine its de-
sired source messages. Ahlswede, Cai, Li, and Yeung [1] dstraded that there exist
networks for which network coding (as opposed to simplyir@)tis required to satisfy
the sink demands. Figure 1.1 gives two copies of a network@veeurce nodé emits
messagex, source node emits message, sink nodes demands messagesandy, and
sink node6 demands messagesandy. The left version depicts an attempt to provide a
routing solution, however the bottleneck between nadasd4 prohibits both messages
andy from arriving at both sinks. (In the given attempt, the dedsaof sink5 are not met.)
The right version demonstrates a solution using networkngpavhere the edge between
nodes3 and4 carries the sum of messagesndy. Both sinks can decode both messages
using subtraction. This solution is valid for messages dr&m any group with group
operator “”. Figure 1.2 gives a numerical example of the same netwodkngpsolution
with message components from the binary fiéldvith “+” being addition modul@ (i.e.,
the XOR function). In the depicted example, both the messagd the edges are of vector
dimensionk = n = 2.

Emits: x Emits: y Emits: x Emits:y
1 2 1 2
X \X Y|y XI\X Y |Y
I &
5 6 5 6
Demands: x, y Demands: x, y Demands: x, y Demands: x, y
Obtains: x Obtains: x, y Obtains: Obtairzs:
X X=(X+y) -y

y = (X+y) = X y

Figure 1.1: Example network with source nodesnd2 and sink nodes and6. Left: Only
routing is permitted. Right: Network coding is permitted.



Emits: [0,1] Emits: [1,1]
L 01 L1 ©)
[0,1] [1,1]
1[1,01
5 6
Demands: Demands:
[0,1], [1,1] [0,1], [1,1]
Obtains: Obtains:
[0,1] [0,2] =[1,0] - [1,1]
[1,1] =[1,0] - [0,1] [1,1]

Figure 1.2: Numerical example of the network coding sohlutioFigure 1.1.

We define the coding capacity of a network to be the largeist ohsource message
vector dimension to edge vector dimension for which theisteedge functions allowing
sink demands to be satisfied. Analogously, we define themgetpacity for the case when
network nodes are only permitted to perform routing, andittear coding capacity for the
case when only linear edge functions are permitted. Largpeaaty values correspond to
better performance, and comparing the routing capacith¢acbding capacity illustrates
the benefit of network coding over routing. It is known that timear coding capacity can
depend on the alphabet size [9], whereas the routing cgpaditivially independent of
the alphabet. We prove in Chapter 2 that the general codipgody is independent of the
alphabet used. It is not presently known whether the codapgcity or the linear coding
capacity must be rational numbers, nor if the linear codimgacity is always achievable.
It has recently been shown, however, that the (generalnhgochpacity of a network need
not be achievable [10]. We prove in Chapter 2 that the routaqgacity of every network
is achievable (and therefore is also rational). The coniplitiaof coding capacities is
in general an unsolved problem. For example, it is presematyknown whether there
exists an algorithm for determining the capacity or thedimeoding capacity of a network.
We prove in Chapter 2 that the routing capacity of a netwokoisputable, by explicitly
demonstrating a linear program solution. Chapter 2 is nemi paper appearing in the
IEEE Transactions on Information Theory.

It is also interesting to consider the number of coding naeegsiired to achieve



the coding capacity of a network. A similar problem is to deti@e the number of coding
nodes needed to satisfy the sink demands for the case wheagessare of the same vector
dimension as edges. The number of required coding nodeghrpbablems can in general
range anywhere from zero up to the total number of nodes indtveork. The later problem
has been examined previously by Langberg, Sprintson, anckBi9], Tavory, Feder, and
Ron [12], Fragouli and Soljanin [13], Bhattad, Ratnakareger, and Narayanan [3], and
Wu, Jain, and Kung [30] for the special case of networks dgoimg only a single source
and with all sinks demanding all source messages. We stedglthted (and more general)
problem of how the coding capacity varies as a function ofitn@ber of allowable coding
nodes. For example, the network in Figure 1.1 has capa¢ityvhen no coding nodes are
permitted (achievable by taking message dimensiand edge dimensia?) and capacity

1 when one or more coding nodes are permitted. In Chapter 3 o giat nearly any
non-decreasing function is the capacity as a function ofntlmaber of allowable coding
nodes of some network. Thus, over all directed, acyclic ngtg; arbitrarily large amounts
of coding gain can be attained by using arbitrarily-sizedensubsets for coding. Chapter 3
is reprint of paper appearing in the IEEE Transactions oorinétion Theory.

1.2 Wireless Sensor Networks

A wireless sensor network is a possibly large group of srpalier-limited sensors
distributed over a geographic area. The sensors colleatnt#tion which is transmitted
to a receiver for further analysis. Applications of suchweaeks include the monitoring of
environmental conditions, the tracking of moving objeetsd the detection of events of
interest. A small number of radio relays with additional ggssing and communications
capabilities can be strategically placed in a wireless aenstwork to improve system
performance. A sample wireless sensor network is shownguargil.3 where the sensors
are denoted by circles, the relays by triangles, and thevexdey a square. Two important
problems are to position the relays and to determine, fan saasor, which relay should
rebroadcast its signal.

In order to compare various relay placements and sens@rassnts, a commu-
nications model and an optimization goal must be determi#d assume transmission
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Figure 1.3: A wireless sensor network with sensors denogagirbles, relays by triangles,
and the receiver by a square.

occur using binary phase shift keying (BPSK) in which a sérgjt is sent by modulating
a pulse with a cosine wave. The magnitude of the transmittgdhsdiminishes with the
distance traveled, which is known as path loss. Furtherjreinee transmissions occur
wirelessly, a given transmitted signal may traverse migtgaths to the destination (e.qg.,
direct transmission versus bouncing off a building walBusing the receiver to obtain
multiple copies of the signal. This effect is known as mphih fading and is modeled
using a random variable. Finally, additive white Gaussiais® (AWGN) is also present
at receiving antennae. We consider relays using either nip@ifg-and-forward or the
decode-and-forward protocol. An amplify-and-forwardasejenerates an outgoing signal
by multiplying an incoming signal by a gain factor. A decaated-forward relay generates
an outgoing signal by making a hard decision on the value ®fbih represented by an
incoming signal, and transmits a regenerated signal usiagdsult. Each sensor in the
network transmits information to the receiver both dingethd through a relay path. The
receiver combines the two received signals to achievertresson diversity. We assume
transmissions are performed using a slotted mechanismasuttime division multiple ac-
cess (TDMA) so that there is ideally no transmission interiee. Figure 1.4 shows the
example wireless sensor network over a sequence of tingewitht transmission occurring
using TDMA and single-hop relay paths. Using this networldeipwe attempt to position
the relays and assign sensors to them in order to minimizavéeage probability of error
at the receiver.

Previous studies of relay placement have considered &aoptimization criteria



Figure 1.4: Transmissions in a wireless sensor network sixgime slots.

and communication models. For example, coverage, lifetenergy usage, error probabil-
ity, outage probability, or throughput were focused on biaBaand Gibson [2]; Chen and
Laneman [4]; Chen, Wang, and Liang [5]; Cho and Yang [6]; €artMartiinez, Karatas,
and Bullo [7]; Ergen and Varaiya [11]; Hou, Shi, Sherali, andikiff [15]; Iranli, Maleki,
and Pedram [16]; Koutsopoulos, Toumpis, and Tassiulas [1i8] and Mohapatra [20];
Ong and Motani [22]; Mao and Wu [21]; Suomela [28]; Tan, LozaXi, and Sheng [29];
Pan, Cai, Hou, Shi, and Shen [23]; Sadek, Han, and Liu [258r&bLiang [27]. The com-
munications and/or network models used are typically siiegl by techniques such as
assuming error-free communications, assuming transomssiergy is an increasing func-
tion of distance, assuming single sensor networks, asgusingle relay networks, and
excluding diversity.

In Chapter 4 we present an algorithm that determines rekagephent and assigns



each sensor to a relay. The algorithm has some similaritystmuace coding design tech-

nique known as the Lloyd algorithm (e.g., see [14]). We dbscgeometrically, with re-

spect to fixed relay positions, the sets of locations in tl@@lin which sensors are (op-

timally) assigned to the same relay, and give performansgltseebased on these analyses

and using numerical computations. Chapter 4 has been seldnaig a paper to the IEEE

Transactions on Wireless Communications.
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Chapter 2

Network Routing Capacity

Abstract

We define the routing capacity of a network to be the supremum o
all possible fractional message throughputs achievablebing.

We prove that the routing capacity of every network is achids
and rational, we present an algorithm for its computatiom] we
prove that every rational number (A, 1] is the routing capacity of
some solvable network. We also determine the routing cpaui
various example networks. Finally, we discuss the extensioout-

ing capacity to fractional coding solutions and show thatabding
capacity of a network is independent of the alphabet used.

2.1 Introduction

A communications network is a finite, directed, acyclic ngrtiph over which mes-
sages can be transmitted from source nodes to sink nodesn@ssages are drawn from
a specified alphabet, and the edges over which they are tittedrare taken to be error-
free, cost-free, and of zero-delay. Traditionally, netkvaoressages are treated as physical
commodities, which are routed throughout the network witheplication or alteration.
However, the emerging field of network coding views the mgssas information, which
can be copied and transformed by any node within the netwdetwork coding permits

10
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each outgoing edge from a node to carry some function of tteerdaeived on the incoming
edges of the node. A goal in using network coding is to deteeri set of edge functions
that allow all of the sink node demands to be satisfied. If susét of functions exists, then
the network is said to bsolvable and the functions are calledsalution Otherwise the
network is said to bensolvable

A solution to a network is said to berauting solutionif the output of every edge
function equals a particular one of its inputs. A solutiomtoetwork is said to be lamear
solutionif the output of every edge function is a linear combinatidnt® inputs, where
linearity is defined with respect to some underlying algebséructure on the alphabet,
usually a finite field or ring. Clearly, a routing solution is@a linear solution.

Network messages are fundamentally scalar quantitiest istélso useful to con-
sider blocks of multiple scalar messages from a common biiles message vectors. Such
vectors may correspond to multiple time units in a netwotkelvise, the data transmitted
on each network edge can also be considered as vedimstional codingrefers to the
general case where message vectors differ in dimensionddye data vectors (e.g., see
[2]). The coding functions performed at nodes take vectersmput on each in-edge and
produce vectors as output on each out-edgezegtor linear solutiorhas edge functions
which are linear combinations of vectors carried on in-adgea node, where the linear
combination coefficients are matrices over the same alplesbthe input vector compo-
nents. In avector routing solutioreach edge function copies a collection of components
from input edges into a single output edge vector.

For any set of vector functions which satisfies the demandbhetinks, there is
a corresponding scalar solution (by using a Cartesian ptaglphabet). However, it is
known that if a network has a vector routing solution, thedaés not necessarily have a
scalar routing solution. Similarly, if a network has a vedioear solution, then it does not
necessarily have a scalar linear solution [16].

Ahlswede, Cai, Li, and Yeung [1] demonstrated that therstex@tworks with (lin-
ear) coding solutions but with no routing solutions, and/thave necessary conditions for
solvability of multicast networks (networks with one sceiend all messages demanded by
all sink nodes).

Li, Yeung, and Cai [15] proved that any solvable multicadinmek has a scalar



12

linear solution over some sufficiently large finite field eplet.

For multicast networks, it is known that solvability over arficular alphabet does
not necessarily imply scalar linear solvability over thengaalphabet (see examples in [4],
[18], [16], [20]). For non-multicast networks, it has retgrbeen shown that solvability
does not necessarily imply vector linear solvability [5].

Rasala Lehman and Lehman [19] have noted that for some rniedwibre size of
the alphabet needed for a solution can be significantly rdlufcthe solution does not
operate at the full capacity of the network. In particulaeyt demonstrated that, for certain
networks, fractional coding can achieve a solution wheeerétio of edge capacity to
message vector dimensiénis an arbitrarily small amount above one. The observations
in [19] suggest many important questions regarding netvgotikability using fractional
coding.

In the present paper, we focus on such fractional codingdoraorks in the special
case of routing We refer to such coding dgactional routing Specifically, we consider
message vectors whose dimension may differ from the diroard the vectors carried
on edges. Only routing is considered, so that at any nodeseaingf components of the
node’s input vectors may be sent on the out-edges, proviteddges’ capacities are not
exceeded.

We define a quantity called thieuting capacityof a network, which characterizes
the highest possible capacity obtainable from a fractiooaling solution to a network
The routing capacity is the the supremum of ratios of mesdagension to edge capacity
for which a routing solution exists. Analogous definitioaside made of the (general) cod-
ing capacity over all (linear and non-linear) network coded the linear coding capacity
over all linear network codes. These definitions are witlpeesto the specified alphabet
and are for general networks (e.g., they are not restrict@auiticast networks).

Whereas the present paper studies networks with directgesedome results on fractional coding were
obtained by Li et al. [13], [14] for networks with undirectéice., bidirectional) edges.

2Determining the routing capacity of a (directed) netwollkit@s to the maximum throughput problem in
an undirected network in which multiple multicast sessiexist (see Li et al. [13], [14]), with each demanded
message being represented by a multicast group. In the dese anly a single multicast session is present
in the network, determining the routing capacity corresjsoto fractional directed Steiner tree packing, as
considered by Wu, Chou, and Jain [23] and, in the undirecisd,dy Li et al. [13], [14]. In the case where
the (directed) network has disjoint demands (i.e., wheih eaessage is only demanded by a single sink),
determining the routing capacity resembles the maximunewaant multicommodity flow problem [22].



13

It is known that the linear coding capacity (with respect tiinée field alphabet)
can depend on the alphabet size [5] whereas the routingitassirivially independent of
the alphabet. We prove here, however, that the general gadipacity is independent of
the alphabet used.

It is not presently known whether the coding capacity or thedr coding capacity
of a network must be rational numbers. Also, it is not prdgedrtown if the linear coding
capacity of a network is always achievable. It has recerggnbshown, however, that the
(general) coding capacity of a network need not be achie&pl We prove here that the
routing capacity of every network is achievable (and themeeis also rational). We also
show that every rational number (6, 1] is the routing capacity of some solvable network.

The computability of coding capacities is in general an lweb problem. For
example, it is presently not known whether there exists gardhm for determining the
coding capacity or the linear coding capacity (with resgeca given alphabet size) of
a network. We prove here that the routing capacity is indeedpuitable, by explicitly
demonstrating a linear program solution. We do not attemgiite a low complexity or
efficient algorithm, as our intent is only to establish thenpaitability of routing capacity.

Section 2.2 gives formal definitions of the routing capaeihd related network
concepts. Section 2.3 determines the routing capacity aireety of sample networks
in a semi-tutorial fashion. Section 2.4 proves various pres of the routing capacity,
including the result that the routing capacity is achiegadtd rational. Section 2.5 gives
the construction of a network with a specified routing cayaéiinally, Section 2.6 defines
the coding capacity of a network and shows that it is indepandf the alphabet used.

2.2 Definitions

A networkis a finite, directed, acyclic multigraph, together with rempty sets of
source nodes, sifknodes, source node messages, and sink node demands. Eaelgenes
is an arbitrary element of a fixed finite alphabet and is assediwith exactly one source
node, and each demand at a sink node is a specification of isgearce message that
needs to be obtainable at the sink. A networiegeneratd there exists a source message

3Although the terminology “sink” in graph theory indicatechade with no out-edges, we do not make
that restriction here. We merely refer to a node which dermanteast one message as a sink.
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demanded at a particular sink, but with no directed pathudfinahe graph from the source
to the sink.

Each edge in a network carries a vector of symbols from sopteadket. The max-
imum allowable dimension of these vectors is calleddtige capacity(If an edge carries
no alphabet symbols, it is viewed as carrying a vector of dsian zero.) Note that a net-
work with nonuniform, rational-valued edge capacities aavays be equivalently modeled
as a network with uniform edge capacities by introducing@redges. For a given finite
alphabet, aredge functioris a mapping, associated with a particular edgev), which
takes as inputs the edge vector carried on each in-edge tmtlea; and the source mes-
sages generated at nodeand produces an output vector to be carried on the édgg.

A decoding functions a mapping, associated with a message demanded at a siick, wh
takes as inputs the edge vector carried on each in-edge sinthand the source messages
generated at the sink, and produces an output vector hbopeéulal to the demanded mes-
sage.

A solutionto a network for a given alphabet is an assignment of edgditungcto
a subset of edges and an assignment of decoding functioisioka in the network, such
that each sink node obtains all of its demands. A netwodolsableif it has a solution
for some alphabet. A network solution isractor routing solutionf every edge function
is defined so that each component of its output is copied fréfixed) component of one
of its inputs. (So, in particular, no “source coding” canacwhen generating the outputs
of source nodes.) It is clear that vector routing solutionsndt depend on the chosen
alphabet. A solution iseducibleif it has at least one edge function which, when removed,
still yields a solution. A vector solution ieducibleif it has at least one component of at
least one edge function which, when removed, still yields@er solution.

A (k,n) fractional routing solutionof a network is a vector routing solution that
uses messages withcomponents and edges with capaecitywith £, n > 1. Note that
if a network is solvable then it must have a (coding) solutdth £ = n = 1. A (k,n)
fractional routing solution isninimalif it is not reducible and if ndk, »") fractional routing
solution exists for any’ < n. Solvable networks may or may not have routing solutions.
However, every nondegenerate network hés,a) fractional routing solution for some
andn. In fact, it is easy to construct such a solution by chooging 1 andn equal to
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the total number of messages in the network, since then edgy has enough capacity to
carry every message that can reach it from the sources.

The ratiok/n in a (k,n) fractional routing solution quantifies the capacity of the
solution and the rational numbkfn is said to be aachievable routing ratef the network.
Define the set

U = {r € Q: ris an achievable routing rgte

Therouting capacityof a network is the quantity
e =supU.

If a network has no achievable routing rate then we make theesdion that = 0.

It is clear thate = 0 if and only if the network is degenerate. Also< oo (e.g., since
k/n is trivially upper bounded by the number of edges in the nétjvoNote that the
supremum in the definition efcan be restricted to achievable routing rates associatéd wi
minimal routing solutions. The routing capacity is saidé@abhievabléf it is an achievable
routing rate. Note that an achievable routing capacity resational. A fractional routing
solution is said t@achievethe routing capacity if the routing rate of the solution isiakto
the routing capacity.

Intuitively, for a given network edge capacity, the routiogpacity bounds the
largest message dimension for which a routing solutiontexi#f ¢ = 0, then at least
one sink has an unsatisfied demand, which implies that nolggtieen the sink and the
source emitting the desired message exists.df(0, 1), then the edge capacities need to
be inflated with respect to the message dimension to satisfgémands of the sinks. If
e = 1, then it will follow from results in this paper that a fraatial routing solution exists
where the message dimensions and edge capacities areaelite > 1, then the edge
capacities need not even be as large as the message dimtersabisfy the demands of the
sinks. Finally, if a network has a routing solution, then tbeting capacity of the network
satisfies > 1.

2.3 Routing Capacity of Example Networks

To illustrate the concept of the routing capacity, a numideexamples are now
considered. For each example in this sectionklbe the dimension of the messages and
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let n be the capacity of the edges. All figures in this section haaply nodes labeled
by positive integers. Any node labeled by integes referred to as,;. Also, any edge
connecting nodesandj is referred to as,; ; (instead of the usual notatidn j)), as is the
message vector carried by the edge. The distinction bettveetwo meanings of; ; is
made clear in each such instance.

Example 2.3.1.(See Figure 2.1.)

X1:X2,X3,Y Y1.Y2,Y3:%

Figure 2.1: The multicast network; whose routing capacity i%/4.

The single source produces two messages which are both dethéy the two
sinks. The network has no routing solution but does haveealinoding solution [1]. The
routing capacity of this multicast networkéds= 3/4.

Proof. In order to meet the sink node demands, each oRthemessage components must
be carried on at least two of the three edges e, 3, ande, 5 (because deleting any two
of these three edges would make at least one of the sinksalnaigla from the source).
Hence, we have the requiremeék) < 3n, for arbitraryk andn. Hencee < 3/4.

Now, letk = 3 andn = 4, and route the messages as follows:

€12 = €26 = ($1,$2,5€37y1)

€1,3 = €37 = (y1>y27 y3,$1)
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This is a fractional routing solution t&;. Thus,3/4 is an achievable routing rate #f;,
soe > 3/4. |

Example 2.3.2.(See Figure 2.2.)

Figure 2.2: The network/; whose routing capacity is/2.

Each of the two sources emits a message and both messagesraneddd by the
two sinks. The network has no routing solution but does halieear coding solution
(similar to Example 2.3.1). The routing capacity of thiswetk ise = 1/2.

Proof. The only path over which messagecan be transmitted from soureg to sinkng
is nq,n3, ng, ng. Similarly, the only path feasible for the transmission adgsagey from
sourcens to sinkns Is no, n3, ng, ns. Thus, there must be sufficient capacity along edge
es 4 10 accommodate both messages. Hence, we have the requirgtnenn, yielding
k/n < 1/2 for arbitraryk andn. Thus,e < 1/2.

Now, letk = 1 andn = 2, and route the messages as follows:

€15 = €13 = €46 = (x)
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€26 = €23 = €45 = (Y)

€34 = (Xv Y)-

This is a fractional routing solution t&5. Thus,1/2 is an achievable routing rate &f,,
soe > 1/2. [

Example 2.3.3.(See Figure 2.3.)

Figure 2.3: The multicast network; whose routing capacity i&/(N + 1).

The network\3 contains a single source, with two messagest andy. The
second layer consists of two nodes,andns. The third and fourth layers each contaiN
nodes. The bottom layer contai(?%}’) sink nodes, where each such node is connected to a
distinct set ofV nodes from the fourth layer. Each of these sink nodes dentaibsource
messages. The network has no routing solution but does hiavwesa coding solution for
N > 2 (since the network is multicast and the minimum cut siz fisr each sink node
[15]). The routing capacity of this networkés= N/(N + 1).

Proof. LetD be a2k x 2N binary matrix satisfyind, ; = 1 if and only if theith symbolin

ith

the concatenation of messageandy is present on thg"' vertical edge between the third

and fourth layers. Since the dimension of these verticaégdgat most, each column of
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D has weight at most. Thus, there are at lea® — n zeros in each column dDd and,
therefore, at leastN (2k — n) zeros in the entire matrix.

Since each sink receives input from onWy fourth-layer nodes and must be able
to reconstruct alkk components of the messages, every possible choigé ocblumns
must have at least onkin each row. Thus, each row D must have weight at least
N + 1, implying that each row iD has at mos2N — (N + 1) = N — 1 zeros. Thus,
counting along the rowd) has at mos2k (N — 1) zeros. Relating this upper bound and the
previously calculated lower bound on the number of zeroglgigV (2k —n) < 2k(N —1)
or equivalentlyk/n < N/(N + 1), for arbitraryk andn. Thus,e < N/(N + 1).

Now, letk = N andn = N + 1, and route the messages as follows:

e = (x1,...,2k)

e13 = (Y1, Yr)

es; = (x1,...,2K) (4<i<2N+3)

€3 = (Y1, -, Yn) (4 <i<2N+3)
CioNti = (T1, -+, Th, Yi3) (4<i<N+3)
CiaN+i = (Y15 -+ s Uy Tim(N+3)) (N+4<i<2N+3).

Each node in the fourth layer simply passes to its out-edgastly what it receives on
its in-edge. If a sink node in the bottom layer is connectedddesn; andn; where
2N +4 < ¢ <3N +3and3N +4 < j < 4N + 3 (i.e., a node in the left half of the
fourth layer and a node in the right half of the fourth layd®n the sink receives all of
message from n; and all of messagg from »,. On the other hand, if a sink is connected
only to nodes in the left half of the fourth layer, then it rves all of message from each
such node, and receives a distinct component of mess&gen each of the fourth-layer
nodes, thus giving all of. A similar situation occurs if a sink node is only connected t
fourth-layer nodes on the right half.

Thus, this assignment is a fractional routing solutiolp Therefore N/(N + 1)
is an achievable routing rate 8f;, soe > N/(N + 1). [ |

Example 2.3.4.(See Figure 2.4.)
The network\; contains a single soureg with m messages. The second layer
of the network consists aV nodes, each connected to the source via a single edge. The
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m)

x® X

X X

Figure 2.4: The multicast network; whose routing capacity i&/(m(N — I + 1)).

third layer consists o(fjf) nodes, each receiving a distinct sef ah-edges from the second
layer. Each third-layer node demands all messages. Therletsvinearly solvable if and
only if m < I (since the network is multicast and the minimum cut sizéfigr each sink
node [15]). The routing capacity of this networkeis= N/(m(N — I + 1)).

Proof. In order to meet the demands of each node in the bottom layery subset off
nodes in layer two must receive allk message components from the source. Thus, each of
themk message components must appear at [¥ast(/ — 1) times on theV out-edges of
the source (otherwise there would be some sétadfthe V layer-two nodes not containing
some message component). Since the total number of symitied/ source out-edges
is Nn, we must havenk(N — (I — 1)) < Nn or, equivalentlyk/n < N/(m(N —1+1)),
for arbitraryk andn. Henceg < N/(m(N — I +1)).

Now, letk = N andn = m(N — I + 1) and denote the components of the
messages (in some order) by . .., b,,,. LetD be ann x N matrix filled with message
components from left to right and from top to bottom, withlearessage component being
repeatedV — I + 1 times in arow, i.e.D;; = byn(-1)+j—1)/(N—1+1))+1 With 1 <7 <
m(N —I+1)andl < j < N.

Let the N columns of the matrix determine the vectors carried ontheut-edges
of the source. Since each message component is plagéd-i + 1 different columns of
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the matrix, every set of layer-two nodes will receive all of the@ N message components.
Them(N — I + 1) = n components at each layer-two node are then transmittectigtire
to all adjacent layer-three nodes.

Thus, this assignment is a fractional routing solutioAfo Therefore N/(m(N —
I + 1)) is an achievable routing rate &f;, soe > N/(m(N — I +1)). [ |

We next note several facts about the network shown in Figudre 2

e The capacity of this network was independently obtaineda(more lengthy argu-
ment) by Ngai and Yeung [17]. See also Sanders, Egner, ahdiizeh [21].

e Ahlswede and Riis [20] studied the case obtained by usingprtametersn =
5, N = 12, andI = 8, which we denote byW5. They showed that this network has
no binary scalar linear solution and yet it has a nonlineaatyi scalar solution based
upon a(5,12,5) Nordstrom-Robinson error correcting code. We note thatdny
above calculation, the routing capacity of the Ahlswedis-Rétwork ise = 12/25.

e Rasala Lehman and Lehman [18] studied the case obtainedrxy the parameters
m = 2, N = p, and/ = 2. They proved that the network is solvable, provided that
the alphabet size is at least equal to the square root of tmd&uof sinks. We note
that, by our above calculation, the routing capacity of tlasda Lehman-Lehman
network ise = p/(2(p — 1)).

e Using the parameters, = 2 and N = [ = 3 illustrates that the network’s routing
capacity can be greater than 1. In this case, the networksterd a single source,
three second layer nodes, and a single third layer node. dittimg capacity of this
network ise = 3/2.

Example 2.3.5.(See Figure 2.5.)

This network, due to R. Koetter, was used by Médard et al} {d@&lemonstrate
that there exists a network with no scalar linear solutionviith a vector linear solution.
The network consists of two sources, each emitting two ngessaand four sinks, each
demanding two messages. The network has a vector routingjasobf dimension two.
The routing capacity of this network és= 1.
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Figure 2.5: The networl/s whose routing capacity ik

Proof. Each source must emit at le@étcomponents and the total capacity of each source’s
two out-edges i&n. Thus, the relatiork < 2n must hold, for arbitrary: andn, yielding
e < 1.

Now letk = 2 andn = 2, and route the messages as follows (as given in [16]):

e13 = (a1, by) 14 = (ag, b1)
eaq = (c1,d2) eas = (C2,d1)
es = (ar) e = (az,c1) es6 = (C2)
es7 = (ay) es7 = (az, ds) es7 = (dy)
ess = (o) ess = (by,c1) ess = (C2)
es9 = (by) es9 = (b1, ds) eso = (dy)

This is a fractional routing solution t&/s. Thus,1 is an achievable routing rate &fs, so
e>1. [ |

Example 2.3.6.(See Figure 2.6.)

The networkN; was demonstrated in [5] to have no linear solution for anytarec
dimension over a finite field of odd cardinality. The netwodshhree sources;, n,, and
ns emitting messages, b, andc, respectively. The messaged, anda are demanded by
sinksnz, n13, andnyy, respectively. The network has no routing solution but dwese a
coding solution. The routing capacity of this network is: 2/3.
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10 (11)
12
C a

Figure 2.6: The network/; whose routing capacity /3.

Proof. First, note that the edges 2, e3 9, ander 14 cannot have any affect on a fractional
routing solution, so they can be removed. Thus, edggsandes; ; must carry all of the
information from the sources to the sinks. Therefde, < 2n, for arbitrary k£ andn,
yielding an upper bound on the routing capacity of 2/3.

Now, letk = 2 andn = 3 and route the messages as follows:

€14 = (al,az) €24 = (bl)
€25 = (52) €35 = (01, 02)
€4,6 = (al,az, b1) €57 = (01,02752)
€69 = (a1, az, by) erg = (b2, c1, ¢2)
€810 = (52701,02) €911 = (a1>a27 bl)
€10,12 = (017 Cz) €10,13 = (bz)
€11,13 = (bl) €11,14 = (ab az)

This is a fractional routing solution t&/;. Thus,2/3 is an achievable routing rate
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of N7, soe > 2/3. [ |

Example 2.3.7.(See Figure 2.7.)
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Figure 2.7: The networlk/s whose routing capacity is/3.

The networkNs shown in Figure 2.7 was given in [5] as a portion of a larger net
work which was solvable but not vector-linearly solvablénisTnetwork piece consists of
six sourcesn; throughn,,, emitting messages, b, c, c, d, ande, respectively. The net-
work contains seven sinks,,, throughn,s, demanding messagesb, a, c, e, d, andc,
respectively. The network has no routing solution but dageha coding solution. The
routing capacity of this network is= 1/3.

Proof. A number of edges in the network do not affect any fractionating solution and
can be removed, yielding the reduced network shown in Fig8e Clearly the demands
of nodenys are easily met. The remaining portion of the network can bldd into two
disjoint, symmetric portions. In each case3lsymbols of information must flow across
a single edge (either;5 19 Or e16.99), implying that3k < n for arbitrary £ andn. Thus,
e <1/3.

Now, letk = 1 andn = 3 and route the messages as follows:

615,19:(alu---aakybla---ubkacla---;Ck)
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Figure 2.8: Reduced form of the netwokk given in Figure 2.7.

€16,20 = (01,---7Ck,d17---7dk,€17---,€k)-

This is a fractional routing solution t&/. Thus,1/3 is an achievable routing rate
of Ng, soe > 1/3. |

By combining networks\,; and Ns (i.e., by adding shared sourcesb, andc)
a network was created which established that linear veddes are not sufficient for
all solvable networks [5]. In the combined network, the tweces effectively operate
independently, and thus the routing capacity of the enttevark is limited by the second
portion, namelye = 1/3.

2.4 Routing Capacity Achievability

The examples of the previous section have illustrated uariechniques to deter-
mine the routing capacity of a network. In this section, sqmaperties of the routing
capacity are developed and a concrete method is given, lghwihé routing capacity of a
network can be found.

To begin, a set of inequalities which are satisfied by any mahiractional routing
solution is formulated. These inequalities are then usgatdwe that the routing capacity
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of any network is achievable. To facilitate the construciid these inequalities, a variety
of subgraphs for a given network are first defined.

Consider a network and its associated gr&phs (V, E'), sourcesS, messages/,
and sinksK. For each message we say that a directed subgraph®fis anx-tree if
the subgraph has exactly one directed path from the souritBrgx to each destination
node which demands, and the subgraph is minimal with respect to this progeiyote
that such a subgraph can be bothsatree and ay-tree for distinct messagesandy.)
For each message let s(x) denote the number of-trees. For a given network and for
each message, let 77, T, . .. ,T;Ex) be an enumeration of all thetrees in the network.
Figure 2.9 depicts all of the-trees ang/-trees for the network/; shown in Figure 2.2.

Il ®\® @/O ly

Figure 2.9: All of thex-trees andg/-trees of the network/,.

If x is a message andis the unique index in a minimak, »n) fractional routing
solution such that every edge carrying a componerdappears inl’, then we say the
x-tree T carriesthe message component Such a tree is guaranteed to exist since in
the supposed solution each message component must be faarteds source to every
destination node demanding the message, and the minino&libye solution ensures that

4The definition of anx-tree is similar to that of a directed Steiner tree (also kmaw a Steiner arbores-
cence). Given a directed, edge-weighted graph, a subdet afides in the graph, and a root node, a directed
Steiner tree is a minimum-weight subgraph which includesected path from the root to every other node
in the subset [9]. Thus, atrtree is a directed Steiner tree where the source node isth@ode, the subset
contains the source and all sinks demandinghe edge weights are taken to theand with the additional
restrictions that only one directed path from the root tohesiok is present, and edges not along these di-
rected paths are not included in the subgraph. In the untditerase, the first additional restriction coupled
with the0-edge-weight case corresponds to the requirement thatitiygaph be a tree, which is occasionally
incorporated in the definition of a Steiner tree [11].
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the edges carrying the message fornxainee.

Note that we consider* and ij to be distinct whenx # y, even if they are
topologically the same directed subgraph of the networlat i) such trees are determined
by their topology together with their associated message.

Denote byT; the " tree in some fixed ordering of the set

U{w,ujgg
xeM

and define the following index sets:

A(x) = {i:T;is anx-tree}

B(e) = {i:T;contains edge}.

Note that the setd (x) and B(e) are determined by the network, rather than by any partic-
ular solution to the network. Denote the total number of4fEdoy

t= Z s(x).

xeM

For any given minimalk, n) fractional routing solution, and for eaéh= 1,... ¢, let¢;
denote the number of message components carried by tieehe given solution.

Lemma 2.4.1.For any given minima(k, n) fractional routing solution to a nondegenerate
network, the following inequalities hold:

@ > >k (Vx € M)
1€A(X)

B Y a<n (Ve € E)
1€B(e)

€ 0<e¢ <k (Vie{l,...,t})

(d) 0 <n < kM| <kt

Proof.
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(a) Follows from the fact that ak components of every message must be sent to every
destination node demanding them.
(b) Follows from the fact that every edge can carry at mostessage components.

(c) Follows from that fact that each message hasmponents.

, Since edge

(d) Since the routing solution is minimal, it must be the csgn < k| M
capacities of sizé:| M| suffice to carry every component of every message. Also,
clearly|M| < t, since the network is nondegenerate.

Lemma 2.4.2.For any given minima(k, n) fractional routing solution to a nondegenerate
network, the following inequalities, over the real variebliy, . . ., d;, p, have a rational

solutior?:
> di>1 (Vx € M) (2.1)
1€A(x)
 di<p (Ve € E) (2.2)
i€B(e)
0<d; <1 (Vie{l,....,t}) (2.3)
0<p<t (2.4)

by choosingl; = ¢;/k andp = n/k.

Proof. Inequalities (2.1)—(2.4) follow immediately from Lemma&2.(a)—(d), respectively,

by division byk.
[

We refer to (2.1)—(2.4) as theetwork inequalitieassociated with a given netwofk.
Note that the routing rate in the givéh, n) fractional routing solution in Lemma 2.4.2 is

1/p.
°If a solution(dy, . . ., d¢, p) to these inequalities has all rational components, thersiid to be aational

solution
6Similar inequalities are well-known for undirected netWwfiow problems (e.g., see [11] for the case of

single-source networks).
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For convenience, define the sets

V = {peR:(dy,...,ds,p)isasolution to the

network inequalities for som@ly, ..., d;)}

V = {r:1/rev}.
Lemma 2.4.3.1f the network inequalities corresponding to a nondegetenetwork have
a rational solution withp > 0, then there exists a fractional routing solution to the nat
with achievable routing raté/p.

Proof. Let (d4,...,d;, p) be a rational solution to the network inequalities with- 0. To
construct a fractional routing solution, let the dimensioof the messages be equal to the
least common multiple of the denominators of the non-zeropmnents ofdy, . . ., dy, p).
Also, let the capacity of the edges be= kp, which is an integer. Now, for each=
1,...,t, let¢; = d;k, each of which is an integer. Ak, n) fractional routing solution
can be constructed by, for each messagarbitrarily partitioning thé: components of the
message over alt-trees such that exactly components are sent along each associated
treeT;. H

The following corollary shows that the sEt(defined in Section 2.2) of achievable
routing rates of any network is the same as the set of re@pg@f rationalp that satisfy
the corresponding network inequalities.

Corollary 2.4.4. For any nondegenerate networlk,N Q = U.
Proof. Lemma 2.4.2 implies thdf C VNQ and Lemma 2.4.3impliesthath Q CU. MW

We next use the network inequalities to prove that the rgutapacity of a network
is achievable. To prove this property, the network ineqiegliare viewed as a set of in-
equalities int 4 1 variablesd,, .. ., d;, p, which one can attempt to solve. By formulating
a linear programming problem, it is possible to determingaatfonal routing solution to
the network which achieves the routing capacity. As a comsece, the routing capacity
of every network is rational and the routing capacity of gveondegenerate network is
achievable. The following theorem gives the latter resuthbre detalil.

Theorem 2.4.5.The routing capacity of every nondegenerate network iseaettile.
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Proof. We first demonstrate that the network inequalities can be tseletermine the
routing capacity of a network. Let

H ={(dy,...,d;, p) € R™" : the network inequalities are satisfied

po = inf V

and define the linear function

f(dy,....dy,p) = p.
Note thatH is non-empty since a rational solution to the network inditjga can be found
for any network by setting; = 1, Vi andp = t. Also, sinceH is compact (i.e., a closed
and bounded polytope), the restriction ptto H achieves its infimunp, on H. Thus,
there existl;, ..., d, € R suchthat(d,, ....d,, po) € H. In fact, a linear program can be
used to minimizef on H, yielding py. Furthermore, since the variablés. .., d;, p in the
network inequalities have rational coefficients, we camuamswithout loss of generality
thatdy, ..., d,, po € Q. Now, by Corollary 2.4.4, we have

e = supU

= sup (V N Q)

= sup{reQ:(dy,...,d;,1/)r) e H}

= sup{l/peQ: (di,...,dt,p) € H}

= max{l/peQ: (dy,...,dyp) € H}

= 1/po.
Thus, the network inequalities can be used to determineotitteng capacity of a network.

Furthermore, the fractional routing solution induced hy$b|ution(d1, e ,cit, £0)

to the network inequalities has achievable routing tdig = ¢. Thus, the routing capacity

of any network is achievable.
|

Corollary 2.4.6. The routing capacity of every network is rational.

Proof. If a network is degenerate, then its capacity is zero, wisatational. Otherwise,
Theorem 2.4.5 guarantees that there exigts a) fractional routing solution such that the
routing capacity equals/n, which is rational. [ |
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Since any linear programming algorithm (e.g., the simplethad) will work in
the proof of Theorem 2.4.5, we also obtain the following darg.

Corollary 2.4.7. There exists an algorithm for determining the routing capeof a net-
work.

We note that the results in Section 2.4 can be generalizedttoonks whose edge
capacities are arbitrary rational numbers. In such cagetettmp in (2.2) of the network
inequalities would be multiplied by the capacity of the edgand the ternt in (2.4) would
be multiplied by the maximum edge capacity.

2.5 Network Construction for Specified Routing Capacity

Given any rational number > 0, it is possible to form a network whose routing
capacity ise = r. The following two theorems demonstrate how to construchsuet-
works. The first theorem considers the general case whe, but the resulting network
is unsolvable (i.e., fok = n) for r < 1. The second theorem considers the case when
0 < r <1 and yields a solvable network.

Theorem 2.5.1.For each rational > 0, there exists a network whose routing capacity is

€E=T.

X0 x@ . x®

Sk
&

X(l). X(Z). . X(V)

Figure 2.10: A networkV, that has routing capacity= u/v > 0.
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Proof. If » = 0 then any degenerate network suffices. Thus, assume) and letr =

u/v whereu andv are positive integers. Consider a network with a single smand a
single sink connected by edges, as shown in Figure 2.10. The source emits messages
x1) x@ . x® and all messages are demanded by the sink kldgnote the message
dimension andh denote the edge capacity.

In a fractional routing solution, the fullk components must be transferred along
the u edges of capacity.. Thus, for a fractional routing solution to exist, we reguir
vk < un, and hence the routing capacity is upper bounded fay

If £ = v andn = v, thenkv = uv message components can be sent arbitrarily
along theu edges since the cumulative capacity of all the edges.is= vu. Thus, the
routing capacity upper bound is achievable.

Thus, for each rational > 0, a single-source, single-sink network can be con-
structed which has routing capacity- r.

[

The network\, discussed in Theorem 2.5.1 is unsolvable(fer » < 1, since the
min cut across the network does not have the required trasgmicapacity. However, the
network is indeed solvable for> 1 using a routing solution.

Theorem 2.5.2.For each rational- € (0, 1] there exists a solvable network whose routing
capacity ise = r.

Proof. Letr = p/m wherep < m. Consider a network with four layers, as shown in Fig-
ure 2.11 where all edges point downward. The network costaisources, all in the first
layer. Each source emits a unique message, yielding messége .., x™ in the net-
work. The second layer of the network containsodes, each of which is connected to all
m sources, forming a complete connection between the firssaodnd layers. The third
layer also containg nodes and each is connected in a straight through fashioodoe:
sponding node in the second layer. The fourth layer consfsts sinks, each demanding
all m messages. The third and fourth layers are also completelyembed. Finally, each
sink is connected to a unique setraf— 1 sources, forming a complete connection except
the straight through edges between the first and fourth $ay€hus, the network can be
thought of as containing both a direct and an indirect roetevben the sources and sinks.
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\‘) Completely
,/ connected
! 5
Completely !
connected ¢ ' )
except 5 Straight
straight ‘,’ through
through
(m+2p-1)( m+2p |
*y Completely

,/ connected
,

NO) N0 N0 N0

O<i<m+1 O<i<m+1 O<i<m+1 O<i<m+1

Figure 2.11: A solvable network/;, that has routing capacity= p/m € (0, 1]. All edges
in the network point downward.

The routing capacity of this network is now shown tode- » = p/m. Letk
be the dimension of the messages andhléte the capacity of the edges. To begin, the
routing capacity is demonstrated to be upper boundeg/by. First, note that since each
sink is directly connected to all but one of the sources andesi = p/m < 1, each sink
can receive all but one of the messages directly. Furthexmoreach case, the missing
message must be transmitted to the sink along the indirate (&rom the source through
the second and third layers to the sink). Since each ohitheessages is missing from
one of the sinks, a total ofik message components must be transmitted along the indirect
paths. The cumulative capacity of the indirect pathgrisas clearly seen by considering
the straight through connections between layers two amethrhus, the relatiomk < pn
must hold, yielding:/n < p/m for arbitraryk andn. Thuse < p/m.

To prove that this upper bound on the routing capacity iseacttile, consider a
solution which set& = p andn = m. As noted previously, direct transmissionaf— 1
of the messages to each sink is clearly possible. Now, eacimddayer node receives all
k components of alln messages, for a total @tk = mp components. The cumulative
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capacity of the links from the second to third layergis = pm. Thus, since the sinks
receive all data received by the third-layer nodes themessage components can be as-
signed arbitrarily to them straight-through slots, allowing each sink to receive theect
missing message. Hence, this assignment is a fractiontihgosolution. Thereforey/m

is an achievable routing rate of the networkese p/m.

Now, the network is shown to be solvable by presenting a solut.et the alphabet
from which the components of the messages are drawn be araAlgebup. As previously,
all but one message is received by each source along the liiMex from the sources to
the sinks. Now, note that node, . ; receives alln messages from the sources. Thus, itis
possible to send the combinatiaft) + x + ... + x(™) along edge:,,1.m+p11. Node
nmtp+1 then passes this combination along to each of the sinkse &&ch sink possesses
all but one message, it can extract the missing message fimoombination received from
noden,,+,+1. Thus, the demands of each sink are met.

Hence, the generalized network shown in Figure 2.11 reptesesolvable network
whose routing capacity is the rationa&= p/m € (0, 1].

[

In the network\, a routing solution (withk = n) would require alln messages
to be transmitted along thestraight-through paths in the indirect portion of the netwo
However, forr € (0, 1) we havep < m, hence no routing solution exists. Thus, the network
requires coding to achieve a solution. Also, note that iftbavork V; is specialized to
the casen = 2 andp = 1, then it becomes the network in Figure 2.2.

2.6 Coding Capacity

This section briefly considers the coding capacity of a ndtywwhich is a general-
ization of the routing capacity. The coding capacity is fadstined and two examples are
then discussed. Finally, it is shown that the coding capasiindependent of the chosen
alphabet.

A (k,n) fractional coding solutiorof a network is a coding solution that uses mes-
sages withk components and edges with capagitylf a network has gk, n) fractional
coding solution, then the rational numbetn is said to be amachievable coding rateThe
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coding capacitys then given by
v =sup {r € Q : r is an achievable coding rgte

If a (k,n) fractional coding solution uses only linear coding, them is anachievable
linear coding rateand we define thénear coding capacityo be

A =sup {r € Q: ris an achievable linear coding rate

Note that unlike fractional routing solutions, fractiogading solutions must be considered
in the context of a specific alphabet. Indeed, the linearrapdapacity in general depends
on the alphabet [5]. However, it will be shown in Theorem 2 #hat the coding capacity
of a network is independent of the chosen alphabet.

Clearly, for a given alphabet, the coding capacity of a netws always greater
than or equal to the linear coding capacity. Also, if a netwsisolvable (i.e., withk = n),
then the coding capacity is greater than or equal to 1, sifiee= k/k is an achievable
coding rate. Similarly, if a network is linearly solvablégen the linear coding capacity is
greater than or equal to 1.

The following examples illustrate the difference betwees riouting capacity and
coding capacity of a network.

Example 2.6.1.The special casd/; of the network shown in Figure 2.4 has routing ca-
pacitye = 12/25, as discussed in the note following Example 2.3.4. Usinga@ument,

it is clear that the coding capacity of the network is upperrzted by8 /5, since each sink
demandssk message components and has a total capaci®. an its incoming edges.
Lemmas 2.6.2 and 2.6.3 will respectively prove that thiswoek has a scalar linear so-
lution for every finite field other tha'(2) and has a vector linear solution f6IF'(2).
Consequently, the linear coding capacity for any finite fadjghabet is at least 1, which is
strictly greater than the routing capacity.

Lemma 2.6.2.Network; has a scalar linear solution for every finite field alphabetet
thanGF(2).

Proof. Let a, b, ¢, d, ande be the messages at the source. Let the alphabet be a finite field
F with |F| > 2. Letz € F' — {0, 1}. Define the following setsl? is a multiset):

A = {a,b,cd e}
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B = {za+bzb+c,zc+d,zd+e, ze+ a}
C = {a+b+c+d+e}
D = AUBUCUC.

Then|D| = 12. Let the symbols carried on tH& edges emanating from the source corre-
spond to a specific permutation of th2 elements ofD. We will show that the demands
of all (182) sinks are satisfied by showing that all of the messagésc, d, ande can be
recovered (linearly) from every multisstC D satisfying|.S| = 8.

If |S N A| =5 then the recovery is trivial.

If |[SNA| = 4 then without loss of generality assum¢ S. If a+b+c+d+e € 5,
thene can clearly be recovered.df+ b+ c+d +e ¢ S, then|S N B| = 4, in which case
{zd +e,ze +a} NS # (), and thus: can be recovered.

If [SNA| =1thenB C S, so the remaining elements ofA can be recovered.

If |[SNA| =2then|BNS| > 4, so the remaining elements ofA can be recovered.

If |[SNA| =3then|BNS| > 3. If |[BNS| > 4, then the remaining elements
of A can be recovered, so assufien S| = 3, in whichcasex +b+c+d+e € S.
Due to the symmetries of the elementsin we assume without loss of generality that
AnS € {{a,b,c},{a,b,d}}. First consider the case whehn S = {a,b,c}. Then,

d + e can be recovered. ld + e € S then we can solve fod ande sincez # 1. If
zd+e ¢ SthenSN{zc+d, ze+a} # 0, so either can be recovered fromandzc + d
or e can be recovered from and ze + a. Then the remaining term is recoverable from
d + e. Now consider the case whehn S = {a,b,d}. Thenc + e can be recovered. If
SN{zb+ec,zc+d} # 0 thenc can be recovered from eitheandzb+ ¢ or d andzc+d. If
SN{zb+c,ze+d} =0thenSN{zd+ e, ze +a} # (), soe can be recovered from either
d andzd + e or a andze + a. Finally, the remaining term can be recovered frome.

|

Lemma 2.6.3. Network 5 has a binary linear solution for vector dimensign

Proof. Consider a scalar linear solution ov@F’(4) (which is known to exist by Lemma
2.6.2). The elements @FF'(4) can be viewed as the following fodrx 2 matrices over
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GF(2):
00 10 11 01
0o/ \o 1/ \10) \1 1)
Then, using thé&: F'(4) solution from Lemma 2.6.2 and substituting in the matrixesgn-
tation yields the followingl 2 linear functions of dimensiof for the second layer of the

() G- () () ()

network:

11
10

b d
ay i 1 i 1 i 1 i €1 7
Qo by Co ds €9
aq i bl i C1 i d1 i €1 .
) by Co do €2
It is straightforward to verify that from any of thesel2 vector linear functions, one can

linearly obtain the; message vectorg!), (i), (%), (1), ().

2 da €2

Example 2.6.4.As considered in Example 2.3.1, the netwdvk has routing capacity
e = 3/4. We now show that both the coding and linear coding capacitie equal to 1,
which is strictly greater than the routing capacity.

Proof. Network \; has a well known scalar linear solution [1] given by

€12 = €24 = €26 =171
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€13 =€34 =€37 =Y

€s5 = €56 = €57 =T+ Y.

Thus,\ > 1 andy > 1.

To upper bound the coding and linear coding capacities, tiateeach sink de-
mands both messages but only possesses two incoming edges.wie have the require-
ment2k < 2n, for arbitraryk andn. Hence A < 1 and~y < 1.

[

Theorem 2.6.5.The coding capacity of any network is independent of theaddphused.

Proof. Suppose a network has(&, n) fractional coding solution over an alphabétand
let B be any other alphabet of cardinality at least two. £ et 0 and let

(k+1)log, | B|
t= .
nelog, |A|

There is clearly dtk, tn) fractional coding solution over the alphabg&bbtained by inde-
pendently applying thek, n) solutiont times. Define the quantities

log IAIW
n=n {t- 2
10%2‘B|

/
K = V—”J —k
n

and notice by some computation that

|B|" > |A|" (2.5)
|B|¥ < |A[* (2.6)
/
E, > k_ €. (2.7)
n n

For each edge, letd, andm, respectively be the number of relevant in-edges and message
originating at the starting node ef and, for each nodelet d, andm, respectively be the
number of relevant in-edges and messages originating &bor each edge, denote the
edge encoding function farby

fe . (Atn)de % (Atk)me N Atn
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and for each node, and each message demanded by denote the corresponding node
decoding function by

fmm . (Atn)dv X (Atk’)mu N Atk.

The functionf. determines the vector carried on the out-edgd# a node based
upon the vectors carried on the in-edges and the messaggeciginating at the same
node. The functiory, ., attempts to produce the message veatoas a function of the
vectors carried on the in-edges of the nedend the message vectors originating atet
h: A" — B" andh, : B¥ — A% be any injections (they exist by (2.5) and (2.6)). Define
h : B" — A" such thath(h(x)) = x for all x € A™ andh(x) is arbitrary otherwise.
Also, defineh, : A" — B¥ such that(ho(x)) = x for all x € B¥ andhg(x) is arbitrary
otherwise. Define for each edgehe mapping

e : (Bn’)de X (Bk')me - Bn’

by
ge(xla ey Xdey Y1y -t 7Yme)
= h(fe(ﬁ(xl)v CIR iL(Xde)v hO(yl)v R hO(Yme)))
forallx,,...,x, € B andfor ally,, ...,y € B¥. Similarly, define for each node

and each message demanded at the mapping
Gom © (B™)™ x (B¥)™ — BY
by

gv,m(X17 s Xdyy Y1, - - 7Ym/u)

= ho(fom(R(x1), -, h(Xa,), ho(¥1)s - - - ho(Ym)))

forallx,,..., x4, € B” andforally,,...,y,, € B".

Now consider thék’, n") fractional network code over the alphali¢bbtained by
using the edge functiong and decoding functions, ,,. For each edge in the network, the
vector carried on the edge in tfie, n) solution over the alphabet and the vector carried
on the edge in thék’, n’) fractional network code oveB can each be obtained from the
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other usingh and/, and likewise for the vectors obtained at sink nodes frondtimding
functions for the alphabetd and B (usinghy andfzo). Thus, the set of edge functiops
and decoding functiong, ., gives a(k’, n’) fractional routing solution of the network over
alphabetB, since the vector on every edge in the solution o¥ean be determined (using
h, ho, h, andhg) from the vector on the same edge in the solution dverThe (¥, n’)
solution achieves a rate &f/n’, which by (2.7) is at leagtk/n) — €. Sincee was chosen
as an arbitrary positive number, the supremum of achievalds of the network over the
alphabetB is at least:/n. Thus, if a coding rate is achievable by one alphabet, then th
rate is a lower bound to the coding capacity for all alphab&tsis implies the network
coding capacity (the supremum of achievable rates) is tme $ar all alphabets. [ |

There are numerous interesting open questions regarditigg@apacity, some
of which we now mention. Is the coding capacity (resp. lingating capacity) achievable
and/or rational for every network? For which networks islthear coding capacity smaller
than the coding capacity, and for which networks is the ngutapacity smaller than the
linear coding capacity? Do there exist algorithms for cotmguthe coding capacity and
linear coding capacity of networks?

2.7 Conclusions

This paper formally defined the concept of the routing cdpaafia network and
proved a variety of related properties. When fractionatirguis used to solve a network,
the dimension of the messages need not be the same as thé&ycapdice edges. The
routing capacity provides an indication of the largest gmegractional usage of the edges
for which a fractional routing solution exits. A variety addmple networks were considered
to illustrate the notion of the routing capacity. Throughoastructive procedure, the rout-
ing capacity of any network was shown to be achievable amolvat Furthermore, it was
demonstrated that every rational numbef(ni] is the routing capacity of some solvable
network. Finally, the coding capacity of a network was alstreed and was proven to be
independent of the alphabet used.

The results in this paper straightforwardly generalizerntot (hecessarily acyclic)
undirected networks and to directed networks with cyclesels Also, the results can be
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generalized to networks with nonuniform (but rational) edgpacities; in such case, some

extra coefficients are required in the network inequalitida interesting future problem

would be to find a more efficient algorithm for computing theting capacity of a network.
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Chapter 3

Network Coding Capacity With a
Constrained Number of Coding Nodes

Abstract

We study network coding capacity under a constraint on the to
tal number of network nodes that can perform coding. That is,
only a certain number of network nodes can produce codeditsjtp
whereas the remaining nodes are limited to performing mgutiVe
prove that every non-negative, monotonically non-dedngagven-
tually constant, rational-valued function on the non-riegainte-
gers is equal to the capacity as a function of the number oivalble
coding nodes of some directed acyclic network.

3.1 Introduction

Let N denote the positive integers, and Rtand Q denote the real and rational
numbers, respectively, with a superscript’“denoting restriction to positive values. In
this paper, anetworkis a directed acyclic multigrap&y = (V, £'), some of whose nodes
are information sources or receivers (e.g. see [13]). Aaseat with the sources are
generatednessagesvhere the' source message is assumed to be a vectbrarbitrary
elements of a fixed finite alphabet of size at least two. At any node in the network,
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each out-edge carries a vectorroflphabet symbols which is a function (called esige
function of the vectors of symbols carried on the in-edges to the naxé of the node’s
message vectors if it is a source. Each network edge is alldavbe used at most once
(thus, at most symbols can travel across each edge). Itis assumed thgtresterork edge

is reachable by some source message. Associated with eaherearedemandswhich
are subsets of the network messages. Each receivelelsading functiongvhich map the
receiver’s inputs to vectors of symbols in an attempt to poedthe messages demanded
at the receiver. The goal is for each receiver to deduce itsadded messages from its
in-edges and source messages by having information prtgagan the sources through
the network.

A (ki,...,kn,n) fractional codeis a collection of edge functions, one for each
edge in the network, and decoding functions, one for eachaddrof each receiver in the
network. A(ky,...,ky,,n) fractional solutionis a (k4, . .., k,,,n) fractional code which
results in every receiver being able to compute its demaradgsvdecoding functions, for
all possible assignments of lengthvectors over the alphabet to tifé source message,
for all .. An edge function performs routing when it copies specifiggui components
to its output components. A node perfornesiting when the edge function of each of its
out-edges performs routing. Whenever an edge functionfautedge of a node depends
only on the symbols of a single in-edge of that node, we asswitieout loss of generality,
that the out-edge carries the same vector of symbols as-dge it depends on.

For eachi, the ratiok;/n can be thought of as the rate at which sourdejects
data into the network. Thus, different sources can prodata dt different rates. If a
network has &k, ..., k,,n) fractional solution over some alphabet, then we say that
(ki/n, ... kn/n)is anachievable rate vectorand we define thachievable rate region
of the network as the set

S ={r € Q" :r isan achievable rate vector

Determining the achievable rate region of an arbitrary oetvappears to be a formidable
task. Consequently, one typically studies certain scalantities called coding capacities,
which are related to achievable rates. A routing capacity métwork is a coding capacity

!Sometimes in the literature the closufewith respect tdR™, is taken as the definition of the achievable
rate region.



46

under the constraint that only routing is permitted at nekwwdes. Acoding gainof a
network is the ratio of a coding capacity to a routing cagadior directed multicadtand
directed multiple unicadmnetworks, Sanders, Egner, and Tolhuizen [10] and Li and Li [8
respectively showed that the coding gain can be arbitriibye.

An important problem is to determine how many nodes in a netwaoe required
to perform coding in order for the network to achieve its ogdcapacity (or to achieve
a coding rate arbitrarily close to its capacity if the capa@ not actually achievable).
A network node is said to be @oding nodeif at least one of its out-edges has a non-
routing edge function. A similar problem is to determine thenber of coding nodes
needed to assure the network has a solution (i(é; a. ., k,,, n) fractional solution with
ky =--- =k, =n = 1). The number of required coding nodes in both problems can in
general range anywhere from zero up to the total number cdsodthe network.

For the special case of multicast networks, the problem diiritpa minimal set
of coding nodes to solve a network has been examined prdyiou§2], [6], [7], [11];
the results of which are summarized as follows. Langbergn&on, and Bruck [7] de-
termined upper bounds on the minimum number of coding noglgsined for a solution.
Their bounds are given as functions of the number of messagkthe number of receivers.
Tavory, Feder, and Ron [11] showed that with two source ngessahe minimum number
of coding nodes required for a solution is independent otalted number of nodes in the
network, while Fragouli and Soljanin [6] showed this minimtio be upper bounded by
the number of receivers. Bhattad, Ratnakar, Koetter, amdydaan [2] gave a method for
finding solutions with reduced numbers of coding nodes, lieit method may not find the
minimum possible number of coding nodes. Wu, Jain, and Kd2d) lemonstrated that
only certain network edges require coding functions. Thid fndirectly influences the
number of coding nodes required, but does not immediateky gn algorithm for finding
a minimum node set.

We study here a related (and more general) problem, namatynkbnvork coding
capacities can vary as functions of the number of allowabténg nodes. Our main re-

2A multicastnetwork is a network with a single source and with every remrelemanding all of the
source messages.

3A multiple unicastnetwork is a network where each message is generated bylyesaetsource node
and is demanded by exactly one receiver node.
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sult, given in Theorem 3.3.2, shows that the capacities tiorlks, as functions of the
number of allowable coding nodes, can be almost anythingt iBh the class of directed
acyclic networks can witness arbitrary amounts of coding @& using arbitrarily-sized
node subsets for coding.

3.2 Coding Capacities

Various coding capacities can be defined in terms of the aable rate region of
a network. We study two such quantities, presenting thefinidiens and determining
their values for an example network given in Figure 3.1. Tlasvork is used to establish
Theorem 3.3.2. Li and Li [8] presented a variation of thiswvak and found the routing
and coding capacities for the case witer= k for all 7.

For any(ky, ..., kn,n) fractional solution, we call the scalar value

1<k1 l{:m)
J— _+.+_
m\ n n

an achievable average ratef the network. We define thaverage coding capacityf a
network to be the supremum of all achievable average raéesely

1 m
Caverage :SUP{EZ” : (Tl,---,rm) ES}

i=1

Similarly, for any(k;, .. ., k., n) fractional solution, we call the scalar quantity

mms«q —,...,—
n n

an achievable uniform rat®f the network. We define theniform coding capacityf a
network to be the supremum of all achievable uniform ratas)ely

Cunifm‘m:sup{ min T (Tl,...,rm) - S}

1<i<m
Note that ifr € S and ifr’ € Q™" is component-wise less than or equattahenr’ € S.
In particular, if

and
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then
(’I“Z‘,’I“i,...,’f’i) - S

which implies

Cumfm"m

=sup{r;: (ri,...,rm) €S, r1=--=rpy}.

In other words, all messages can be restricted to havingatie slimension

when consideringi/form,

Also, note that
Cavev"age > Cum'form

and that quantitieg®e ¢ and C*"/°r™ are attained by points on the boundary of the
closureS of S. If a network’s edge functions are restricted to purely imgfunctions,
thenCaverese andCumi/or™ will be referred to as thaverage routing capacitgnduniform
routing capacity and will be denote@"“"*** andC:™"/*"™, respectively.

Example 3.2.1.In this example, we consider the network in Figure 3.1. Nbé&t for each
j = 1,...,q, every path from source nodg to receiver nodey,,.; contains the edge
e;q+1- Thus, we must have; < n for all j, and therefore

ki + -4k, < gn,

SOCG/UET’(IQE S 1'

Furthermore, we can obtain(a, . . ., k,, n) fractional coding solution with
ki=--=k,=n=1

using routing at all nodes excepj,;, which transmits the mo@4| sum of its inputs on
one of its out-edges and nothing on its other 1 out-edges. This solution implies that

C(wer(zge Z 1 .

Thus, we havgerase = 1.
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Figure 3.1: The networkV(p, q), with p < g andp,q € Z*. Nodesn,,...,n, are the
sources, with node; providing messag&( ¥, for 1 < i < q. Nodesn, s, ..., ny, 2 are
the receivers, with node; demanding messageé(—9-2, for ¢ + 3 < i < 2¢ + 2. Every
source has one out-edge going to nege; and every receiver has one in-edge coming
from noden,,.. Also, every source;; has an out-edge going to receivey, . ;, for all

J # i. There are parallel edges from node,; to noden,».

Clearly,
Cumfm"m S C(wer(zge — 1
The presentedk,, .. ., k,, n) fractional coding solution uses
k= =k,
(o]
Cuniform 2 1.
Thus,

Cum'form —1.

When only routing is allowed, all of the messages must passitfin thep edges
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from noden,, to n,.». Thus, we must have
ki+---+k, <pn,

or equivalently,

By +--- 4k, SE-
qan q
This implies
average p
Co e < =.
° q
A (ky, ..., k4 n) fractional routing solution consists of taking
k‘l = _= k‘q _= p

andn = ¢ and sending each messayj€’ along the corresponding edgg, ., sending all
ki+---+ky=qp

message components from node; to n,. in an arbitrary fashion, and then sending each
messageX V) from noden,, to the corresponding receiver nodg » ;. Hence,

Cgm'form Z S

and therefore
]_9 S aniform S C(t)werage S ]_9
q

=)

Thus,
uniform average __ P
cuniform — gaverage _ .

Various properties of network routing and coding capasitidating to their rela-
tive values, linearity, alphabet size, achievability, @odnputability have previously been
studied [1], [3]-[5], [9]. However, it is not presently knowvhether or not there exist
algorithms that can compute the coding capacity (uniforrav@rage) of an arbitrary net-
work. In fact, computing the exact coding capacity of evdatieely simple networks can
be a seemingly non-trivial task. At present, very few exaxticg capacities have been
rigorously derived in the literature.
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3.3 Node-Limited Coding Capacities

For each non-negative integem (k1, . . ., k., n) fractionali-node coding solution
for a network is aky, .. ., k,,, n) fractional coding solutiorwith at mosti coding nodes
(i.e. having output edges with non-routing edge functidngjor eachi, we denote by

Cc_werage
K3

andC""/”"™ the average and uniform coding capacities, respectivéigrvsolu-
tions are restricted to those having at mosbding nodes. We make the convention that,

foralli > |V,
gprerese — guerose
and
C;mi form _ Cﬁ/r}‘i form

We callC""*° andC!*"/°"™ thenode-limited average capacity functiandnode-limited
uniform capacity functionrespectively. Clearly, the minimum number of coding nodes
needed to obtain the average or uniform network capacityeistnallest such that

CFI’USTG,QS — CCLU@?"CLQ@
3

or

uniform __ ouniform
c: — guniform

respectively. Also, the quantitic&ﬁj‘lif o™ and Cﬁ;’f’”“ye are respectively the uniform and

average coding capacities.

Example 3.3.1.For the network in Figure 3.1, sin€é""29¢ andC*"/>"™ are both achieved
using only a single coding node (as shown in Example 3.2h&)nbde-limited capacities

are
goverage _ uniform _ { p/q fori=0 (3.1)
1 fori>1.
A function f : NU {0} — R is said to besventually constarif there exists an
such that
fli+3) = 1)

4Arbitrary decoding is allowed at receiver nodes and receiveles only contribute to the total number of
coding nodes in a network if they have out-edges performating.
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forall j € N. Thus, the node-limited uniform and average capacity fonstare eventually
constant. A network’s node-limited capacity function isablways non-negative. For a
given number of coding nodes, if a network’s node-limitedarty is achievable, then it
must be rational, and cannot decrease if more nodes areealltimperform coding (since
one can choose not to use extra nodes for coding). By exagth@ admissible forms
of C#*"*¢ andC"/*"™ we gain insight into the possible capacity benefits of penfog
network coding at a limited number of nodes.

Theorem 3.3.2, whose proof appears after Lemma 3.3.4, denates that node-
limited capacities of networks can vary more-or-less aabiy as functions of the number
of allowable coding nodes. Thus, there cannot exist anyulggineral upper or lower
bounds on the node-limited capacity of an arbitrary netwbdunds might exist as func-
tions of the properties of specific networks, however).

Theorem 3.3.2.Every monotonically non-decreasing, eventually condtamttionf : NU
{0} — QT is the node-limited average and uniform capacity functibsame directed
acyclic network.

Two lemmas are now stated (the proofs are simple and therefoitted) and are
then used to prove Theorem 3.3.2.

Lemma 3.3.3.Let NV be a network with node-limited uniform and average codingaca

ities C"/°"™ and C***"*%°, respectively, and let be a positive integer. If every message

is replaced at its source node pynew independent messages and every receiver has each
message demand replaced by a demand for all ofythew corresponding messages, then
the node-limited uniform and average coding capacity fiamst of the resulting network

N are (1/p)C™ 7™ and (1/p)Co %, respectively.

Lemma 3.3.4.Let N be a network with node-limited uniform and average codingpca
tiesC"/7"™ andC*“"*°, respectively, and letbe a positive integer. If every directed edge
is replaced by new parallel directed edges in the same orientation, themitde-limited
uniform and average coding capacity functions of the résglbetwork\” are ¢C/"*/*"™
andqC;"“"*°, respectively.

Proof of Theorem 3.3.2.
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Supposef : NU {0} — QT is given by
. pi/qg for0<i<s
UER S
ps/qs fori>s

where

Pos---3Ps,q0,---,(s

are positive integers such that

Po/qo < p1/g1 < -+ < ps/gs.

Define the positive integers

b=ps-lem{qg : 0<i<s}=lem{pg :0<i<s}eN

_ pi/Qi b= Digs

-beN
pS/qs Dsq;

)

and construct a network” as shown in Figure 3.2, which has = b source messages and
uses the networks
N(ao, b), Ce ,N(Cl,s_l, b)

as building blocks (note that /b < 1 for all 7).

N(a,.b) ] N(a, .b) ]

Figure 3.2: The network/ hasb source nodes, each emitting one message. Each source
node has an out-edge to each sub-blé@k, b), . .., N (as_1,b). Specifically, in each sub-
block N/ (a;, b), the previous source messages are removed, however ea@bugrsource
node is connected by an in-edge from the unique correspgrstinrce node ith\/. Each
sub-blockN (a;, b) has routing capacity; /b = (p;/4:)/(ps/qs)-
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Let C*"/°™ and C***"*° denote the uniform and average node-limited capacity
functions of network\. Also, forj = 0,...,s — 1, let C}%"/*™ and C{"**° denote
the uniform and average node-limited capacity functionthefsub-blockV (a;, b). There
are exactly2s nodes in\ that have more than one in-edge and at least one out-edge, and
which are therefore potential coding nodes (i.e. two paéobding nodes per sub-block).
However, for each sub-block, any coding performed at thetgwtential coding node can
be directly incorporated into the upper potential codingeno

For eachi = 0,...,s — 1, in order to obtain &k, ..., k,,,n) fractionali-node
coding solution, the quantity
k14 4k
mn
must be at most
min % _ min Pild /4

i b J ps/Qs
where the minimization is taken over gllfor which sub-block\/ (a;,b) has no coding

nodes (as seen from (3.1)). That is, we must have

ky+-- -4k < Di/ Qi
mn = ps/as

Therefore, the node-limited average and uniform codingaciies of A/ using: coding
nodes are at most the respective routing capacities of mdb-Iy/ (a;, b) of N, namely
Clyniform S Clygiform _ al/b _ pz/qz
’ s/ s

Pi/ i
caverage < goverage — q. /b = .
1 270 Z/ pS/qS

These upper bounds are achievable by using coding at theserfi@l possible cod-
ing node in each of the sub-blocks

N<a07 b)a s 7N(ai—17 b)
and using routing elsewhere. By taking

d = lem(ag, ..., as 1)
ky=--=k,=d
n=bd/a;
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we can obtain &k, ..., k,,n) fractionali-node coding solution with coding nodes in
sub-blocks
N<a07 b)a s 7N(ai—17 b)

and only routing edge-functions in sub-blocks
N(a;,b),...,N(as_1,b).
With such a solution, the coding capacity
ijlu form _ Cj(_z’il)erage -1
is achieved in each sub-block
N(ag,b),...,N(ai_1,b),
and the (unchanging) routing capacity
C%n form _ Czio)erage
is achieved in each sub-block
N(a;,b),...,N(as_1,b).

Thus, networkN" has node-limited average and uniform capacity functionsryi

by
(pi/a:)/(ps/qs) for0<i<s
1 fori > s.

2

Caverage - Cumform o {
; =(; =

By Lemma 3.3.3 and Lemma 3.3.4, if we replace each messadé f ¢, new
independent messages and change the receiver demanddirgigorand if we replace
each directed edge ¥ by p, parallel edges in the same orientation, then the resulting
network A will have node-limited average and uniform capacity fumiesi given by

é;werage _ CA;meorm _ (ps/qs)cium'form _ f(Z)
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We note that a simpler network could have been used in thef mbdheo-
rem 3.3.2 if only the case @f*""/*"™ were considered. Namely, we could have used only
maxop<;<s ¢;ps source nodes and then connected edges from source nodds-iosks
N (pigs, gips) as needed.

One consequence of Theorem 3.3.2 is that large coding gambes suddenly ob-
tained after an arbitrary number of nodes has been used dimg.oFor example, for any
integer: > 0 and for any real number> 0, there exists a network such that

uniform __ puniform __ puniform
Co =C| = =C

average __ paverage __ paverage
Co =Cj ==

uniform uniform

it+1 -G >t

average average

In Theorem 3.3.2 the existence of networks that achievecpbesl rational-valued
node-limited capacity functions was established. It isviman general that not all net-
works necessarily achieve their capacities [5]. It is pndgaunknown, however, whether
a network coding capacity could be irratiofalhus, we are not presently able to extend
Theorem 3.3.2 to real-valued functions. Neverthelesspiidm 3.3.2 does immediately
imply the following asymptotic achievability result forakvalued functions.

Corollary 3.3.5. Every monotonically non-decreasing, eventually constanttion f :
N U {0} — R is the limit of the node-limited uniform and average capaéiinction of
some sequence of directed acyclic networks.

3.4 Acknowledgment
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Cannons and Kenneth Zeger, “Network Coding Capacity Witroastained Number of
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5|t would be interesting to understand whether, for examgptede-limited capacity function of a network
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values. We leave this as an open question.
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Chapter 4

An Algorithm for Wireless Relay
Placement

Abstract

An algorithm is given for placing relays at spatial posisdo im-
prove the reliability of communicated data in a sensor nekwdhe
network consists of many power-limited sensors, a smalbte-
lays, and a receiver. The receiver receives a signal dyréaim
each sensor and also indirectly from one relay per sensa@.ré@h
lays rebroadcast the transmissions in order to achieveadiliyeat
the receiver. Both amplify-and-forward and decode-and+od re-
lay networks are considered. Channels are modeled witheRyy|
fading, path loss, and additive white Gaussian noise. Radnce
analysis and numerical results are given.

4.1 Introduction

Wireless sensor networks typically consist of a large nunmddesmall, power-
limited sensors distributed over a planar geographic areaome scenarios, the sensors
collect information which is transmitted to a single reegifor further analysis. A small
number of radio relays with additional processing and comigations capabilities can be
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strategically placed to help improve system performanea important problems we con-
sider here are to position the relays and to determine, fdr sansor, which relay should
rebroadcast its signal.

Previous studies of relay placement have considered \sanptimization criteria
and communication models. Some have focused on the covefate network (e.g.,
Balam and Gibson [2]; Chen, Wang, and Liang [4]; Cortés, tMeaz, Karatas, and Bullo
[7]; Koutsopoulos, Toumpis, and Tassiulas [13]; Liu and Mpatra [14]; Mao and Wu
[15]; Suomela [22]; Tan, Lozano, Xi, and Sheng [23]). In [E8mmunication errors are
modeled by a fixed probability of error without incorporatiphysical considerations; oth-
erwise, communications are assumed to be error-free. Sudtes often directly use the
source coding technique known as the Lloyd algorithm (seg,[9]), which is sub-optimal
for relay placement. Two other optimization criteria arew@k lifetime and energy usage,
with energy modeled as an increasing function of distandenath error-free communica-
tions (e.g., Ergen and Varaiya [8]; Hou, Shi, Sherali, and®¥f [11]; Iranli, Maleki, and
Pedram [12]; Pan, Cai, Hou, Shi, and Shen [17]). Models pa@ting fading and/or path
loss have been used for criteria such as error probabilitage probability, and through-
put, typically with simplifications such as single-sensosiogle-relay networks (e.g., Cho
and Yang [5]; So and Liang [21]; Sadek, Han, and Liu [20]). Tnajority of the above
approaches do not include diversity. Those that do oftenaddatus on optimal relay lo-
cation and use restricted networks with only a single soancior a single relay (e.g., Ong
and Motani [16]; Chen and Laneman [3]). These previous studifer valuable insight;
however, the communication and/or network models usedyareally simplified.

In this work, we attempt to position the relays and determihih relay should re-
broadcast each sensor’s transmissions in order to minitmézaverage probability of error.
We use a more elaborate communications model which inclpalsloss, fading, additive
white Gaussian noise, and diversity. We use a network madehich all relays either use
amplify-and-forward or decode-and-forward communiagagioEach sensor in the network
transmits information to the receiver both directly anatigh a single-hop relay path. The
receiver uses the two received signals to achieve diveiSapsors identify themselves in
transmissions and relays know for which sensors they appnstble. We assume TDMA
communications by sensors and relays so that there is Iiifleal transmission interfer-
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ence.

We present an algorithm that determines relay placemenassidns each sensor
to a relay. We refer to this algorithm as tletay placement algorithmrhe algorithm has
some similarity to the Lloyd algorithm. We describe geomeatly, with respect to fixed
relay positions, the sets of locations in the plane in whistssrs are (optimally) assigned
to the same relay, and give performance results based andhalyses and using numerical
computations.

In Section 4.2, we specify communications models and deter@rror probabil-
ities. In Section 4.3, we present our relay placement algori In Section 4.4, we give
analytic descriptions of optimal sensor regions (with eg$go fixed relay positions). In
Section 4.5, we present numerical results. In Section 4é6swnmarize our work and
provide ideas for future consideration.

4.2 Communications Model and Performance Measure

4.2.1 Signal, Channel, and Receiver Models

In a sensor network, we refer to sensors, relays, and théeveeasnodes We
assume that transmission &f € {—1,1} by node: uses the binary phase shift keyed
(BPSK) signals;(t), and we denote the transmission energy per bithyIn particular,
we assume all sensor nodes transmit at the same energy pdeihidted byFr,. The
communications channel model includes path loss, addithree Gaussian noise (AWGN),
and fading. LetL;; denote the far field path loss between two nodesd j that are
separated by a distandg; (in meters). We consider the free-space law model (e.g., see
[19, pp. 70 — 73]) for which

(4.1)
where:

Fy = 22 (in meters)

1672

'Much of the material of this paper can be generalized by oipdathe path loss exponentby any
positive, even integer, an, by a corresponding constant.
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A = ¢/ fo is the wavelength of the carrier wave (in meters)
c = 3 - 108 is the speed of light (in meters/second)

fo is the frequency of the carrier wave (in Hz).

The formulain (4.1) is impractical in the near field, sidgg — oo asd, ; — 0. Comaniciu
and Poor [6] addressed this issue by not allowing transomissat distances less than
Ong and Motani [16] allow near field transmissions by propgs modified model with
path loss

L;= (1+F7§”)2 (4.2)
We assume additive white Gaussian nois€) at the receiving antenna of noge The
noise has one-sided power spectral densigy(in W/Hz). Assume the channel fading

(excluding path loss) between nodend; is a random variablg; ; with Rayleigh density
Phy(h) = (h]0®)e /7 (h > 0). (4.3)

We also consider AWGN channels (which is equivalent to assgim ; = 1 for all <, 7).

Let the signal received after transmission from nede node; be denoted by
r;;(t). Combining the signal and channel models, we hay@) = /L; ; h; ;si(t)+n;(t).
The received energy per bit without fading#§ = E;L;,;. We assume demodulation
at a receiving node is performed by applying a matched fitieslttain the test statistic.
Diversity is achieved at the receiver by making a decisiogedaon a test statistic that
combines the two received versions (i.e., direct and relpgé the transmission from a
given sensor. We assume the receiver uses selection camgpiniwhich only the better
of the two incoming signals (determined by a measurable tifjyasuch as the received
signal-to-noise-ratio (SNR)) is used to detect the tratteahbit.

4.2.2 Path Probability of Error

For each sensor, we determine the probability of error atbegdirect path from
the sensor to the receiver and along single2hefay paths, for both amplify-and-forward
and decode-and-forward protocols. betc R? denote a transmitter position and ek

2Computing the probabilities of error for the more generaboaf multi-hop relay paths is straightforward.
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denote the receiver. We consider transmission paths oftimesf(x, Rx), (x,1), (i, Rx),
and(x, i, Rx), wherei denotes a relay index. For each such patlet:

SNRY, = end-to-end SNR, conditioned on the fades (4.4)
Pj‘H = end-to-end error probability, conditioned on the fades 5)4.
SNR? = end-to-end SNR (4.6)
P? = end-to-end error probability. 4.7)

For AWGN channels, we takeNR? and P¢ to be the SNR and error probability when the
signal is degraded only by path loss and receiver antenrs né&ior fading channels, we
take SNR? and P? to also be averaged over the fades. Note that the signadise-matios
only apply to direct paths and paths using amplify-and-todwelays. Finally, denote the
Gaussian error function by(x) = —&= [ e™v"/?dy.

Direct Path (i.e., unrelayed)

For Rayleigh fading, we have (e.g., see [18, pp. 817 — 818])

402 By L , 402 By Ly , 40°E; L,
N (x,Rx) _ Txx,Rx | N (x,1) _ Txtx,i N (3,Rx) _ 1444, Rx
SNR — N, SNR N, SNR T
(4.8)
1 2 172
PR — Z 1 (14— . 4.
e 5 ( < + SNR(X’RX)) ) (4.9)
For AWGN channels, we have (e.g., see [18, pp. 255 — 256])
281, L 4 2B Ly ; - 2E;L;
N (x,Rx) _ Tx4x,Rx | N (x,7) _ Txtix,i N (4,Rx) _ 1449, Rx
SNR N, SNR N, SNR N,
(4.10)

e

PR — (v SNR <R ) . (4.11)

Note that analogous formulas to those in (4.9) and (4.11peagiven forP™" and
Pe(i,Rx).
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Relay Path with Amplify-and-Forward

For amplify-and-forward relay$the system is linear. Denote the gain@y Con-
ditioning on the fading values, we have (e.g., see [10])
h2 .h?g. Ery/No

SNRg’i’RX) _ X, “1,Rx
Bih? gy + D;

PR _ (\/W ) (4.13)

1 1
D D=
2Lx,i’ 2G2Lx,iLi,Rx

(4.12)

where B; =

(4.14)

Then, the end-to-end probability of error, averaged overfdles, is

(x,i,Rx) / / el);j RX x z) PH (hi,Rx) dhx,i dhi,RX

/ / Q hi zh22 RXETX/NO hx,i e hi,z hi,Rx
= - X -
o Jo Bih; g, + D; o? Pl 202 o2

h2
- exp { Q’R" } dhy; dhi gy [from (4.13) (4.12) (4.3)

02

1 D;No/ Errx
T2 4o (0% + BNo/Er)"?

St G

1 _ Dz\/_N(]/ETx <§ DiNO/ETx ) (4 15)
2 80 (02 + BiNy/Ery)*? 2’7 202 (02 + B;Ny/Ery) '

whereU(a, b, z) denotes the confluent hypergeometric function of the sekamti[1, p.
505] (also known as Kummer’s function of the second kin@), i.

1 /oo —ztya—1 b—a—1
—_— e Fi 1+t dt.
) J, (1+19)

For AWGN channels, we have

Ula,b,z) =

Ery/No

Pe(x,i,Rx) _ Q ( SNR(X%RX) ) ) (417)

3By amplify-and-forward relaysve specifically mean that a received signal is multiplied moastant
gain factor and then transmitted.

SNR(x,i,Rx) _
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Relay Path with Decode-and-Forward

For decode-and-forward relafighe signal at the receiver is not a linear function
of the transmitted signal (i.e., the system is not lineas)the relay makes a hard decision
based on its incoming data. A decoding error occurs at thevexcif and only if exactly
one decoding error is made along the relay path. Thus, foleRgyfading, we obtain (e.qg.,
see [10])

PpxiRx) ! 1 1 2 o 1 1 2 o
c n 1 B + SNR(xvi) T + SNR(’i,RX)
+1 1— 1+L o 14+ {1+ 2 o
4 SNR(Fx) SNR>?) '

[from (4.9) (4.18)

For AWGN channels, we have (e.g., see [10])

P(x,i,Rx) — P(x,i) (1 . Pe(i,Rx)) + Pe(i,Rx) (1 . P(x,z)) ) (419)

€ € €

4.3 Path Selection and Relay Placement Algorithm

4.3.1 Definitions

We define aensor network with relayte be a collection of sensors and relay&ih
together with a single receiver at the origin, where eacb@emansmits to the receiver both
directly and through some predesignated relay for the seasd the system performance
is evaluated using the measure given below in (4.20). Spaltifiletx,,...,x,; € R? be
the sensor positions and tet, ..., yy € R? be the relay positions. Typicallyy < M.
Letp : R? — {1,..., N} be asensor-relay assignmenwvherep (x) = i means that if
a sensor were located at positian then it would be assigned to relgy. Let S be a
bounded subset d&2. Throughout this section and Section 4.4 we will consid@sse
relay assignments whose domains are restrictét(8nce the number of sensors is finite).

4By decode-and-forward relaywe specifically mean that a single symbol is demodulated hed te-
modulated; no additional decoding is performed (e.g., ahctel codes).
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Let thesensor-averaged probability of errdwe given by

M
1
M Z Pe(xsvp(xs)va) . (420)

s=1
Note that (4.20) depends on the relay locations through ¢inem-relay assignmenpt
Finally, let( , ) denote the inner product operator.

4.3.2 Overview of the Proposed Algorithm

The proposed iterative algorithm attempts to minimize #vessr-averaged proba-
bility of error® over all choices of relay positions, . .., y» and sensor-relay assignments
p. The algorithm operates in two phases. First, the relaytiposi are fixed and the best
sensor-relay assignment is determined; second, the sexlagrassignment is fixed and
the best relay positions are determined. An initial placeneé the relays is made either
randomly or using some heuristic. The two phases are repeaté the quantity in (4.20)
has converged within some threshold.

4.3.3 Phase 1. Optimal Sensor-Relay Assignment

In the first phase, we assume the relay positpns. ., y y are fixed and choose an
optimaP sensor-relay assignmepit, in the sense of minimizing (4.20). This choice can be
made using an exhaustive search in which all possible seakyr assignments are exam-
ined. A sensor-relay assignment induces a partitiofi mfto subsets for which all sensors
in any such subset are assigned to the same relay. For eaglyselet o; be the set of all
pointsx € S such that if a sensor were located at posittorthen the optimally assigned
relay that rebroadcasts its transmissions woulghée.,o; = {x € S : p* (x) =i} . We
call o; theth optimal sensor regiofwith respect to the fixed relay positions).

SHere we minimize (4.20); however, the algorithm can be agthjs minimize other performance mea-
sures.

5This choice may not be unique, but we select one such minigiassignment here. Also, optimality of
p* here depends only on the valygs(x;) ,...,p* (xar).
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4.3.4 Phase 2: Optimal Relay Placement

In the second phase, we assume the sensor-relay assigranixetdi and choose
optimal’ relay positions in the sense of minimizing (4.20). Numdrteahniques can be
used to determine such optimal relay positions. For thetfirste instances of phagean
the iterative algorithm, we used an efficient (but slightipoptimal) numerical approach
that quantizes a bounded subseRdfinto gridpoints. For a given relay, the best gridpoint
was selected as the new location for the relay. For subsédqustances of phasg the
restriction of lying on a gridpoint was removed and a steegescent technique was used
to refine the relay locations.

4.4 Geometric Descriptions of Optimal Sensor Regions

We now geometrically describe each optimal sensor regioednsidering spe-
cific relay protocols and channel models. In particular, waneine amplify-and-forward
and decode-and-forward relaying protocols in conjunctiith either AWGN channels or
Rayleigh fading channels. We define tinéernal boundaryof any optimal sensor region
o; to be the portion of the boundary ef that does not lie on the boundary 8f For
amplify-and-forward and AWGN channels, we show that therm&l boundary of each op-
timal sensor region consists only of circular arcs. For tieothree combinations of relay
protocol and channel type, we show that as the transmissiengies of sensors and relays
grow, the internal boundary of each optimal sensor regiowemes to finite combinations
of circular arcs and/or line segments.

For each pair of relay§y;, y,), leto; ; be the set of all points € S such that if a
sensor were located at positignthen its average probability of error using rejgywould
be smaller than that using relgy, i.e.,

0,5 = {x € §: P& < peifxl (4.21)
Note thato; ; = S — o,,. Then, for the given set of relay positions, we have
N
o; = m 0 (4.22)
j=1
j#i

"This choice may not be unique, but we select one such set afqrsshere.
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sincep® (x) = argmin P9 Furthermore, for a suitably chosen constant> 0, in

e

je{1,...,N}
order to facilitate analysis, we modify (4.2fto
Fy
L= ——+. 4.23
YO+ d (4.23)

Amplify-and-Forward with AWGN Channels

Theorem 4.4.1.Consider a sensor network with amplify-and-forward relaysl AWGN
channels. Then, the internal boundary of each optimal seregpon consists of circular

arcs.

Proof. For any distinct relayg; andy;, let

1 K;
TR+ C Ayl TR SRS
Note that for fixed gairtz, K; # K, since we assumg; # y;. Then, we have

(4.24)

%

0ij = {x € & : PXIR) < piRIl

K; K;
=<{xeS: 5 > 5
{ C+lx-yill" C+I[x—yjl }
[from (4.17) (4.16) (4.14) (4.23) (4.24) (4.25)

Ki—K;>0
_ S 1 2 >
=¢xeS:[x— (1~ 'Ym) yi — %,JYJH Ki_f{j<0
Yig (ig = D llyi = y4ll* = € [from (4.24)  (4.26)

K;—K;>0
. > oo .
where the notatlor;( §< . indicates that %" should be used if<; — K; > 0, and “<”
i— ;<
if K; — K; < 0. By (4.26), the set; ; is either the interior or the exterior of a circle

(depending on the sign df; — K;). Applying (4.22) completes the proof. [ |

Figure 4.1a shows the optimal sensor regionsr,, o3, andoy, for N = 4 ran-
domly placed amplify-and-forward relays with AWGN chamand system parameter
valuesG = 65 dB, fy = 900 MHz, andC' = 1.

8Numerical results confirm that (4.23) is a close approxiaratif (4.2) for our parameters of interest.
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Figure 4.1. Sensor regions, oy, o3, ando, for 4 randomly placed relays. Each relay
i € {1,2,3,4} is denoted by a filled square labelgdvhile the receiver is denoted by a
filled circle labeledRx. Sensors are distributed as a square grid envigl0 meters in each
dimension. The sensor regions are either optimal or asyiinplly-optimal as described in
(@) Theorem 4.4.1 (amplify-and-forward relays and AWGNrotels), (b) Theorem 4.4.4
(decode-and-forward relays and AWGN channels with High/N, and E; /Ny), (c) The-
orem 4.4.6 (amplify-and-forward relays and Rayleigh fadihannels with higltr / Vy),
and (d) Theorem 4.4.8 (decode-and-forward relays and Rgwyfading channels) with
h|gh ETX/NO andEi/NQ).

Decode-and-Forward with AWGN Channels

Lemma 4.4.2(e.g., see [25, pp. 82 — 83], [24, pp. 37 —3FHpr all = > 0,

1 6—:p2/2 6—:p2/2
<1 a ﬁ) <\/ﬁx> <Q) < onx
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Lemma 4.4.3.Lete > 0 and
Q(v7) +Q(v5) ~20(v=) Q (v)

L., =
Y max 671/2 e*y/Q
V2nx? /21y

Then,1 — e < L, , <2 for z andy sufficiently large.

Proof. For the lower bound, we have

671’/2 efy/Q 87w/2 efy/2 —:1,’/2 _y/2
L > V2mx Vvamy zV21mx yv/2my — 9min € €
Y — 871'/2 87y/2 e—T/2 efy/2 ) 2
e " ° \ 2T \/ LT
2mc+\/m maX(@a\/m) X Yy

[from Lemma 4.4.2

> 1 1 e~ max(z,y)/2 min(x, y)
- min(z, y) max(z,y)/max(x,y) e— min(z,y)/2

< 6—m/2 6—y/2 ) '

— 2min ) orz,y>1
e o [for z,y > 1]
>1—c [for z, y sufficiently large

For the upper bound, we have

e~ /2 e~ v/2 1 e~ /2 1 e~ Y/2
_ (52) + () —20- D (52) (1-3) (%) [

L,,< from Lemma 4.4.2
max (€22 e v
2wz’ /2Ty
e—T/2 _'_ e—Y/2
< VImr VR [for =,y > 1]
max | o, <2
2z ) /2Ty
< 2.
[

Theorem 4.4.4.Consider a sensor network with decode-and-forward relays ANVGN
channels, and, for all relays, let E;/Ny, — oo and Er,/Ny — oo such that
(E;/No)/(Et«/Ny) has a limit. Then, the internal boundary of each optimal sems-
gion consists asymptotically of circular arcs and line segits.

Proof. As an approximation R given in (4.19), define

pe(x,i,Rx)
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1 1 { SN R } 1 { SN R(:Ex) }
= —— max | ——————=exp < — , expy ———— .
\ 2T v/ SNR &%) P 2 /SNR (R P 2

(4.27)

x,%,Rx)

(
For any relayy;, leto; = ﬁ Lete > 0. Then, using Lemma 4.4.3, it can be shown

that
l—e<aq; <2. (4.28)

We will now show thato; ;, given by (4.21), is a finite intersection of unions of
certain set$>§? fork =1,...,4, where each such set has circular and/or linear boundaries.

For each pair of relay§y;, y;) with ¢ # j, define
pg}j) = {x € S :SNR™) — 2Inqa; +InSNR®™ > SNR®™7) — 2Ina; + In SNR(x’j)}
2F. N, ; N, — vl
=<¢(xeS§: 2 5 + Oln(&)jL  In C+lx yjHZ

CH+|x =yl Fry o Fry C+||x—yill

2F:
> 2 2} . [from (4.10) (4.23)
C+ [lx —y;ll
The setS is bounded, so, using (4.28), &5, /Ny — oo, E;/Ny — oo, andE; /Ny — oo,

Y= {xeS:|x—yjl* > |x —yill’} which has a linear internal boundary.

J
Also, for each pair of relayéy;,y;) with i # j, define

p

) = {x €8 :SNR™) — 2Ina; + InSNR®? > SNRUR — 2Ina; + In SNRUvRﬂ}
2F
= {X €S: 2 5
C+[x - yil
2 By/No  No [CHlx— vill©  Ej/No
C+|y;lI° Er</No  Erx C+ly;lI> Erx/No
+ Moy, (ﬁ) } . [from (4.10) (4.23])  (4.29)

ETX %

In the cases that follow, we will show that, asymptotica,bl%) either contains all of the
sensors, none of the sensors, or the subset of sensors irigheri of a circle.
Case 1:(E;/No)/(Erx/No) — oc.

The setS is bounded and, by (4.28n(«;/«;) is asymptotically bounded. There-
fore, the limit of the right-hand side of the inequality inZ9) is infinity. Thus,ofj) — 0.
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Case 2:(E;/No)/(Erx/Ny) — G, for someG; € (0, 00).

Since S is bounded andn(a;/a;) is asymptotically bounded, we ha\oé? —
{x €S |x—yilf° < %?”2 - C} which has a circular internal boundary.
Case 3:(E;/No)/(Erx/No) — 0.

SinceS is bounded anth(«;/«;) is asymptotically bounded, the limit of the right-
hand side of the inequality in (4.29) (s Thus, sincer; > 0, we havepz(.?j) — S.

Also, for each pair of relayéy;, y;) with i # j, define
o = {x € S : SNRUFY _ 21n ; + In SNREF) > SNRC) — 2Ina; + In SNR(XJ)} .

Observing the symmetry betwe@ﬁj) andpfj), we have that a&r /Ny — oo, E;/Ny —
0o, andE; /Ny — oo, pf;) becomes either empty, all &f, or the exterior of a circle.
Also, for each pair of relayéy;,y;) with i # j, define

oY = {x € S : SNRO®) — 215 q; + In SNROR)
> SNRU™) — 2Ina; + In SNRU™ |

2F; F, 2F; F,
=<xeSs: s~ —Ina; + In 5
No (C + [yl ) No (C + |lyill )
> 251 5 —lnaj—l—ln< 25 F 5 )}
No (C+ [ly;1%) No (C +ly;1I%)

[from (4.10) (4.23)

Using (4.28), adory /Ny — o0, E; /Ny — oo, andE; /Ny — oo, we haVQOZ(.f‘j) — Sor.
Then, we have
0;j = {x € §: PXY < pifa)l

= {x €S: aipe(x’i’Rx) < ajpe(x’j’Rx)}

= {x € S : min (SNR(X’i) — 2In o, 4+ In SNREY,
SNRO™) — 211, + In SNR¢™))

> min <SNR(X’j) — 2Ina; + In SNRO®),

SNRU™) — 21 a; + In SNRO™) }

[for Erx/No, E; /Ny, E; /Ny sufficiently large [from (4.27)
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<p§ DU p(2)> (p§ YU p(4)> : (4.30)

Thus, combining the asymptotic results f,(i)ﬁf?,pﬁ?,pﬁ?, and pf‘j), as By /Ny — o0,

E;/Ny — oo, and E;/N, — oo, the internal boundary of; ; consists of circular arcs
and line segments. Applying (4.22) completes the proof. |

Figure 4.1b shows the asymptotically-optimal sensor reg, 0,5, 03, andoy, for
N = 4 randomly placed decode-and-forward relays with AWGN cledgiiand system
parameter valueS = 1, Ery/No|,_=0,, = 5 dB, andE; /Ny = 2Er/N, for all relaysy;.
Amplify-and-Forward with Rayleigh Fading Channels

Lemma4.45 For0< z <1,

1 VZ(l—7)° 3 1
(ﬁ) <1—ﬁ>exp{‘ﬁ} <v(52e) < B}

Proof. For the upper bound, we have

3 o0 1
U ( ) = / et < / e Pt = )
2’ 1+ I ( g) 0 2 (3)

For the lower bound, we have

1 .
U §, - / \/ e Ptdt [sincel < 2z < 1]
2 P (3) J 2 1+t
\/_
1

-

> 1— 2t since 1
"1 @) (17\/2)2< Vz)e [ 0<z<1]
VZ—7)

_ Pl(%) (1-+72) exp{—\/gél_;\/ég)z}.

N

|
We define thenearest-neighbor regioaf a relayy; to be
{xe&:V), Ix—yill <llx—w;l}
where ties (i.e.|x — y;|| = ||x — y;||) are broken arbitrarily. The interiors of these regions

are convex polygons intersected wih
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Theorem 4.4.6.Consider a sensor network with amplify-and-forward relagsl Rayleigh
fading channels, and lefr, /Ny, — oco. Then, each optimal sensor region is asymptotically
equal to the corresponding relay’s nearest-neighbor ragio

Proof. As an approximation R given in (4.15), define

p(x,i,RX) . 1 _ DiﬁNO/ETx (20’2 (0'2 + BZN()/ETX)) (4 31)
‘ 2 \80 (02 + B;iNo/E1y)*? ['(3/2) - DiNo/ By '
11 1 12
=-—-_(1 . from (4.14
2 2 ( * 202LX7ZETX/NO) [from (4.14)
(4.32)
(x,i,Rx)
For any relayy;, leto; = ﬁ Using Lemma 4.4.5, it can be shown that
lim o; =1 (4.33)
ETX/N0—>OO
Let
1 Ny 71 No Zy Ny No ?
Ty = ——: =4/1 —1=
ST (ET) " En ( 2 ) B, ¢ <<ET) )
(4.34)

where the second equality in the expressiongfois obtained using a Taylor series. Then,

— {X €S Pe(x,i,RX) < Pe(x,j,Rx)}
= {x €S q;PF < g pe(xvj,Rx)}

o (f1+ 22 —1) 14+ 52

Er
= xES:a ( 1+ZN0 1)\/@<1 [from (4.32) (4.34)
.7 ETx
Q;
= XES:—- <1 . [from (4.34)
Q;
(4.35)
SinceS is bounded, we have, fdtr, /Ny — oo, that
g —{xeS:|x—y;l>|x—vil}- [from (4.35) (4.33) (4.23)

(4.36)
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Thus, for B« /Ny — oo, the internal boundary aof; ; becomes the line equidistant from

y; andy;. Applying (4.22) completes the proof. |
Figure 4.1c shows the asymptotically-optimal sensor reg9, o, o3, ando,, for

N = 4 randomly placed amplify-and-forward relays with Raylefgling channels.

Decode-and-Forward with Rayleigh Fading Channels

Lemma 4.4.7.Let

Loy = T, 1
sty
Then, lim L,, =1.
,Yy—00
Proof. We have
1 1 1 .
L+ 56— g(—:Q <(Q+eY? <1+ 5€ [from a Taylor serigls
( zy ) (e —3) W +y—3)+a(y—3) _,
) ey

_|_
< r+y+1 T Y
- T +y rx+1 y+1
. <x—1) <y—1) <x+y+3)§ny§(x+y+1>< T )( y )
r+1 y+1 Tty ’ Tty r+1 y+1

[for x, y sufficiently largé

Now taking the limit asc — oo andy — oo (in any manner) givesg,, , — 1. |

Theorem 4.4.8.Consider a sensor network with decode-and-forward relaygRayleigh
fading channels, and, for all relays let E;/Ny — oo and Er./Ny — oo such that
(E;/No)/(ET«/Np) has a limit. Then, the internal boundary of each optimal semnsgion
is asymptotically piecewise linear.

Proof. As an approximation t&*™ given in (4.18), define

p(x,i,RX) _ 1/2 1/2

~ SNRCD | SNROR (4:37)
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(x,i,Rx)

For any relayy;, leto; = ﬁ Using Lemma 4.4.7, it can be shown that

(34,

e

lim o = 1. (4.38)
ETX/NO — 00,
E;/No—o0

Then, we have

0, ={x€S: PR pe(x,j,Rx)}

= {X eS: aipe(x’i’RX) < ajpe(x,mx)}

= {x €S :2(x,0;y; — yi)
Ery/No
E;/No
+ (o — o) 1xI* + e [ly; 1> — o [lyal*} -

[from (4.37) (4.8). (4.23)] (4.39)

_ Ery/No
E;/Ny

<a; (C+ lyill") - —ai (C+ lyill)

Ey /N .

Now, for any relayyy, letG, =  lim k/No . Using (4.38), Table 4.1 con-

EEX//]J\\[TO — 00, ETx/NO
k 0—00

siders the cases @t; andG; being zero, infinite, or finite non-zero; for all such posiibi

ties, the internal boundary of ; is linear. Applying (4.22) completes the proof. [ |

Note that if, for all relaysy;, F; is a constant an@; = oo, then each optimal sensor
region is asymptotically equal to the corresponding ralagarest-neighbor regions, as was
the case for amplify-and-forward relays and Rayleigh fgainannels. In addition, we note
that, while Theorem 4.4.8 considers the asymptotic casbawe empirically observed that
the internal boundary of each optimal sensor region cansisline segments for a wide
range of moderate parameter values.

Table 4.1: Asymptotic properties of ; for decode-and-forward relays and Rayleigh fading
channels.

Gj GZ Ui,j
non-zero| non-zero linear internal boundary
non-zero 0 0
0 non-zero S
0 0 linear internal boundary dtor S
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Figure 4.1d shows the asymptotically-optimal sensor reg, o,, o3, ando, for
N = 4 randomly placed decode-and-forward relays with Rayleagtinfg channels and
system parameter valué€s = 1, Er./No|,_s0,, = 5 0B, andE; /Ny = 2E1, /N, for all
relaysy;.

4.5 Numerical Results for the Relay Placement Algorithm

The relay placement algorithm was implemented for both @&mphd-forward and
decode-and-forward relays. The sensors were placed omyon a square of sidelength
100 m. For decode-and-forward and all relays the energyE; was set to a constant
which equalized the total output power of all relays for bathplify-and-forward and de-
code-and-forward. Specific numerical values for systenaléas weref, = 900 MHz,

o =+/2/2, M = 10000, andC = 1.

In order to use the relay placement algorithm to produce gelay locations and
sensor-relay assignments, we ran the algorithrtimes. Each such run was initiated with
a different random set of relay locations (uniformly distried on the squarg) and used
the sensor-averaged probability of error given in (4.2@).dach of the 0 runs completed,
1000 simulations were performed with Rayleigh fading and diigi(selection combining)
at the receiver. Different realizations of the fade valumstfie sensor network channels
were chosen for each of tH®00 simulations. Of thel0 runs, the relay locations and
sensor-relay assignments of the run with the lowest avepagi@ability of error over the
1000 simulations was chosen.

Figure 4.2 gives the algorithm output for 3, 4, and 12 decode-and-forward re-
lays with Egry/No|,—s0,, = 10 dB, E; = 100E7,, and using the exact error probability
expressions. Relays are denoted by squares and the reisedleoted by a circle at the
origin. Boundaries between the optimal sensor regions laoens. For2, 3, and4 re-
lays a symmetry is present, with each relay being respaniblapproximately the same
number of sensors. A symmetry is also presentlforelays; here, however, eight relays
are responsible for approximately the same number of sgnand the remaining four re-
lays are located near the corners&®to assist in transmissions experiencing the largest
path loss due to distance. Since the relays transmit at hegtexgies than the sensors, the
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Figure 4.2: Optimal sensor regions output by the algoritbndecode-and-forward relays
and fading channels with; = 100Ery, and Egry/No|,_s,,, = 10 dB. Relays are denoted
by squares and the receiver is locate(had). Sensors are distributed as a square grid over
+100 meters in each dimension. The number of relays isMa} 2, (b)) N = 3, (c) N =4,

and (d)N = 12.

probability of detection error is reduced by reducing patfslbefore a relay rebroadcasts
a sensor’s signal, rather than after the relay rebroaddastsignal (even at the expense
of possibly greater path loss from the relay to the receiv€hus, some sensors actually
transmit “away” from the receiver to their associated relaye asymptotically-optimal
sensor regions closely matched those for the exact errtwapiiity expressions, which is
expected due to the large value selectedHdprin addition, the results for amplify-and-for-
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100

50

~190% -50 0 50 100

Figure 4.3: Optimal sensor regioas, . . ., 01, output by the algorithm for decode-and-for-
ward relays and fading channels with= 12, £; = 1.26 Ery, and Erx/No| _x0 ., = 5 dB.

ward relays were quite similar, with the relays lying closethe corners o for the2 and

3 relay cases, and the corner regions displaying slightlyemiboundaries fot2 relays.
With the exception of this curvature, the asymptotic regiolosely matched those from
the exact error probability expressions. This similarigfvieeen decode-and-forward and
amplify-and-forward relays is expected due to the largaevaklected foF;.

Figures 4.3 and 4.4 give the algorithm output f@rdecode-and-forward and am-
plify-and-forward relays, respectively, withr,/No|,_=,,, = 5 0B, E; = 1.26Er, and
using the exact error probability expressions. For de@ukforward relays, the results are
similar to those in Figure 4.3; however the relays are latateich closer to the receiver
due to their decreased transmission energy, and the caegems ofS exhibit slightly
curved boundaries. For amplify-and-forward relays, thayeare located much closer to
the corners since, with lower gain, the relays are less tffeand thus primarily assist
those sensors with the largest path loss.

The maximum, average, and median of the sensor probabitfierror for all of
the above figures are given in Table 4.2. The sensor erroapiiily is lowest for sensors
that are closest to the relays, and increases with distance.
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100

50

~190% -50 0 50 100

Figure 4.4: Optimal sensor regions, . . ., 015 output by the algorithm for amplify-and-
forward relays and fading channels with= 12, G = 56 dB, and Eg/No|,_, ,,, = 5 dB.

Table 4.2: Sensor probability of error values.

Figure| Max.P. | Avg. P. | MedianP,
42a [ 7.3-1072(18-107%2| 1.2-1072
42b [69-1072(1.2-107%2| 7.2-1073
42c |33-1072(70-107%| 5.1-1073
42d [14-1072(28-107%| 2.3-103
4.3 2.0-107' [ 6.2-1072 | 5.6-1072
4.4 1.7-1071199-1072| 1.1-107"

4.6 Conclusions

This paper presented an algorithm for amplify-and-forwandl decode-and-for-
ward relay placement and sensor assignment in wireles®rsaesvorks that attempts
to minimize the average probability of error. Communicasiavere modeled using path
loss, fading, AWGN, and diversity combining. We determiried geometric shapes of
regions for which sensors would be optimally assigned ts#me relay (for a given set of
relay locations), in some instances for the asymptotic oa#iee ratios of the transmission
energies to the noise power spectral density growing witlhownd. Numerical results
showing the algorithm output were presented. The asyntiegions were seen to closely
match the regions obtained using exact expressions.
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A number of extensions to the relay placement algorithmadad incorporated
to enhance the system model. Some such enhancements ar@opulelay paths, more

sophisticated diversity combining, power constraintesse priorities, and sensor informa-
tion correlation.
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Appendix

This appendix contains expanded versions of proofs in trapter.

Expanded Proof of Theorem 4.4.Eor any distinct relays; andy;, let

1 K;
= = . 4.40
GF+ Ot vl WURE, (449
Note that for fixed gairtz, K; # K, since we assumg; # y;. Then, we have
Ui,j
= {x €S: Pe(x’i’RX) < Pe(x’j’RX)}
— {x € S : SNROR) > SNR(XJ’R")} [from (4.17)
= €S: = > ! [from (4.16)
=439 X . BZ T DZ Bj T Dj rom .
1
- {X €S L) T 1/ L Lord)
1
f 4.14
ST mEsT e mrnl from (4.14)

Lx iLi X Lx L b'q
=<{x€eS: S S IR
G?Ligx+1  G?Ljpc+1
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1
= S:
{X C PRI &)+ (CF E)C+ &)
1
f 4.23
7 CR(C T &) T (C 1 aE)C T By } {from (4.23)
K; K;
= {x €S: 5 > 2 2} [from (4.40)
CHllx—yill" C+I[x—yll
Ki—K;>0
=4x €S [x—= (1 =7y yi — il Ki_§j<0 Vi (Vig — D Iy — yill C
[from (4.40)
K;—K;>0

>

where the notation < indicates that =" should be used ifX; — K; > 0, and “<”
i— <

if K; — K; < 0. Note that the description ef; ; given in (4.26) is either the interior or

the exterior of a circle (depending on the signfof— K;). Applying (4.22) completes the

proof. [ |

Extended Proof of Lemma 4.4.8Bor the lower bound we have

1 e~ e/2 1 e—Y/2 e—®/2 e—Y/2
(-2 (=) + (0 -3) (35) -2 () (55) [

L,,> from Lemma 4.4.2
7y "
max (£ e v/2
V2rx ' 27y
/2 n o—u/2 /2 n o—u/2 9 (e—z/2> <efy/2>
_ V2rx V2my - zV2rx yv/2my N V2T V2my
max | &2 ¥/ max ( £22 e v max | £22 v/
oz’ /2Ty V2rx? 21y V2rx’ 21y
e—T/2 e—Y/2 e—T/2 e—Y/2 /2 /2
o 2T + 2Ty _ x2mz + yW2my 9 min < e~®/2 eyl
e—z/2 efy/2 871/2 e—Yy/2 27.‘.377 27Ty
max( ey m) max ( - Tw) Vara' v
e—T/2 e—Y/2 e—T/2 e—Y/2
—x/2 —y/2
V2rx + Vemy V21T yv2my — 91min € v/ € v
- 671'/2 6739/2 871'/2 efy/Q 2 ’ 2
VLTx 2T
V2rx + V2my max ( forz’ 2my Yy
871'/2 e y/2 /2 /2
-1 27z + Y21y — 9min < € 2/ € v/
e/2 e—y/2 o 2Ty
max( - TW) Vara' v

> 1 1 e~ max(@y)/2 min(x, y)
B min(z, y) max(z,y)/max(x,y) e~ min(z,y)/2

e—:c/Z e—y/2
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1 o (max(z,y) —min(z,))/2 R R
:1— - — —211’1111<—,—)

min(z, y) max(z,y) V2rx /2Ty

1 e! e 2 ev/?

>1— — _ —2min<—,—)

min(z,y) max(z,y) V2orx 2my

1 1 e~t/? /2
— 1 2mm( , )

r oy V2w /2Ty
>1—e. [for z, y sufficiently large

<%ﬁ)+(%ﬁ)—2(—§)ﬁé§>(_5>(%ﬁ> [from Lemma 4.4.2

IA
3
+

[for x,y > 1]

IA

[ |
Extended Proof of Theorem 4.4.As an approximation tp o ) given in (4.19), define

pe(x,i,Rx)

L. 1 . { SNR@@} 1 o { SNR@mﬂ}
= — 7}(— 5 —_— .
Nors VSNReD U2 T BNRe 2

(4.41)

(x,i,Rx)
For any relayy;, leta; = ———
Pe(x,z,

3 Lete > 0. Then, using Lemma 4.4.3, it can be shown
that
l—e<ao <2 (4.42)

We will now show thato; ;, given by (4.21), is a finite intersection of unions of
certain set$>§f§.) fork =1,...,4, where each such set has circular and/or linear boundaries.
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For each pair of relay§y;, y;) with ¢ # j, define

oY = {x €S : SNR® — 2Inq; + In SNR®? > SNR®) — 2Ina; + In SNR<XJ>}

21 F: 2E+1. F:
=<{xcS: T2 5 — Ina; +In T 2 5
No (C+ IIx = vill") No (C+ [Ix = yill")

2B Fy 2Er
> o — Ina; +In 5
No (C+ Ix = y;1°) No (C+ [Ix = y;1%)

[from (4.10) (4.23)
2
=<¢(xeS§: 255 2+N0 ln(ﬂ)jLNo In C+x yJHZ
C+ |x—yil Ery o Ery C+ |Ix — yill

2F,
> . [from (4.10) (4.23)
CHlx— Ysz}

The setS is bounded, so, using (4.42), &5, /Ny — oo, E;/Ny — oo, andE; /Ny — oo,

(1) . 2F, 2F _ ) vl I? w2 i
i) o xes gt s 2B ol = {xe S x -yl > Ix— i} which

has a linear internal boundary.

Also, for each pair of relayéy;,y;) with i # j, define

) = {x € 8 :SNR™ — 2Inq; + In SNR®? > SNRO™ — 21na; +In SNRU’RX)}

=<¢{x€eS: 2B s~ —Ina; +1n 2Er b 5

No (C+||X_Yi|| ) No (C‘l‘HX—YiH )

> 25k 5 —lnozj—i-ln( 2E; 5 )}
No (C +ly;1I°) No (C+ lly;17)
[from (4.10) (4.23)
2F.

= {X €S: 2 5

C+ [|x — yill

S 25, ) E;/No Ny I C’—|—||X—y,-||2. E; /Ny
C+lly;I> Br/No  Erx C+lly; 1> Ere/No

LN <O‘_) } , from (4.10) (4.23)  (4.43)

ETX %

In the cases that follow, we will show that, asymptotica,ug?j) either contains all of the
sensors, none of the sensors, or the subset of sensors mieheri of a circle.
Case 1(EJ/NQ)/(ETX/NQ) — OQ.
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The setS is bounded and, by (4.42n(«;/«;) is asymptotically bounded. There-
.. . . . . .. e . 2)
fore, the limit of the right-hand side of the inequality in48) is infinity. Thus ;" — 0.
Case 2:(E;/Noy)/(Erx/No) — G; for someG; € (0, 00).
SinceS is bounded anth(c; /«;) is asymptotically bounded, we have

2F. 2F
pz(zj)—> xeS: 2 5 > 2 5 G
CHlx=vyill" C+llyl

C |12
:{Xeszmwwx_yinz}

Gj

_ {X es: -yl < S c}
which has a circular internal boundary.
Case 3:(E;/Ny)/(Erx/No) — 0.
SinceS is bounded anth(«;/«;) is asymptotically bounded, the limit of the right-
hand side of the inequality in (4.43)(s Thus, sincer;, > 0, we havepf.?j) — S.
Also, for each pair of relayéy;,y;) with i # j, define

o) = {x € § 1 SNRU™ — 21n; + InSNRE™ > SNR™) — 2Ina; + In SNR*/) }
:{xES: 2B 5 —lnai+ln< 2Bt 5 )
No (C+ lyill”) No (C+ llyill")
21 Fy

2E1F5
> 5 — Ina; +In 5 )
No (C+ IIx = y;1%) No (C+ |Ix = y,I%)

[from (4.10) (4.23)

Observing the symmetry betwe@ﬁj) andpfj), we have that a&r /Ny — oo, E;/Ny —
oo, andE; /Ny — oo, pf;) becomes either empty, all &f, or the exterior of a circle.
Also, for each pair of relayéy;,y;) with i # j, define

P = {x €S : SNRER _ 210 a; + In SNRR)

> SNRO™ — 21na; + In SNRUF) |

28, F 2F; F)
=<{x€eSs§: s — Ina; +In 5
No (C + [lyll ) No (C + [lyll )
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> —1na-—|—ln< 28,15 )}
No (C+ |ly;IP) ! No(C+yl*) ) |~

[from (4.10) (4.23)

Using (4.42), adory /Ny — o0, E; /Ny — oo, andE; /Ny — oo, we havqf)z(.flj) — Sor.

Then, we have

Oij = {X €S: Pe(x,i,Rx) < Pe(x’j’RX)}

= {x €S, PF < g pe(x,ijx)}
x € S Q5 ma: 1 o SNR(XJ)
= : . X — — ex B 7
V2T SNR(X,Z) p 2
1 . SNR/(“F)
Y B e S
SNRORD 2
< Y ma 1 . SNR x:9)
max | e exp 4 — ’
v2m SNRCD 2
1 SNRU-HF)
Venrom T 2

[from (4.41)

{ ( { SNR™) — 2Ina; + In SNR(X’“}
=¢x €S8 :max |expq — 5 ,

{ SNR™) — 21n a; + In SN RO })
exp { —

2
( { SNR™) — 2Ina; + In SN R }
< max | exp 4§ — ,
2
{ SNRORY — 21n o; + In SN RUR) }) }
exp { — 5

= {x €8 min (SNR* — 2Ina; + InSNR™?,
SNRO™) — 211, + In SNRCR))
> min <SNR<XJ> ~2lna; + InSNR™9),
SNRURY —2Ina; + In SNR(JVRX)> }

[for Erx/No, E; /Ny, E; /Ny sufficiently large
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= {X € S:SNR™) — 21na; + In SNR™,
> min (SNR®/) — 2Ina + In SNR*®?,
SNRUEY — 21n; + In SNR(J"R")) }
N {x €8 SNRO™ —2Ina, + In SNRO
> min <SNR<XJ> ~2lna; + InSNR™9),
SNRORY — 21na; + In SNR<%RX>) }
= ({X €S : SNR™ — 2Ina; + InSNR®? > SNR*7) — 21n aj +In SNR(X’j)}
U {X € S : SNR™ — 21nq; + In SNR*?
> SNRURY — 21nq; 4 In SNR<J',RX>}>
N ({x €8+ SNRE™ — 21na; + In SNRO
> SNR™) — 21na; +1In SNR(XJ)}
U {x € S : SNROFY _ 215 q; + In SNROGR)
> SNRURY — 21nq; +1n SNRU,RX>}>
= <p§,1j) U pﬁ?) (pﬁ Ju p(4)> .

(3)

Thus, combining the asymptotic results f,mgfL ,p”,p”, and p”, as Ery /Ny — o0,

E;/Ny — oo, and E;/N, — oo, the internal boundary of; ; consists of circular arcs
and line segments. Applying (4.22) completes the proof. |

Extended Proof of Lemma 4.4.6or the upper bound, we have

3 1 >,

U<§,2,z): oy / Y2 (14 t) P dt
2

/ / —ztdt
/ —ztdt
0

e—zt
=

!
—_

’1
—_
MIOJ

<

N

)
)

}1
—

00
t=0

=
Ll VY[OY)

T

zF(

[\ [9V]

T



For the lower bound, we note that

0<z<1
=0<z<4
=0<Vz<2
=0>—/z2> -2

=1>1—vz> -1

:>(1—\/E)2<1
=1-(1-v2)">0
and that
(1-2)
ERRVEICEVE
(1-2)
Mo )
(1-y2)
T T e

=t(1—(1-v2)?%) > (1-vz)°
=t>(1-v2) +t(1-2)°

t 2
- >(1-

> (17V3)

LA
“\N1:: = Ve

Then, we have

o t
> / e dt
- 3 1—+/z
F(3) Jages Vitt
1 o
> _ —zt
2T /(1@)2 1—+/z)e #dt
2/ VRV
IV { e‘“} <
GO R | e
_ 1—¢zexp{_ 21— /2)? }
2T (2) NEPEE
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(4.44)

[from (4.44)

[sincel < z < 1] (4.45)

[sincel < z < 1]

[from (4.45)
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T (3) 2=z
[ |
Extended Proof of Theorem 4.4.8s an approximation tp ) given in (4.15), define
2 2
pe(x’i’RX) _ 1 _ DiﬁNO/ETx 7 <20’ (0’ + B,No/ETX)> (446)
2\ 8 (02 + B;Ny/Eny) ['(3/2) - DiNo/ Ex
Y F— - ffrom (4.14)  (4.47)
~27 2 202 L B /Ny ) rom '
e(x,i,RX)
For any relayy;, leta; = W Using Lemma 4.4.5, it can be shown that
lim «o;=1. (4.48)
E1y/No—00
Specifically, let
D;Ny/Ery
z o/ Br (4.49)

" 202 (02 + B;Ny/Ery)

and note that — 0 asEr,/Ny — oo. Then, we have

1 zo\/T 3
7‘7R Pl ————————— U = 2 Z
: Pe(XZ ) . 2 44/024+B;No/E1x (27 ’ )
llm T xiRx) = hm
ETX/NO_’OO P@(X,Z, X) ETX/NO—>OO l _ ZO'ﬁ ( 1 )
2 44/02+BiNo/Epx \#(3/2)

[from (4.15) (4.46) (4.49)

N =

- s ()
> lim WP BNo By \TG7)

T BErx/No—oo 1 _ z0\/T ( 1 )
2 44/02+BiNo/Ex \#T(3/2)

[from Lemma 4.4.b

We also have

' Pe(x,i,Rx)

hm % Rx)
Erx/No—0o0 Pe(x727 x)
o y(320)

. 44/02+B;No/E1x

= lim

Brs/No—oo 1 _ z0/T < 1 )

2 4402+ BiNo/Ex \?F(3/2)

N[ =

[from (4.15) (4.46) (4.49)
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1 20T 1 _ _vE(a-vE)
] 2 <4\/0'2+BiNO/ETx> <ZF(;)) (1 \/E) exp{ 2—/z
< lim
Ery/No—00 1 20T ( 1 )
2 44/02+B;No/Erx 2I'(3/2)
[from Lemma 4.4.5
1 o\/m 1 - _\/5(1_\/2)2
= lim
Erx/No—00 1 o7 ( 1 )
2 44/02+B;No/ Erx I'(3/2)
1_ oJrm
_ 2 4V o2
= T
2 4o?
= 1.
Let
1 NO ZkNO Zk N(] NO 2
Zy = ; =4/1 —1=(= O
$ oL, N (ET> " En 2 ) B O\ B

(4.50)

where the second equality in the expressiongfois obtained using a Taylor series. Then,

0ij = {x € 8 : PXIRI) < piR9l
= {X €eS: aiﬁngiva) < ajjf)e(x,j,Rx)}

o . ~1/2
= rag | 55| 1L
{X €S:a (2 2 ( i 2U2Lx,iETX/NO) )
o . ~1/2
e f 4.47
< @ (2 2 ( + 202Lx,jETx/NO) > } omt |

Z:Ny\ V2 Z:Ny\ 2
:{XES:ai<1—<1+ETX) <aoj(1- 1+EJTX

[from (4.50)

Zi N Zj N
V31+E -1 1+3=-1

1—%—%—?;0 14 Zifo

B Z; N ‘ Z; N
1 + WXO 1 + E]TXO }
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o (1422 1) /14 20
— x E S . ETX ETX < 1
\ o (1+ 22 - 1) 1+ 22
( 2
a; ((%) D10 <<1§VTO> )) 1+ 2
=¢(x€eS§: : <1
Zj )
| a((B)ero(())) ViR
[from (4.50)
= 1 [from (4.50)

SinceS is bounded, we have, fdtr, /Ny — oo, that

(w2
o2 x,1
xeS: A i) <1
(402Lx,]‘>
1 1
S <
{X € totL,, " 10°L,,
= {X € S . Lx,j < Lx,i}

Oig =

[from (4.35) (4.48)

1

|

={xeS:||x—yll>Ilx—-yl}. [from (4.35) (4.48) (4.23)

Thus, forEry /Ny — o0, the internal boundary aof; ; becomes the line equidistant from

y; andy ;. Applying (4.22) completes the proof. [ |
Extended Proof of Lemma 4.4.WUsing a Taylor series, we have
(1+e)2=1+ %e + g; (2_21)_111_(;(2_711;'2')'6" =1+ %e - %ez +... (forlel <)
We have
1+ %e — %62 <(A+er<1+ %e [from a Taylor serids
. <(1+e12< L -

1

1+ =€

N[

1, 1.2
—i—26 €



1 1 _ —-1/2 1 1
- () (%—ﬁz) -y e2) " - (i (H%)
= < T, 1
z 'y

(- () ) =2
<(1) (- (5) ()

- (% )(x_%)(y”y‘%)ﬂ?(y—%

v+y)  (@Pra—g) (Pry—g) T

(G Gh)

Now, note that forr, y sufficiently large

(e=3) W+y—3)+2*(—3)  @-DE+y-2)+ @ -1 -1
Cra- DD - RN
=Dy -DE+y+3)
xy(x +1)(y+1) '

Thus, we have

<x—1)(y—1><x+y+3) (x+y+1)< x )( y )
<L,, < .
r+1 y+1 Tty ’ Tty r+1 y+1

[for z, y sufficiently large

Now taking the limit asc — oo andy — oo (in any manner) gives, , — 1. |

Extended Proof of Theorem 4.4.8s an approximation tp ) given in (4.18), define

PleiRx) _ 1/2 1/2

A = — 4 . 4.51
SNR®™)  SNR(-F) (4.51)
8(x,i,RX)
For any relayy;, leto; = iR Using Lemma 4.4.7, it can be shown that
lim ;=1 (4.52)
Erx/No — o0,
E;/No—o0

Then, we have

Oij = {X €S Pe(x’i’RX) < Pe(x’j’RX)}
= {X €S: Oéipe(x’i’RX) < ajpe(x,j,Rx)}



92

. a; a; % %
"SNR®P | SNRE™ © SNRC) | SNRUM

N _ i2 No (C + i2
{XGS:ai-%+ai- 0( EZHY”)

} [from (4.51)

Il
—N
»

m
0}

Ny |Ix =yl No (C + |ly;|I?
<o, Mol =yl Nl HwM}

ETX ! Ej
[from (4.8), (4.23)

Ery/N
= {X €S qx— yiH2 + (C"‘ ||y1||2) ETT/NOO
E /N}
2 2 Tx 0
=yl a5 (C+ Ivil)
={xeS:a(Ix|*-2xy)+ lyil*) — a; (x> = 2(x,5;) + [ly;|*)
Ery /Ny 9 ETX/NO}
J( [yl ) E; /Ny ( Iyl ) E;/Ny
= {x €8 : (i — ) |xII" + 205 (x,y;) — 20 (x,y:) + s lyill* — o Iy, I”
Ery /Ny 2 ETX/NO}
0+ Il P Iyl

2 2 9
:{Xesﬂ% DI ) — (i + 2200 1]

oY (CH1yll*) Bre/No i (CHlyil*)  Ere/No
2 E; /Ny 2 E;/Ny

= {X €S (X, 05y — i)

< @ (C+ HYJ‘HQ) ‘ Ery/No o (C+ ||yZH2) ' Ery/No

2 Ej/NO 2 EZ/N(]

2
Lo e X7 asllysl” e llill
2 2 2 '
Now, for any relayy, let
. Er/Ny
G = lim ———.
. Ery/No — oo, ETx/NO

Ey/No—o0

Using (4.52), Table 4.1 considers the case&'pandG; being zero, infinite, or finite non-
zero; for all possible combinations, the internal boundary; ; is linear. Applying (4.22)

completes the proof. [ |
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Chapter 5
Conclusion

This thesis considered three communications problemsiaras of network cod-
ing and wireless sensor networks. The main contributioeasiaw summarized and possi-
ble directions for future research are discussed.

Chapter 2 formally defined the routing capacity of a networet ahowed that it is
rational, achievable, and computable. While it is knowr tha (general) coding capacity
of a network it not necessarily achievable, it would be ies¢ing to study these properties
for the general coding capacity as well as for the linearmgdiapacity. In particular, the
existence of a general algorithm for finding the coding capaxf network would be sig-
nificant. Similarly, determining a more efficient algoritiar finding the routing capacity
than that presented in this thesis would be of practical m@mee. Relations between the
routing, linear, and general coding capacity of a netwauklisas when one is strictly larger
than another) would also provide theoretical insight irtowork coding.

Chapter 3 formally defined the uniform and average nodetdithcoding capac-
ities of a network and showed that every non-negative, nwmcally non-decreasing,
eventually-constant, rational-valued function on thegars is the node-limited capacity
of some network. An immediate method of extending the avecagling capacity defini-
tion would be to use a weighted sum of coding rates. The wigltoefficients would
allow preference to be given to specific source messagesriging properties of the
weighted node-limited capacity would parallel the work Instthesis. It would also be
of theoretical interest to determine whether or not the Hodied coding capacity of a
network can have some irrational and some rational valuesyrme achievable and some
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unachievable values.

Chapter 4 gave an algorithm that determines relay positmalssensor-relay as-
signments in wireless sensor networks. Communicationg werdeled using path loss,
fading, and additive white Gaussian noise, and the alguordttempted to minimize the
probability of error at the receiver. Analytic expressiowith respect to fixed relay posi-
tions, describing the sets of locations in the plane in wkmtsors are (optimally) assigned
to the same relay were given for both amplify-and-forward dacode-and-forward relays
protocols, in some instances for the case of high transoms=snergy per bit. Numerical
results showing the output of the algorithm, evaluatingpigsformance, and examining
the accuracy of the high power approximations were alsoepted. To enhance the re-
lay placement algorithm, the system model used for the @sgesensor network could be
extended. The inclusion of multi-hop relay paths would jmeva more realistic setting.
Incorporating more sophisticated diversity combininchtéques would also improve the
network performance and increase the applicability of tger&ghm. Much of the analysis
of these this thesis holds for higher order path loss; thxteneling the model to allow the
path loss exponent to be a function of distance would momsetyaapproximate real-world
situations. Including power constraints and allowingyslto use different gains are also
interesting problems. Introducing priorities on the sensmdes would add more gener-
ality to the model. Finally, exploiting correlation betwethe sensors would be a natural
extension and would improve system performance.



