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ABSTRACT

Thunderstorms are an integral component in the Earth's atmospheric system and
have profound influence on a variety of industries. Specifically, the occurrence of
lightning discharges has many negative effects, including the commencement of forest
fires and the delay of aircraft missions, and can even be a cause of death. Consequently,
modelling the patterns of lightning discharges is intended to provide insight into the

thunderstorm processes, and may lead to their improved prediction.

This thesis examines the current progress in the development of lightning models,
both at the microphysical and abstracted numerical levels. These current methods of
simulation tend to result in the use of mathematical equations which are applied to the
tiny particles. Due to the large overal scale of thunderstorms themselves, common
simulation techniques are often quite complicated. Consequently, a new mathematical
model using percolation theory to represent thunderstorm images which were obtained
through space shuttle videos is derived and the results evaluated using the Rényi

dimension spectrum.

Experimentation with the percolation-based system shows that this model is
capable of producing videos which resemble actual shuttle animations both visually and
guantitatively. This accuracy is achieved through the variation of a number of
percolation parameters such as lattice size, spreading probability and the number of
seeds. Results indicate that the use of a 256 x 256 x 1300 three dimensional lattice with
1500 seeds and a spreading probability of 0.725 produces highly representative lightning

discharge simulations.
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Modelling and Simulation of Lightning Discharge Patterns Chapter 1: Introduction

CHAPTER 1
INTRODUCTION

1.1 Purpose

The purpose of thisthesisis to develop a means of simulating lightning discharge
patterns observed in videos recorded during space shuttle missions. This thesis presents
the design and implementation of a percolation-based lightning model and then evaluates

the performance of this system in producing realistic image sequences.

1.2 Problem

Thunderstorms are an essential component in the Earth's atmospheric system,
providing the mechanism through which heat is transferred from the Earth into space.
However, a great dea of devastation can also be brought forth by the presence of
thunderstorms. Heavy rains can result in extensive flooding, while hail is capable of
damaging severely both manmade structures and farmers crops. As well, the lightning
associated with these storms can be responsible for disturbances on power lines, the
commencement of forest fires and the delay of aircraft missions. In addition to the
indirect effects lightning has on the wellbeing of humans, these discharges can even be
the direct cause of deaths. Consequently, possessing the ability to predict accurately the
path of thunderstorms is desirable, as earlier warnings could then be issued, and

precautionary measures taken.
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However, thunderstorms are extremely complex processes due to the many
microphysical components from which they are comprised. Hence, models have been
developed to simulate individual components within a storm. For example, a number of
techniques exist for modelling the electrical interactions which create lightning
discharges [HaNK89][LeTz86][YaLT95]. Simulating one such element of a
thunderstorm provides insight into the overall thunderstorm process and assists in the

creation of better prediction methods for thunderstorm displacement patterns.

The maority of lightning models have focused upon the determination of the
dynamics of actual physica and microphysical particles within the storm. These
movements and their electrical effects are then modelled, typically using a variety of
complex mathematical equations. Thisideology, however, possesses stringent limitations
due to the relative size of the particles being simulated to the great expanse of the storms
themselves. The resolution of these equations over such a large scale is quite

computationally intensive, and, hence, amore simple model is necessary.

Percolation theory [BuHa91][Fede88] provides an ideal basis for the formulation
of alightning discharge model. Percolation is a multifractal model which can represent
simply a disordered system. By using a basic agorithm in a three dimensional lattice,
sequences of both black and white and colored images which accurately model lightning
discharge patterns can be produced. This modelling technique is developed and

implemented in thisthesis.
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1.3 Scope

This thesis is divided into six chapters. Chapter 1 presents the purpose of the
thesis and provides its motivation through the definition of the problem to be addressed.
Chapter 2 provides a synopsis of the relevant background material for the development of
the percolation lightning discharge model, including genera thunderstorm concepts,
lightning data acquisition techniques, current lightning simulation methods, percolation
theory, and fractal metrics. Chapter 3 is responsible for outlining the requirements of the
lightning modelling software and defines the system architecture. Chapter 4 details the
software organisation; specifically the individual components are described in
algorithmic, implementation and usage contexts. Chapter 5 presents the verification of
the lightning system and defines the experiments to be performed using the modelling
software. In addition, this chapter also states and analyses the results of this
experimentation. Finally, Chapter 6 provides the conclusions and recommendations
developed throughout the creation and evaluation of the percolation lighting discharge

model.
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CHAPTER 2
BACKGROUND

This thesis examines the simulation of lightning discharge patterns using
percolation theory. This chapter commences with a brief review of thunderstorm creation
and the lightning data acquisition process. A concise description and discussion of
current lightning discharge models is also included. Finally, an introduction to

percolation theory, fractals and the Rényi dimension spectrum is presented.

2.1 Thunderstorm Creation

In order to model the lightning discharge patterns in a thunderstorm, one must
have a general understanding of the mechanisms which are responsible for thunderstorm
creation. The purpose of thunderstorms is to remove heat from the Earth and to transfer
it to space [Whip82]. The first requirement for the creation of a thunderstorm is the
presence of unevenly heated air. The warm air will rise above the cooler air, but will
eventually reach a section of extremely cool, dry air. At this point, the vapor within
begins to cool and liquefy, forming puffy white cumulus clouds. Aswarm air continues
to rise from below, it will now encounter a more hospitable environment where the
previous clouds have formed. This new vapor will combine with the previous clouds to
create even larger formations. Ultimately, the clouds will reach heights where the vapor
in the upward-moving air, now flowing at speeds up to 100 km / hr, is cooled so greatly
that freezing occurs. These frozen particles are too heavy to be suspended in the air, so

they begin to descend, creating strong downdraft winds. This mixing of air particles by
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vertical flows is known as convection. It is the presence of forceful convective updrafts

and downdrafts which create cumulonimbus, or thunderstorm clouds.

One of the most obvious characteristics of the shape of a thunderstorm cloud is
the presence of an anvil-like formation near the highest portion of the storm. When the
cumulonimbus cloud approaches the point at which air becomes warmer as height
increases (called the tropopause), convection halts as the air above is no longer cooler
than the updraft. The prevailing winds will cause the spreading of the cloud horizontally

at the height of the tropopause, creating an anvil-shaped formation.

Thunder and lightning are the two components which are most commonly
associated with thunderstorms [Micr99]. Lightning is a visible electric discharge
between two locations of different potential. One of these points is the thunderstorm
cloud, which typically contains a net negative charge near the bottom of the cloud and a
net positive charge near the top of the cloud. The cause of this polarisation is not
concretely known, but there are two main classes of explanations, namely those which
involve ice and those which do not. The theories based on ice formation are spurred from
the redlisation that lightning does not typically occur until ice has been created in the
upper layers of the clouds. One ice-based theory employs the fact that when a dilute
solution of water is frozen, the ice crystals have a negative charge, while the liquid water
obtains a positive charge. Therefore, since the frozen moisture in the cloud falls lower,
due to its weight, and the liquefied moisture remains in the upper portions of the cloud,
the cloud will achieve the observed polarisation. Another main theory, which is not
related to ice formation, is derived from the idea that polarisation is actually the cause of

the precipitation. The polarisation is thought to be created by the difference in potential

-5-
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between the highest layer of the atmosphere, called the ionosphere, and the Earth. This
gradient is responsible for the polarisation of the cloud. The updrafts carry positively
charged particles to the higher regions of the cloud, attracting negative charge from the
ionosphere. The downdrafts then carry these negatively charged particles and hence, no

neutralisation occurs.

Independent of the method in which the thunderstorm cloud is polarised, it is this
charge displacement which is responsible for lightning discharges. The surface of the
Earth and the negative charge at the bottom of the cloud behave in a manner similar to a
large capacitor. Once the potential difference achieves a value of approximately 10000 V
/ cm, the separating air becomes ionised, creating a visible flash. Each flash begins with
afaint, negatively charged electrical impulse coming downwards from the cloud, called a
step leader. The leader extends towards the ground for 30 meters or more, pauses and
then continues, forming the initial part of a conduction channel in approximately 1/100 of
a second. As this channel draws nearer to the surface, positively charged streamers
appear, usualy from the highest point on the Earth's surface. When the streamers come
into contact with the leader, a complete channel is formed and a white hot return stroke
occurs, generally from the ground to the cloud. Typically, the return stroke transfers a
net negative charge to the Earth. It is this return stroke, and approximately a meter of
surrounding superheated air, which illuminates the sky and is commonly referred to as
lightning. This lightning, which occurs between a cloud and the ground, is often referred
to as cloud-to-ground (CG) lightning [Good00a]. Lighting can also form due to similar
polarisations between two clouds, inter-cloud (IR) lightning, or, most commonly, within

asingle cloud, intra-cloud (IC) lightning. Recently, another class of lightning has been

-6-
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discovered to transpire above the clouds, appearing in the form of red sprites, blue jets or
emissions of light and very low frequency perturbations from electromagnetic pulse

sources (ELVES) [SeWe93][VaM Pog].

Thunder is ssmply the sound created by the rapid heating and expansion of the
gases within the channel. The rumbling of the thunder is caused by a number of factors
including reflection of the sound waves on the ground and the variable distances to

different parts of the lightning bolt.

2.2 Lightning Data Acquisition

The first phase in attempting to predict the path of a thunderstorm involves the
acquisition of data for analysis. A variety of methods are available to accomplish this

task, including both ground-based techniques as well as space-based programs.

2.2.1 Ground-Based Systems

The wealth of ground-based data acquisition methods can be further grouped into
those whose primary focus is the acquisition of general thunderstorm data pertaining to
properties such as rainfall, wind speeds and cloud height, and those which are responsible

for the detection of lightning.

The primary ground-based technique for the acquirement of general thunderstorm
datain North Americaisthat of Doppler radar, specificaly Weather Surveillance Radar -
1988 Doppler (WSR-88D) [NatiO0]. The principle behind Doppler radar is known as the
Doppler Effect. The Doppler Effect is employed by the station by sending out sound

waves that are reflected by moisture in the air. The direction in which the disturbance is
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moving may be determined by analysing the frequency of the sound waves returned.
Lower frequencies indicate systems moving away from the radar station, while higher
frequencies indicate a disturbance moving towards the station. From the data returned by
the radar, the reflectivity, vertically integrated liquid and 30 dBZ thickness may be

determined. An example of an image obtained using Doppler radar is shownin Fig. 2.1.

15:43 03-JUH-1999 GHT CCopyright HSI Corporation htbp://wuum usicorp,con

MAX DBZ: ‘1

Fig. 2.1. Example image from Doppler radar [Wsic99].

Ground-based systems are also utilised to detect lightning discharges during
thunderstorms. The two main networks located in the United States are the National
Lightning Detection Network (NLDN) and the Lightning Detection and Ranging (LDAR)
network [Good99a][Good00a][Harr99]. The NLDN is a system implemented by Global
Atmospherics, Inc. and is composed of over 100 magnetic direction finders which are

capable of detecting and recording CG lightning discharges. In 1997 it was announced
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by the government of Canada that this system was to be expanded in Canada, providing a
complete North American lightning detection network. An example of data obtained
using the NLDN is shown in Fig. 2.2. The LDAR network is a specialised system
employed by NASA at the Kennedy Space Center. The purpose of this group of sensors
is the location of lightning in real-time to assist in space shuttle missions. The data
collected by the network is transmitted to the Global Hydrology Resource Center
(GHRC) on adaily basis. An example of data collected by the LDAR network isgivenin
Fig. 23. These systems enable the determination of the time, location, polarity,

amplitude and duration of lightning discharges.

Flashes Detected by NLDN
( cloud-to-ground )

5 minutes of observation
17 April 1995 22:51-22:56 UTC

number of flashes
1 2 3 4-5 6-7 8-9 10-12 >13

Fig. 2.2. Example of data obtained using the NLDN [Mill0Q].
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Lightning Detection and Ranging
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Fig. 2.3. Example of data collected using the LDAR network [Good99b].

2.2.2 Space-Based Systems

Similar to ground-based systems, the systems which perform observations from
space may be grouped into those which monitor mainly cloud formations and those

whose mission is to detect lightning.

The major space-based satellites responsible for gathering images of long-lived
atmospheric conditions are the GOES-8/10, where the Geostationary Operational
Environmental Satellite (GOES) is a type of geostationary satellite [Syst99]. Currently,
NASA maintains two such systems in orbit, namely GOES-8 and GOES-10. GOES-8is

also known as GOES-EAST, and is situated at 75° W alowing for the continuous, real-
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time observation of the mgority of the United States, the lower regions of Canada, and a
large portion of South America GOES-10, located at 135° W, is responsible for
monitoring the western half of the United States and the Pacific Ocean, and is hence also
called GOES-WEST. Together, the two GOES satellites monitor approximately 60% of
the Earth's surface. Each GOES satellite contains an imager and a sounder. The imager
is capable of producing images of the Earth's surface, including the cloud cover, oceans
and severe storms, in the visible and infrared spectrums. The sounder provides data on
the vertical temperature and moisture levels, layer mean moisture, lifted index and total
precipitable water. In addition, the GOES satellites are capable of operating in a variety
of scanning modes which permit the satellites to focus upon a specific storm to provide
more detailed information when necessary. This flexibility allows GOES to be of great
assistance in storm tracking and prediction. An example of an image generated by GOES

using the visual channel isdisplayed in Fig. 2.4.

Lightning detection is currently performed by two main spaced-based satellites,
with plans for a third underway, and through shuttle-based thunderstorm videos. These
space-based observation satellites permit the detection of al types of lighting, including
CG, IR and IA lightning. The Optical Transient Detector (OTD) is one of NASA's first
space-based lightning observation projects, and was launched in 1995 [Good00a]. The
OTD is a geosynchronous satellite which is able to detect momentary changes in an
optical picture by comparing the luminance of adjoining frames, indicating the presence
of lightning. This detection is performed under both daytime and night-time conditions.
The orbit of the OTD is 740 km altitude with an inclination of 70 degrees with respect to

the equator. With a field of view of 100 degrees, the OTD is capable of observing an
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area of approximately 1300 by 1300 km? at any point in time as it orbits the Earth. The
rate of revolution is approximately 100 minutes per cycle about the planet. This
frequency alows the OTD to observe one point on the Earth's surface for several
minutes, normally allowing for the determination of the lighting flash rate of a given
storm, but insufficient for longer term monitoring of any specific location. The OTD is
capable of classifying its observations into events, groups, flashes and areas, depending
on rates and relative locations of the transients detected. The OTD stores images at a
resolution of 128 by 128 pixels and possesses a detection efficiency ranging from 40 to
65 percent. These images depict lightning discharges superimposed on a background
visual image. Although designed mainly as a prototype for the Lightning Imaging Sensor
(L1S), with amission length of 2 years, the OTD continues to transmit lightning data to

scientists on Earth. An example of an image recorded by the OTD isgivenin Fig. 2.5.

The Lightning Imaging Sensor is one component aboard the satellite employed by
the Tropical Rainfall Measuring Mission (TRMM) [Good00a]. The mission of the
TRMM satellite isto collect data pertaining to the rainfall in Earth's tropical regions. The
TRMM satellite is also a geosynchronous satellite, launched in November 1997, which
orbits with a 350 km altitude and an inclination of 35 degrees to the equator. The
purpose of the LIS component is to study the distribution and variability of global
lightning. LIS is capable of observing an area of approximately 600 by 600 km? at any
point in time as it orbits the Earth, and permits one particular point to be monitored for a
period of nearly 90 seconds. Likethe OTD, LISis capable of recording lightning during
both day and night, however, the detection efficiency of LIS is a much improved 90%.

For each observed event, the LIS records the time, location and radiant energy, which are
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invaluable parameters in lightning studies. An example of lightning data collected by the

LISisshowninFig. 2.6.

Fig. 2.4. Example image from the GOES visual channel [Envi99].

The future plans for satellite lighting detection from space are focused mainly on
the introduction of a Lightning Mapping Sensor (LMS) [Good00a]. The proposed LMS
is a geostationary satellite which would be capable of mapping lightning discharges
during the day and the night for afixed area of the Earth's surface. The logical placement
the LM Ss would be aboard each of the GOES satellites, facilitating total observations of

much of North America, South America and the surrounding oceans. The stationary
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property of the LMS would alow for the monitoring of an individual storm as it

develops, and would assist forecasters in predicting storm characteristics such as

trajectory and intensity.

Fig. 2.5. Example image from the OTD [Dool98b].

Lightning detection from the space shuttle has occurred since the introduction of
the space program itself, beginning with the Night-time and daytime Optical Survey of
Lighting (NOSL) program [GoodQOb]. The equipment for this program was flown
onboard early shuttle missions such as STS-2, STS-4 and STS-6, and allowed lightning to
be viewed from above using a lightweight lightning detection and photographic system.
In the late 1980s, the Mesoscal e Lightning Experiment (MLE) was introduced to continue

lightning detection from the shuttle. This experiment is an ongoing project which has
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been included in the payloads of more recent shuttle missions such STS-93 and STS-58.
A low light level camera which is located in a shuttle's payload bay is controlled by
operators at the Mission Control Center and is used to record lightning displays below the
shuttle. These images may then be digitised and analysed to determine characteristics
such as the lighting flash rate and size, as well as the size of the thunderstorm itself. An
example of a single frame from a shuttle video is displayed in Fig. 2.7. This thesis will

model lightning discharge data of this form.

34.0° N

1898-03-08 08:27:00 UTC

30.0° N

26.0° N

22.0° N ’ :
82.0' W 84.0° W 80.0° W 76.0° W

Lightning Activity

Medium

Fig. 2.6. Example LIS lightning data [Dool984].
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Fig. 2.7. Example frame from a shuttle lightning video [Vaug97].

2.3 Current Moddling Methods

A number of lightning discharge models have been developed so that better
thunderstorm prediction techniques may be discovered. The mgority of the current
models attempt to simulate the actual physical processes and particles involved in a
thunderstorm, typically at the microphysical level. Generally, three components are
present in lightning discharge models, namely a charge separation mechanism, electric
field generation and a lightning discharge parameterisation. This thesis will focus on
only two current models, namely the Axisymmetric Numerical Cloud Model (ANCM)

[YaLT95] and the 3-Dimensional Unsymmetric Electrical Model (3DUEM) [HaNK89].
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2.3.1 Axisymmetric Numerical Cloud M odel

The ANCM is a cloud electrification model which was developed to simulate the
lightning observed on Jupiter during the Voyager 1 and Voyager 2 missions in 1979
[YaLT95]. However, the principles behind this model can easily be applied to terrestrial
lightning as well. It has been shown [LeBT83][Rinn85] that water clouds are those most
likely to separate charges and generate lightning producing electric fields. To simulate
the movement and growth of cloud particles, a hydrodynamic axisymmetric cloud model
with open boundaries is employed. The dynamical component of this model is
responsible for the larger scale velocities, temperature disturbances, humidity
disturbances and pressure perturbations. A set of prognostic equations may be solved to
determine concentration and masses of water drops and ice crystals. The microphysical
component of this model deals with the growth and interaction of droplets and ice
crystals. A parameterisation is developed based on stochastic equations to obtain
microphysical particle concentration, water mass content and radar reflectivity. For each
time step in the simulation, the dynamica component is solved and then the
microphysical influences are determined based on the obtained dynamics. These two

components are then combined to obtain final values.

The electrical properties of athunderstorm cloud are modelled using the common
noninductive charge separation mechanism. The rate of space charge build-up due to
collisions between graupel particles and snow or cloud-ice particles is determined by
integrating over the range of diameters for these particles. Once this rate of change of

charge creation due to microphysical particles is determined, the overall charge rate of
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change may be calculated according to Eq. 2.1, where F is the advection operator, D is

the turbulence operator, Q isthe charge and V is the mass-weighted terminal fallspeed.

aQ =F(Q)-D(Q) - 0(QV)+EB_H Eqg. 2.1
at Z O at Gnter actions

Upon solving Eq. 2.1 for every grid point, the temporal and spatial space-charge
distribution is obtained. The electric potential in Volts is then calculated according to
Poisson’s equation, Eg. 2.2, where € is the dielectric constant for (Jupiter’s) air.

20 =9 Eq. 2.2
€

Employing Gauss's law, Eqg. 2.3, the two-dimensional electric field vector in V/m may be

determined.
E=-00 Eq. 2.3

To obtain the energy stored in the electric field, the integral over the entire column is

performed according to Eq. 2.4.
-1 re2qv Eq. 2.4
81'[.[ o

To determine the locations of the lightning discharges, the value of the electric
field is considered. If this value exceeds a predetermined breakdown value, then a
lightning discharge is said to occur. Hence, this space-time model provides a distribution

of discharges within athunderstorm.
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To complete the ANCM model, a method of charge neutralisation after a
lightning discharge must be included. In nature, this neutralisation is performed through
corona discharges and lightning currents. A simple approach is taken in this model,
namely once the breakdown value has been exceeded, the charge is neutralised in a

vertical cylindrical column surrounding the discharge.
2.3.2 3-Dimensional Unsymmetric Electrical M odel

The 3DUEM is a higher level electrification model which describes the evolution
of the electric field within a thunderstorm [HaNK89]. The input to this model is the
electrical current density generated by the flow of charged particles. Hence, an
additional, typically microphysical, model is required to model the current density. A
relationship between the input and the electric field is developed through the use of
Maxwell's equations. Specifically, the curl of the magnetic field is given in Eq. 2.5,
where H is the magnetic field, € is the permittivity, E is the electric field, o is the

conductivity and J is the current density.
DXH:E‘Z—E+GE+J Eqg. 2.5
The divergence of both sides is taken to eliminate H from Eqg. 2.5 to obtain Eq. 2.6.
ED%+DE§E+DEUZO Eqg. 2.6

Assuming that the time derivative of the magnetic field is zero, the curl of the electric

field will then be zero, and hence E is the gradient of a potential ¢. Therefore, Eq. 2.6
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can be written as

2
sag—t(p+oD2(p+ Oe+00] =0. Eq. 2.7

Performing the substitution Y = [ 2(p, Eq. 2.8 is obtained.
oy _
EE+O'IJJ+DO'DD([)+DEU—O Eq. 2.8

If the Earth is considered to be a perfect conductor, the Dirichlet boundary condition of

the potential being zero at the surface of the Earth, ¢(x, y,0) =0, may be applied. Then,

the solution @to Y = DZ(p isgiven by Eqg. 2.9.
@(r) :ISG(r,s)Lp(s) Eqg. 2.9
Finally, substituting Eq. 2.9 into Eg. 2.8 yields Eq. 2.10.
oy —
E—+GL|J+DGEI OG(r,s)Y(s)+00 =0 Eqg. 2.10
ot s

A more basic format for Eqg. 2.10 is given by Eq. 2.11, where L is a linear operator and

f=000.
s%—?+ Lp+f=0 Eqg. 2.11

Examining Eqg. 2.11, it can be seen that the electric field may be obtained by first

integrating to obtain Y, evaluating Eq. 2.9 to obtain ¢ and finally differentiating to yield
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E = Og. Hence, the electric field may be computed given the current density.

Similar to the ANCM model, a lightning discharge is said to occur when the
electric field exceeds a specified breakdown value. To model the discharge process
itself, a new potential field is repeatedly calculated as the conductivity, o, increases with

the dectric field, E.

2.3.3 Summary of Current Modelling Methods

Although the majority of the current models have the benefit of simulating
realistic physical properties, this methodology is responsible for the major limitation of
these models. Due to the small size of the particles involved in the thunderstorm process
as compared with the actual thunderstorm itself, current models tend to be quite large and
complicated. Ancther limitation of the current models is the lack of representation of the
chaotic nature displayed by the lightning discharge patterns. Consequently, a new model
isrequired. An ideal candidate for the basis of this model is percolation theory, due to

the similarity between percolation and lightning images, as seen in the next section.

2.4 Percolation Theory

Percolation is a multifractal model which can represent easily a disordered system
[Vics92][FedeB88]. The most basic form of percolation is site percolation, which occurs
asfollows. Consider asguare lattice where each square is either empty, filled or dead. A
number of seeds are placed within the lattice, marking their squares as filled. The
number and location of these seeds may be fixed or random. Percolation is now

permitted to occur for a specified number of time steps. In each time step, the nearest
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neighbor squares of all filled squares are considered. In two dimensions (2D) these are
the four closest squares, while in three dimensions (3D) they are the six closest. For each
of these nearest neighbor squares, arandom number between 0 and 1 is generated. If this
number is greater than a predetermined spreading probability, p, then the square is
marked as filled. Otherwise, the square is marked as dead and therefore can never be
filled during the rest of the simulation. This process is then repeated in the next time
step. Percolation is quite sensitive for a small range of p and will create fractal structures
for these values. When the value of p deviates too greatly from this range, the
percolation is generaly uninteresting, as the mgority of the lattice is either filled or

empty.

A common real-life example of the percolation process is the spreading of a
contagious disease throughout a population. In this anaogy, the seeds are those
individuals which have become infected with the disease. There is a chance that these
people will infect those around them (the nearest neighbor squares). If infection does
occur, then the newly infected individuals may then spread the disease to the people
surrounding them in the next time step. If infection does not occur, then the individual is

said to be immune to the disease.

A simple example of 2D percolation is shown in Fig. 2.8. The four grids
represent four successive time steps in the growth of the percolation fractal. In the first
step, random probabilities are generated for each of the squares in the five by five grid
and an initial seed is placed. Using a spreading probability of p = 0.5, the percolation

fractal spreads outward as shown in the subsequent three grids.
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Fig. 2.8. Four time steps in the growth of a 2D percolation fractal.

A number of variations on the percolation model exist. In addition to slight
modifications to the site percolation agorithm, bond percolation and continuum
percolation are two other types of percolation. Aswell, although the percolation model is
most easily presented in 2D, it may be dlightly modified for three or higher dimensions.
For 3D, the only required change is the inclusion of the upper and lower nearest neighbor
sites when considering the squares around a filled site. A simple example of 3D
percolation with a lattice size of five and a single seed is displayed in Fig. 2.9. The five
images represent the growth of the fractal through five time steps. In each step, the
addition of a new filled nearest neighbor site indicates that the random probability

generated for this square was greater than the spreading probability.

cefg s

Fig. 2.9. Fivetime stepsin the growth of a 3D percolation fractal.
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The formations created using percolation are known as multifractals [BuHa91]
and hence, specia analysis techniques must be employed to measure their characteristics.

The basic theory of fractals and one fractal metric is described in the following section.

25 Fractalsand the Rényi Dimension Spectrum

A fractal is acomplex structure which does not change in appearance over awide
range of scaes and possesses characteristics which are repeated over all these
magnifications. In other words, fractals are said to be self-similar and scale-invariant,
meaning that a fractal appears to have the same geometrical structure regardless of the
magnification of the object. Many examples of fractals can be found in nature such as
trees, mountains, clouds and snowflakes. One property of afractal is known asits fractal
dimension. Basic geometric objects have integer dimensions, for example a line is one
dimensional whereas a sguare is two dimensional. Fractals, on the other hand, are
characterised by dimensions which are not integers. These dimensions describe the
underlying structure of the fractal itself. When more than one fractal dimension is
required to describe a fractal’ s structure, the fractal is known as a multifractal. A number
of methods are available for calculating a variety of different fractal dimensions,
however, the multifractal Rényi dimension spectrum [Kins94] will be employed in

analysing the lightning images produced in this thesis.

To caculate the Rényi dimension [PelS92], we cover an image with N, 2D
volumetric elements (vels) with a fixed radius, r. If it is assumed that the jth vel
intersects the fractal with afrequency of n;, the probability of finding a point in the jth vel

isgiven by
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_ lim N

where Ny is the total number of pointsin al the vels.
Nt = an Eg. 2.13

Rényi has generalised Shannon’s entropy (where g = 1) to any exponent, q, Eq. 2.14,

where g is known as the moment order and —c < < o [Kins94].

H —ilogNerq Eq. 2.14
Ny
le—z p;jlog p; Eq. 2.15

The Rényi generalised entropy is used in the power-law relationship
N
1 <0 ,Dq
1-q Z pj ~r Eq. 2.16
j=1
to characterise the fractal, yielding the Rényi dimension given by

Ny
'OQZ(IO?)
_lim 1 i=1

a7 r - 09—
T

Eq. 2.17
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Hence, the Rényi dimension is calculated for a specific g value asr — 0 while the Rényi
dimension spectrum is formed by finding Dq values over a range of g. The resulting
Reényi dimension spectrum is a nonincreasing function and is most easily viewed in a Dq

vs. g plot.

2.6 Summary

This chapter presents the necessary background for the development of a
percolation-based model of lightning discharge patterns. First, a description of the
convective processes responsible for thunderstorm creation is given and some possible

causes of electrical polarisation are examined.

This review aso covers some of the methods employed for lightning data
acquisition. These techniques include ground-based systems such as Doppler radar, the
National Lightning Detection Network and the Lightning Detection and Ranging system,
as well as space-based systems including the Geostationary Operational Environmental
Satellite, the Optical Transient Detector, the Lightning Imaging Sensor, the Lightning

Mapping Sensor and the Mesoscale Lightning Experiment.

Next, a brief discussion on current lightning modelling methods is presented.
Two models are focussed upon, namely the Axisymmetric Numerical Cloud Model and

the 3-Dimensional Unsymmetric Electrical Model.

Finally, fractals and multifractals are introduced, including a description of
percolation theory and its creation of multifractal structures. As well, the Rényi

dimension spectrum is explained as a measure of multifractal dimension.

- 26 -



Modelling and Simulation of Lightning Discharge Patterns Chapter 2: Background

This chapter illustrates the need for a new model of lightning discharge patterns
by highlighting the complexities of two representative current lightning models. The
theoretical aspects of percolation are then presented as an ideal foundation upon which to
base a new model. The next stage in development of this simulation technique is the

specification of the requirements and architecture of the percolation model.

-27 -



Modelling and Simulation of Lightning Discharge Patterns Chapter 3: System Requirements and Architecture

CHAPTER 3
SYSTEM REQUIREMENTSAND ARCHITECTURE

Chapter 2 reviews the physical processes behind thunderstorms and describes
techniques employed to gather data pertaining to lightning discharge patterns. As well,
two representative current lightning modelling methods are outlined, including a
discussion of their strengths and limitations. The fundamentals of fractals and
multifractals, specifically percolation theory, are then presented as a basis for a new
lightning discharge simulation technique. Finaly, the use of the Rényi dimension

spectrum as a measure of model accuracy is emphasised.

This chapter focuses on the requirements for a percolation-based lightning
modelling system and develops the architecture for this system. There are three main
components to the software package: (i) the extraction of lightning discharge data from
space shuttle videos, (ii) the ssmulation of lightning discharges using percolation, and (iii)

the measuring of image complexity for comparison purposes.

3.1 System Objectives

The following list details the objectives for the modelling software:

» Extraction of black and white lightning images from greyscale lightning images.
» Simulation of lightning discharges using percolation.
* Production of both black and white and color percolation-based image

sequences.
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3.2

» Changeability of percolation parameters.
* High perceptual accuracy of percolation-based videos.
e Calculation and plotting of the Rényi dimension spectrum for the black and

white videos.

* High degree of similarity between the spectra of the percolation and shuttle

videos.
» Simple user interface.
* Portability of the ssmulation and analysis software.
* Processing of standard digital image formats.

» Storage of processed shuttle images and percolation generated images.

System Structure

The structure of the lightning discharge system can be divided into its three main

functions: (i) the extraction of lightning discharge data from space shuttle videos, (ii) the

simulation of lightning discharges using percolation, and (iii) the measuring of image

complexity for comparison purposes.

The purpose of the first component is to extract lightning discharge data from

gpace shuttle videos. The image sequences obtained from the digitisation of movies

recorded using low level television cameras onboard the shuttle are greyscale images.

Hence, the software system must be capable of analysing these pictures to determine the

locations of lightning discharges and produce representative sequences of black and

white images.
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The next component of the software package comprises the basis of this thesis,
namely the ssmulation of lightning discharge patterns using percolation. This segment
should produce black and white images which closely resemble the binary sequences
created from the actual shuttle videos. Percolation involves a great number of
parameters, such as lattice size, the number of seeds and the spreading probability, which
affect significantly the fractal structures generated. Consequently, the system must allow
for the easy modification of these variables. Aswell, color is to be used to demonstrate

the growth of individual lightning discharges during the simulation.

The final component in the system is responsible for providing a means by which
the complexity of the black and white lightning images may be determined. Hence, this
element must be capable of calculating the Rényi dimension spectrum of these images
and displaying the results in a graphical format. By applying this metric to both the
shuttle video images and the ssmulated video images, the accuracy of the percolation

model may be determined.

3.3 Host Environment

The host environment for the lightning simulation system can be considered to be
comprised of the computer on which the software will be run and the language in which

the software is devel oped.

3.3.1 Host Computer

The development platform is an important factor in the creation of a software

modelling system. A fundamental requirement for the platform is the ability to view 24-
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bit color images of the selected format, as well as manipulate and display video
sequences. In addition, the use of percolation in the model will allow for the generation
of a variety of qualities of smulation. More complex runs of the software can involve
3D percolation lattices on the order of 256 x 256 x 1300 which can occupy between 400
and 500 MB of memory. As well, the model should allow the number of images in a
given sequence to be varied. Typicaly simulations involve 300 frames, each of which
can be of an uncompressed size of dightly less than 0.8 MB. Therefore, a moderate

amount of hard disk space is required for file storage and temporary file creation.

Ideally this system would be implemented in a parallel fashion, either on a
parallel machine or on a cluster of workstations. This technique would allow the
percolation to occur much more quickly due to the distribution of the lattice over multiple
processors. As well, the use of a parallel architecture would help ensure the availability
of disk space for image storage. Interaction between the processors could be
accomplished through a message passing system, for example, MPI. However, for the
purpose of simplification, the modelling software shall be developed on a relatively

powerful single processor computer.

The development environment selected is the Unix system, specifically a Sparc
Ultra 10 333 MHz machine running the Solaris 2.7 operating system. The chosen
computer possess a total of 768 MB of memory. These specifications satisfy sufficiently
the outlined requirements, allowing the software to run detailed simulations in a
reasonable amount of time. As well, only minor modifications, primarily to Makefiles,
are required to permit more basic simulations to be run on a Pentium 11 400 MHz with 64

MB of RAM running Linux 2.2.12.
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3.3.2 Development Language

In order to increase the portability of the software, the C++ programming
language was selected for development. Although designed for the Unix environment,
programs shall be constructed in a manner which facilitates their migration to other

operating systems, such as Windows 9x.

3.4 User Interface

The software’s user interface provides the means through which various aspects
of the modelling system may beinvoked. Since the focus of thisthesisis the creation and
testing of a new percolation-based model, the generation of a graphical user interface was
not of high priority. Nevertheless, the command line interface must be ssmple to use and

permit the following functions:

» Loading of a sequence of images from space shuttle lightning video.

« Extracting ablack and white representation of the shuttle images.

* Generating a 3D percolation lattice.

* Saving the 3D percolation lattice.

* Creating a sequence of lightning images from the percolation lattice.

» Saving the percolation-based images in both black and white and color forms.

e Calculating the Rényi dimension spectrum of black and white shuttle and
percolation images.

* Producing a 3D plot of the resulting Rényi dimension spectrum.
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All but the last of these features are facilitated by various C++ programs, while the last
involves the use of a short MatLab program. Further details pertaining to the use of the

software are presented in Chapter 4.

3.5 ImageProcessing

The requirements of the images which are supported by the modelling software
may be divided into image attribute restrictions and image file type restrictions.
However, it should be noted that the limitations created by these restrictions were
imposed simply for the ease of development, and that the concepts behind the system can

be applied using a wide range of image formats.

3.5.1 ImageAttributes

A number of restrictions on the image attributes for both the input shuttle video
sequence and the output percolation sequence are required by the modelling system.
First, the shuttle images must be at least 512 x 512 pixelsin size and each side must be a
multiple of 256. This restriction is induced to simplify the covering procedure required
in the calculation of the Rényi dimension spectrum. As well, the shuttle images need be
24-hit red-green-blue (RGB) greyscale images (R = G = B for each pixel) in order to
simplify image processing routines. For the images created by the percolation model, the
same restriction in image size is present due to the Rényi dimension spectrum cal culation.
However, the percolation program allows for the use of a smaller lattice to reduce
computational overhead, and a scaling factor is employed to generate larger images.

Again, all images produced by the system are 24-bit RGB images, with both color and
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black and white images being created. Finally, in addition to the size restrictions
imposed by the Rényi dimension spectrum calculation, the algorithm implemented for

this calculation assumes that only black and white 24-bit RGB images are utilised.

3.5.2 ImageFile Formats

The file format supported by the image loading and saving routines was chosen to
be the uncompressed Windows bitmap (BMP). As mentioned previously, these images
need be 24-bit RGB encoded. This format was selected based on the simple binary file

layout and the prevalence of use and support for BMP images.

3.6 Summary

This chapter describes the requirements of the lightning modelling system. This
specification includes the required functionality, host environment, and image attributes
and formats. The system must be capable of generating and measuring black and white
lightning image sequences based firstly on shuttle video sequences and secondly on
percolation theory. For more detailed simulations, the modelling software requires a
computer with between 400 and 500 MB of RAM, and is designed for the Unix
environment using the C++ programming language. The image type supported by the

system is 24-bit RGB encoded Windows bitmaps (BMPs).

This chapter also discusses the resulting structure of the modelling system.
Specifically, three major modules are required to implement the major features of: (i) the

extraction of lightning discharge data from space shuttle videos, (ii) the simulation of
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lightning discharges using percolation, and (iii) the measuring of image complexity for

comparison purposes.

With the basic requirements and structure of the simulation system outlined, a
complete description of the software organisation is now presented in Chapter 4. This
discussion includes details as to the specific algorithms performed, the implementation of

these algorithms, the module interaction and the use of the resulting software product.
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CHAPTER 4
SOFTWARE ORGANISATION

Chapter 3 introduces the lightning modelling system, focusing on its requirements
and architecture. The system objectives and structure are determined and the restrictions
of the design are highlighted. The establishment of these design specifications facilitates

the development of the system implementation.

This chapter presents a detailed description of the organisation of the lightning
modelling system based on the specification provided in Chapter 3. Specificaly, the
algorithm development and implementation for the shuttle image anaysis, percolation
model and Rényi dimension spectrum modules is examined. Aswell, the overall system

interaction and usage is discussed.

4.1 Structureof an BMP Image

Since the lightning modelling system is based upon digital images, the structure
of aBMP image must first be outlined. Conceptually, aBMP imageisaW x H grid of
pixel values. Inthe case of 24-bit RGB encoded images, every individual pixel possesses
an 8-bit value for each of the red, green and blue components comprising the color of the
pixel. Inthe case of greyscale images, the red, green and blue components are al equal.
Since 8 hits are used to represent each of the three composite colors, vaues between 0
and 255 are possible as 2° = 256. This 8-hit value represents the intensity of the

corresponding color of the pixel. Lower values are mapped to lower intensities (darker
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colors) while higher values represent higher intensities (brighter colors). This structure

of theimage dataisillustrated in Fig. 4.1.

Width (W)

Height (H)

P

[1]ofoJofo]ofo[ofofojofo]ofo[ofo]1]1][1]1[1[1[1]1]

\/\/\/

R =128 G=0 B =255
light purple

Fig. 4.1. Conceptua image data representation.

In addition to the binary image data stored in a BMP file, two headers are present,
namely the BMP header and the BMP information header. The BMP header is 14 bytes
in length and contains information pertaining to the file type, file size and the location of
the bitmap data. The BMP information header is 40 bytes in length and provides
information about the bitmap data itself such as the height and width of the image. The
raw bitmap data is located in the binary file after these two headers. In implementing

data structures for the BMP headers, three user-defined data types, BYTE, WORD and
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DWORD were declared to represent 1, 2 and 4 bytes, respectively. This declaration
provides a degree of platform independence since different standard C types (for
example, integer, long integer, short integer) are represented by varying numbers of bits

across different systems.

One consideration when working with BMP files is that these files are in little
endian format. This method originates from the fact that the BMP file structure was
originally developed for use on Windows-based computers. Hence, care must be taken
when working with these files under Unix to ensure that data is written to the file using

the correct format.

To manage the use of image files in the simulation system, a bitmap unit,
bmpunit.cpp / bmpunit.h, is created which contains a number of useful procedures for the
manipulation of BMP files. For example, procedures exist for the reading and writing of
BMP headers and data (including means of handling the little endian byte orders), as well
as routines for reserving space for a bitmap in memory. In addition, a number of pixel-
based procedures are implemented, including methods of creating pixel data structures,
finding the intensity of a single pixel and finding the intensity of an entire greyscale
bitmap. Encapsulating these image manipulation routines allows the system to be more

modular, as the BMP routines are then utilised easily by different programs.

4.2  Shuttle Image Sequence Processing

The purpose of this portion of the software system, light.cpp, is to convert the
greyscale shuttle lightning images into a format which is usable in the Rényi dimension

gpectrum calculation [CaKi00]. Consequently this program translates 24-bit greyscale
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images selected by the user into representative 24-bit black and white images. A
structure chart describing this process is illustrated in Fig. 4.2. The anaysis methods
employed by this module are similar to the blob and morphological techniques used by

Pitts et al. [PVSH92].

For each video image in the partial sequence, a number of steps are undertaken.
First, the input BMP file is initialised and the headers read using procedures in the
previously described BMP unit. This input procedure also includes the manipulation of

the headers, if necessary, to compensate for the little endian storage format.

Next, if the first image is currently being operated upon, enough memory is
alocated for the storage of the bitmap data. For subsequent images, the memory
previously reserved for bitmap data may simple be overwritten and hence, no new
memory is needed. However, a number of temporary pixe lists (described momentarily)

must be cleared.

The next stage in this process is the reading of the actual bitmap dataitself. Since
only greyscale images are being used as input, the little endian storage method is of no

concern.

The average intensity of al the pixelsin the bitmap is now calculated. Thisvaue
provides a reference point from which pixels corresponding to lightning flashes can be
determined. Hence, the lightning location process is independent of the overall

luminescence of the shuttle images.
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|Get directory and file names|

|Get upper and lower frame numbers|

[Set Frame to lower frame number]|
la

upper frame
number?

[Initialise the input data file|

|Read (and fix) the BMP headers|

rame =
low frame
umber?

Yes Get memory
for BMP data

[Free memory from existing lists|

IRead the¢BMP datale

|Find the BMP average intensity|
v

|Find the pixels significantly brighter than the average intensity|

v
|Group connected bright pixels|
v

|Find the cente¢r of the flashes|

Output a black BMP except for the bright pixels which are colored white
2

| Incremelnt Frame|

Fig. 4.2. Structure chart for the processing of shuttle lightning images.
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At this point, the bright pixels may be located. A pixel is said to be bright if its
intensity exceeds athreshold value, which is equal to a constant multiplied by the average
bitmap intensity. This constant value is set to 2.4 based on experimentation, however it
may be altered easily. The co-ordinates of the bright pixels are stored in a list

implemented using the vector class from the C++ Standard Template Library.

The next two stages in the conversion process are undergone for informative /
debugging purposes only. Using the locations of the bright pixelsin the image, grouping
may be performed so that individual lightning flashes may be located. The grouping
process is done by selecting a pixel from the bright list and checking to determine if its
nearest and next nearest neighbors are also bright pixels. If so, then the bright neighbor is
removed from the bright pixel list and placed into the group. Recursion is then used to
examine the appropriate neighbors of the new-found group member. The grouped datais
stored in a 2D matrix (a vector of vectors) where each row corresponds to a group and

each element represents the members of a group.

An example of this grouping procedureis givenin Fig. 4.3 and Fig. 4.4. Thefirst
of these figures shows a sample image for which the bright pixels are to be grouped. This
image is a black and white example, however the grouping technique functions in the
same manner for both black and white and greyscale images. The second diagram

illustrates the resulting 2D matrix of grouped bright pixels.
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column —»
0 4 9 14 19

row O

14

19

Fig. 4.3. Sample black and white image for which to group the bright pixels.

flash 1— (4,4) | (4,5) | (4,6) | (5,5) | (5,6)  (6,6) | (6,7)
flash 2— (14,2) | (15,2)| (15,3)| (15,4)| (16,2)| (16,3)| (17,2) | (17,3) | (18,2) | (18,3) | (19,2)
flash 3—» (10,9) (10,10)(11,10)(12,10) (13,9) (13,10)(13,11)
flash 4—» (3,17) | (4,16)| (4,17) | (4,18) | (5,16) | (5,17) | (5,18) | (6,17)]
flash 5—(14,17)(15,17

Fig. 4.4. Grouped pixelsfor sampleimagein Fig. 4.3.

The other portion of the procedure done for informative / debugging purposes is
the determination of the centers of lightning flashes based on the 2D grouping matrix.
For each group, the average x and y co-ordinates are calculated and are said to represent

the center of the flash. A vector of flash centersis formed for the current image, and this
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list is inserted into a 2D matrix of flash centers for the entire selected image sequence,
where each row corresponds to one frame. These values are extremely useful in
determining whether the trandation process is functioning correctly. One need only
compare the calculated flash centers with those visible in the shuttle images to determine

the accuracy of the trandation.

The final stage of the greyscale to black and white conversion of asingleimageis
the generation of the actual black and white bitmap. The resulting bitmap is solid black

in color, with al bright pixels being set to white.

The application of this procedure to the sequence of 24-bit greyscale shuttle
lightning images creates a corresponding series of 24-bit black and white images which

are suitable for use in the calculation of the Rényi dimension spectrum.

4.3 Additional Libraries

In addition to the mgor programs used in the modelling system, a number of
library files are employed. The first of these such units, FileUnit.cpp, is a module which
contains various file input and output routines. Second, a unit, LatUnit.cpp, is defined to
encapsulate the LatticeType data structure. This library provides a multitude of
procedures for accessing and operating on a lattice. Finaly, an initialisation file,
InitUnit.h, is created which contains system wide definitions of constants which are

relevant to the entire software package.
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4.4  Percolation Lightning Discharge M odel

This thesis focuses on the development of a percolation-based model for
simulating lightning discharge patterns [CaKi00]. In the following subsections, the
theoretical basis for this model is detailed and the implementations of the model

components are described.

441 Theoretical Aspects

The basis of the new lightning discharge model is the representation of lightning
discharge locations and growth using percolation. The first step in simulation is the
generation of a 3D percolation lattice, as described previoudy in Section 2.4, where the
filled squares correspond to lightning activity. The z dimension in the lattice is in the
vertical direction, while the x and y dimensions form a horizontal plane. Hence, one
image can be obtained by selecting a single x-y plane while holding z constant. Once this
lattice is created, a number of options exist for the generation of a sequence of lightning

images.

The ssimplest means of generating successive images is to run a new percolation
for each frame required, and consider the top-most layer to be the required frame.
Conceptually, this idea corresponds well to the actual physical charge processes involved
in thunderstorms. However, this method resultsin alack of correlation between lightning
flashes in two successive frames. In the shuttle images, lightning flashes are seen to

persist and develop over a number of frames, whereas with this technique, it is unlikely
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that a flash in one frame will still be present in the next. Effectively, this method models

the birth of new lightning discharges but not their individual development with time.

To achieve this observable flash development, a means of correlating successive
frames must be introduced into the percolation model. This task is accomplish by
selecting the sequence of images using a progression of layers from a single 3D
percolation lattice. The most obvious approach is to select the required number of layers
from a middle portion of the lattice and utilise successive layers to represent successive
frames. This process will provide a good deal of correlation between consecutive frames
in the output image sequence. Alternately, a skipping factor may be incorporated so that,
for example, every second layer of the lattice is selected when generating the sequence of
frames. Increasing this skipping factor will continuously decrease the degree of
correlation between frames, however larger skipping factors will require the use of a

larger lattice for the same number of frames.

Dueto the intricacy of the structures produced using percolation, a final technique
may be used to produce more realistic lightning growth patterns. Since during the
percolation process it is possible for a square to become dead (or immune in the disease
anaogy), small black dots may appear in the middle of a lightning flash. However, due
to the physical properties of actual thunderstorms, this situation does not occur in the
shuttle images. Hence, a means of reducing the number of such occurrences is desired.
Since percolation is based on random probabilities, there is a good chance that the square
directly above or below one such black square will be filled. Therefore, if a number of

successive frames are compressed together to represent one frame, this noise could be
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reduced. In using thistechnique an effective sliding window is employed, where a square

isset asfilled if itisfilled in any of the framesin the window.

Finaly, the inclusion of color in the images resulting from the percolation
simulation can proveto be quiteillustrative. Color can be used to represent the growth of
an individua lightning discharge. Pixels in the discharge which are newly filled are
known as “hot spots’ and should be colored red. Over time, these pixels should change
to more blue shades as they “cool”. One method of implementing the lightning coloring
is to keep track of the time when a square is filled during the percolation simulation.
These times can then be transated, using a linear mapping, to color values. Alternately,
when the correlation method using only one 3D lattice is used, time in the simulation
corresponds to height in the percolation lattice. Therefore the number of successively lit
pixelsin avertical column of the lattice represents the length of time which an individual
pixe islit. To determine the appropriate color for afilled pixel in each frame, the height
of the pixel relative to the column of consecutively lit pixelsis considered. If apixel is
close to the top of a connected column, it is colored more red, while if it is near the

bottom of a connected column, it is colored more blue.

442 Lattice Generation

This portion of the system software, 3dperc.cpp, is responsible for the creation of
a 3D percolation lattice. The percolation itself isrun and then a binary file describing the
contents of the lattice is generated. As well, a binary file containing time data used in
coloring is also output. A structure chart for this module is displayed in Fig. 4.5 with the

recursive percolation component highlighted in Fig. 4.6.
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The first steps in the creation of a 3D percolation lattice are to reserve enough
memory for the lattice itself, and to initialise al of the lattice squares to Empty. A loop is
then used to perform a number of tasks for each of the percolation seeds. The tota
number of seedsis declared as a constant in this program and may easily be changed.

|Get memory and initialise the 3D lattice |

| Set Dummy seed counterto 1 |

Dummy <=
total number

No

|Get skipping and compression factors|

v
[Clear the list of squares filled by the last seed |

A 4
Save appropriate layers of lattice i
to binary status file and binary time file [Generate a random seed location|

Increment
Dummy

Einish)

[Fill the seed square|

[Recurse on the seed square]

Remove noise

[Normalise times for better color distribution|

[ Increment Dummy |

Fig. 4.5. Structure chart for the generation of a 3D percolation lattice.

To develop the percolation fractal, recursion is now employed. The recursive
procedure EvaluatePixel is called on all six of the seed’s nearest neighbors. This routine

considers the input square to determine the square’ s status. If the square is Empty, then a
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random number is generated. If this number is greater than the spreading probability, the
square is marked as filled and its fill time recorded. Again, the time counter is
incremented and the square is added to the filled list. At this time, recursion is invoked
by calling this same EvaluatePixel routine on the newly filled square’ s nearest neighbors.
If the random number generated for a square does not exceed the spreading probability,

or if the square is aready Dead, then no further recursive calls are made.

EvaluatePixel (Neighboring Square) 6 1 EvaluatePixel (Neighboring Square)
6

y

Cease this call
to EvaluatePixel

input square

|Generate a random number |

number

> spreading

probability
?

Cease this call
to EvaluatePixel

Yes
[ Fill the input square |

[When all recursive calls are completed |

Fig. 4.6. Structure chart for the recursive section in the | attice creation.

For each of the percolation seeds, a random location is chosen within the lattice.
As wdll, a list which is used to store co-ordinates of all of the squares filled by the

spreading of one seed is cleared and a time counter for the current seed is reset. The
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selected square is then marked as filled and its fill time is recorded. The time counter is

also incremented and the seed co-ordinates are placed in the list of filled pixels.

Ultimately the recursion will terminate once all nearest neighbor squares have
been considered and the individual recursive calls ended. At this time a form of noise
removal is employed. The length of time for which percolation on a seed persisted is
examined. If this time does not exceed a declared constant noise threshold, then the
pixels in the filled list are set to Dead. The noise remova procedure eliminates the
presence of extremely small percolation fragments which do not resemble natural looking

lightning discharges as seen from the shuttle.

The final operation performed for each seed is the normalisation of the time
values for the square filled by the current seed. This normalisation alters the time fields
so that the times are scaled to be within a predetermined range. By forcing al timesin
the ssimulation to be between a time boundary, the full color progression is achieved for
each seed. If thisaction isnot performed, longer lasting seeds will cause short-lived ones

to remain nearly one solid color.

Once the above procedure has been fulfilled for each seed, the user is requested to
provide the skipping factor (for selecting layers from the lattice) and the compression
factor (the size of the dliding window). With these values, appropriate layers may be
selected from the percolation lattice for output. The layers chosen reflect the use of the
skipping factor, however, layer compression using the dliding window is not yet

represented. The lattice generation program produces two binary output files.
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The first file, Stat0000.sta, describes the status of each pixel in al of the output
frames. Since each pixel may either by filled or empty, only a1 or a O is needed to
provide thisinformation. Hence, the status of eight pixels can be represented by one byte
through the use of bit operations. The first integer in this file is reserved to hold the

number of layersto be compressed into one frame (the compression factor).

The second binary file produced, Time000O.tim, is used to store the time at which
each filled pixel was set. Hence, one entry in the time file exists for each 1 in the lattice
portion of the status file. By only storing times for those squares which are actually
filled, the size of the time file required to describe the frames is reduced considerable.
These times are each one WORD in length, and the maximum time, a constant due to

normalisation, isincluded as the first WORD in thetimefile.

Using the status and time binary files, a complete description of the frames
generated by the 3D percolation lattice is achieved. Hence, these two files are the
minimum that need be saved to represent fully a lightning ssmulation. This information

can now be utilised in the dliding window layer compression technique.

443 Layer Compression

This program in the modelling system performs the sliding window lattice
compression technique, generating a new status file as well as a new time file based on
relative heights of vertically connected pixels. This algorithm will reduce the number of
occurrences of black pixels amidst a group of filled pixels. Note that since a diding
window is used, the resulting lattice is of the same size as the origina lattice (minus the

extra layers utilised to compress the topmost layer). Hence the term compression is used
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to refer not to the reduction of the amount of data, but rather to the blending of data

together. A structure chart outlining the flow of this programisgivenin Fig. 4.7.

The first step in compressing the lattice is to initialise the input and output data
files. The input file to this program is the lattice status file created in the above
percolation program, while the output is a new lattice status file which reflects the
compressed lattice and a corresponding time-based color file. Memory is reserved for the
input lattice and the data is read from the file. Next, enough memory is allocated for a
copy of the lattice, since it is quite difficult to attempt to compress the lattice in-place. A
loop index, z, is now set to the uppermost frame layer and the dliding window is located
upwards, beginning at this height. With these structures and files established, the lattice

compression may occur.

For each of the squares in the current horizontal z layer, the new status must be
determined. This task is accomplished by considering each of the squares in the
corresponding vertical column, at heights within the sliding window. If any of these
squares are marked as Filled, the square at the current z level is set to Filled in the new
lattice. This process is repeated with the current z layer and sliding window each being
decremented by one. Once the bottom-most layer is operated upon, the new compressed

|attice will have been completely generated.
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[Initialise input status file]

| Initialise output status file|

[Initialise output height coloring file]

|Get memory and initialise input lattice]

[Read in lattice status data]

IGet memory and initialise space for new latticel

[Set z = total number of frames - 1|

[Set sliding window to be between z and z + layers per frames - 2|
o

For each square at the given z value,
check if any square are filled in that column of the sliding window
and set the square's status accordingly

Decrement z

[Move the sliding window down by one layer|

[Return compressed lattice]

For each column in the Tattice,
walk down the column from the top,
and for each filled square,
set the time field according to its relative position
within the surrounding verticle series
of connected points

Save the total number of required frames from
the lattice, producing a new status file
(Stat0000.sta) and a new time file (Hgt0000.hgt)

Fig. 4.7. Structure chart for lattice compression.
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An example of the compression procedure is shown in Fig. 4.8 and Fig. 4.9. The
first of these images displays a 2D cross section (holding y constant) of alattice which is
to be compressed. The desired image has x and y side lengths of 20 pixels, and 20 such
frames shall be generated. The size of the dliding window is 5 layers. Hence, the z
dimension ranges between 0 and 23, with layers 20 through 23 being used only for
compression when generating pixels in layer 19. The latter image contains column 5
from the lattice and illustrates the movement of the sliding window to determine the

resultant pixel’s value for the compressed column.

19

14

Fig. 4.8. Sample image to be compressed.
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With the compression of the lattice complete, it is now possible to generate the
binary time file for coloring purposes. Since in this coloring scheme color is correlated
with square height, each vertical column of the compressed lattice is considered
individually. Beginning at the top, each column is walked through towards the bottom.
When a Filled square is encountered after a series of Empty squares, the height is noted
and the time field of this square is set to 1. For all squares directly connected to this
starting Filled pixel, their time fields are set according to their relative distance from the

location of theinitia Filled square.

23 18
17
16
15 -
19 14 119
13 ||
L 12 6}/0/’ |
- 11 ?Q ||
***** 0 "4y N
1198 9 % | 14
7777777 s %
777777777 7
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77777777777777 3
777777777777777 2
7777777777777777 1
77777777777777777 0
o I 4
e — ;
o 5
Uncompressed Compressed

Fig. 4.9. Compression procedure for column 5 in the image of Fig. 4.8.
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An example of the technique used to determine the time values based on column
height is shown in Fig. 4.10 and Fig. 4.11. The first image shows a sample black and
white image for which to determine the height values. The latter shows the values which
are stored in the time fields for each lattice square, with black squares indicating a O

value.

19

14

Fig. 4.10. Sample black and white image for height-based time value calculation.

The final stage in the compression process is the saving of the new lattice and
time structures to binary files (Stat0000.sta and Hgt0000.hgt, respectively). The same
procedure is invoked as in the previous status and time file creation procedure, resulting

in identical file layouts.
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The creation of the status and time binary files using the lattice compression
program signifies the completion of the percolation process. Actua bitmap images of

lightning discharges may now be produced in both black and white and color formats.
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Fig. 4.11. Resultant time valuesfor the sampleimage in Fig. 4.10.

444 |mage Creation

The purpose of this program, makebmp.cpp, is to read the binary files describing
the lattice status and color information, and produce a sequence of bitmaps. A structure

chart describing this processis shown in Fig. 4.12.
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The initialisation section of this module is quite extensive, since the user is
permitted to select that either color or black and white bitmaps be created. If the color
option is desired, the user is prompted to choose either coloring based on percolation
times or based on connected column heights. Once this information has been obtained,
the appropriate files can be initialised. If the black and white option is to be performed,
the status file from the lattice compression program is used. Hence, this compression
routine should be run even if the desired number of layers used to create asingle frameis
one. If the color option is selected, the compression status and time files are utilised if
height-based coloring is selected, while the raw percolation status and time files are
utilised if time-based coloring is chosen. With this information present, the bitmap
generating program initialises the appropriate input files. Since only one bitmap is
created at atime, only enough memory for a 2D lattice need be reserved. For each of the

frames in the sequence, a number of steps are undertaken to generate the BMP files.

First, one layer’'s worth of status data is read in from the current location in the
statusfile. This process involves the use of bit manipulation to “unpack” each byteinto a
binary representation so that the status of individual squares may be determined. Next,
the bitmap headers are generated and written using routines in the BMP unit, including
compensation for little endian storage, if necessary. The 2D lattice is then scanned and
an appropriate pixel output for each square. If black and white images are being created,
the Filled squares are represented by white pixels, while Empty / Dead sguares are
colored black. If color isto be employed, atime valueisread from the initialised file for
each Filled square encountered. This time is then translated into a color using a linear

mapping. A time value of O will be colored pink and increasing time values will progress
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through the spectrum from pink to blue to green to yellow to red and findly, the
maximum time value will map back to pink. The computed color is then output to the

BMPfile. Inthe case of an Empty or Dead square, ablack pixel iswritten.

Outpu
No color Yes
BMPs?
[Initialise compressed status file] [Initialise compressed status file|
[Read in the compression factor] [Read in the compression factor]
Color
No based on Yes
time
[Initialise the height-based time file] ? [Initialise the time-based time file |
L
} ¢ '
[ Read maximum time]
]

v v
Get memory and initialise|
2D lattice for one frame

[Set Frame counter to 0]

Yes

Create and write BMP headers
(fix if necessary)

Create and write BMP headers
(fix if necessary)

For all squares in the lattice, write a black pixel For all squares in the lattice, write a black pixel
if the square is not Filled, else write a white pixel| |if the square is not Filled, else write a colored pixel
| based on the square's time and the max time
J

Increment Frame

Fig. 4.12. Structure chart for image creation.

An additional feature added to the bitmap creation program is the ability to scale

the input binary lattice when generating the BMP files. A declared constant scaling
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factor is applied to both the image height and width of the lattice. Hence, if a scaling

factor of 2 is used, one lattice square is used to generate 4 pixelsin the bitmap.

The image creation program is capable of generating a sequence of images based
on two binary data files representing the status of the lattice squares and their color.
These images represent the final product of the 3D percolation lightning discharge model.
With their creation complete, measuring techniques may now be applied to assess the

quality of the model.

45 Successive Difference Creation

To evaluate the accuracy of the percolation model, the Rényi dimension spectrum
shall be employed as a metric [CaKi00]. However, this measure shall not be applied to
the lightning images themselves, but rather to black and white images representing the
changes between successive frames in both actual and percolation lightning sequences.
These difference images will be fractal in nature. Hence, the purpose of this program,
diffs.cpp, is sSimply to generate a sequence of difference frames. A structure chart for this

program isdisplayed in Fig. 4.13.

The initial section of the difference creation program is the determination of the
files to be operated upon. Since sequences of successive difference must be created for
both the percolation and shuttle lightning images, the user is requested to specify the
names of the files to be used, including the upper and lower frame numbers. Since
differences between frames are being found, the number of frames created is one less
than the number of frames in the original sequence. For two successive frames, the

following steps are performed to generate a difference bitmap.
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First, the two files are initialised and their headers read. Next, enough memory is
alocated to store the raw BMP data from the two input images, and the data is read.
Following this action, the output file isinitialised. The enumeration on the output fileis
such that a difference file number of i represents the difference between framesi and i +
1. Since this program is only responsible for taking a difference between two bitmaps in
a sequence, both these images, as well as the output image, shall possess identical BMP
headers. Hence, these headers are simply written verbatim to the output file. At this
time, the actual pixel values may be computed using an absolute value, and written to the
output file. Three cases exist when corresponding pixel intensities are subtracted.
Firstly, both pixels could be black with an intensity equal to 0 and hence the output pixel
will be black as |0 - 0] = 0. Secondly, one of the pixels may be white while the other is
black. As a result, the output pixel will be white, since [255 - O] = [0 - 255| = 255,
indicating a difference between the two frames. Finally, both pixels could be white in
color and hence the output pixel isblack as [255 - 255| = 0. Therefore white pixelsin the
output represent changes between the frames. Having computed the new value for each
pixel, the storage space for the bitmap datais now freed and the entire process is repeated

to generate the next difference image.

Two example successive images and their successive difference image are shown

in Fig. 4.14. These black and white images are selected from the shuttle video sequence.

The successive difference image creation program is capable of generating a
sequence of difference framesfor a series of input black and white images. These images
can now be utilised in the Rényi dimension spectrum calculation to measure correctness

of the mode.
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|Get directory and file names|

|Get upper and lower frame numbers|

[Set Frame to Iowher frame number|

upper frame
number?

|Initialise files Frame and Frame + 1|

|[Read both sets of BMP headers (fix if necessary)|

|Allocate memory for both sets of BMP data|

!
|Read both sets of BMP data|
!

| Initialise the output file|

|Write the BMP headers|
v
For each pixel in the image, output a pixel with intensity equal to the
absolute value of the intensity difference between corresponding pixels
in the two frames (I(Frame) - I(Frame + 1))

IFree the memory used by the BMP data |
v

| Incremelnt Framel|

Fig. 4.13. Structure chart for the creation of successive difference images.
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(©

Fig. 4.14. Sample successive images, (a) and (b), and their difference image (c).
4.6 Reényi Dimension Spectrum Calculation

Although a visual inspection of the degree of similarity between shuttle lightning
videos and those created using percolation can be quite useful, a more precise metric is
required to evaluate the percolation model [CaKiO0]. Since the lightning discharge

patterns are non-stationary, the multifractal Rényi dimension spectrum is employed to
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measure the complexity of the images of the differences between successive frames. A
structure chart outlining the Rényi dimension spectrum program, renyi.cpp, is shown in

Fig. 4.15 with the calcul ation of the D value enhanced in Fig. 4.16.

The implementation of the Rényi dimension spectrum calculation is a fairly
intricate procedure. First, the user is requested to enter the location and name of the
images upon which to calculate the spectrum. Aswell, an upper and lower frame number
must be entered by the user. The program then proceeds to calculate the Rényi

dimension spectrum for each image.

The first stage in calculating the Rényi dimension spectrum is to determine the
fractal intersection probabilities resulting from the covering of vels. Beginning with a
side length of 2 and increasing up to 256 (hence the earlier mentioned requirement that
image sides must be divisible by 256), the image is divided into a number of squares of
the specified radius. Each of these squares represents one vel. For each of the vels, a
weighted sum is computed, where white pixels contribute a large value to the sum and
black pixels contribute very little. This method of “counting” filled pixels is employed
instead of a strict summation to avoid undefined probabilities in the case of a completely
black image. To determine an intersection probability for each square, the weighted
summation for the square in question is divided by the summation of all weighted sums
in the image. Hence, a grid of probabilities is produced for the 8 different radii

considered. These grids are stored in alist for future ease of use.

A covering using an r value of 64 for a512 x 512 sample image is shown in Fig.

4.17. Aswell, the non-weighted counting and resulting probabilities are illustrated.
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Now that the probability grids have been calculated, the D, values based upon
them may be determined according to Eq. 2.17. D4 values are computed over a range of

-20 < g < 20 with aqgincrement of 0.2. Each dimension value is given by the slope of the
line formed by plotting Hq vs. Iog%@ where H, is the Rényi entropy given in Eq. 2.14.

In this equation, N; represents all the vels of radius r and p; represents the probability
associated with the jth square vel. Since probability grids are calculated for eight distinct
radius values, a total of eight data points are used in the line to determine the Dq value.
The accuracy of the computation of the Rényi dimension could be increased through
either the implementation of a more precise line fitting algorithm or by increasing the
number of vel radii included in the calculation. The Rényi dimension values over the
range of moment orders, g, comprises the Rényi dimension spectrum for a given image.
These D values are output to a text file entitled DgX.txt, where X represents the frame

number of the difference image being evaluated.

The Rényi dimension spectrum is a nonincreasing function whose slope is
greatest in absolute value about the g = 0 point. Since the fractals to which the metric is
being applied are embedded in two dimensions, Dy values can be expected to range
between 1 and 2. That is, the dimension of the fractal is somewhere between that of a
solid line, 1, and that of a solid box, 2. However, due to computational error, the
spectrum can occasionally be seen to increase dlightly above 2 and decrease dlightly

below 1.
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|Get directory and file names|

|Get upper and lower frame numbers]|

[Set Frame to lower frame number]
Ta
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upper frame
number?

|Cover image with squares of side length r]|

v

|Determine the number ?f filled pixels per squarel

|Calcu|ate square probabilities based on square counts and total count

L 2
| Add probability grid to grid list|

v
[Initialise Dq output text file|

[Find and write Dq|

.
| Free memory used by grids in probability grid list|
v

[Increment Frame]

Fig. 4.15. Structure chart for the Rényi dimension spectrum calculation.
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|Get memory for x and vy lists|

r=2

No

[x [Index (] = log (1/1)]

|Sum probabilities over probability grid for current r|

ly [Index (r)] = 1/ (1 - q) * log (sum”q) = entropy|

v
|Fit y vs. X (entropy vs. log (1 /r)) values to a line with slope Dq|
v

Free x and y lists

Fig. 4.16. Structure chart for the calculation of a Dy value.

The remaining step in the measurement of the accuracy of the percolation model
is to produce a 3D plot of the Rényi spectra over all frames. This graphical display is
created by amalgamating all of the output text files into one large data file. Thisfileis

then read in by a MatLab program and the mesh function is utilised to produce a 3D plot.
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168
124120 120
88| 24 104

0.2246
0.1658 0.1604 0.1604
0.1176 0.0321 0.1390

Fig. 4.17. Sample Rényi covering and probability cal cuation.
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By examining the Rényi dimension spectrum plots produced by this program, the
percolation model may be evaluated against the actual shuttle images using a quantitative
metric. This metric is especialy suited for evaluating the complexity of the difference
images due to their displayed fractality. Using the Rényi dimension spectrum measure in
conjunction with qualitative analysis, a concise assessment of the percolation model may

be obtained.

4.7 Program Interaction and Operation

The interaction between the various programs in the lightning modelling system
has been aluded to throughout the previous subsections. This subsection presents a
clearer, more compact representation of the connection between various system modules.
The software package can be divided into two distinct components, namely that
responsible for the analysis of the shuttle images and that which generates images using

the percolation model.

4.7.1 Shuttle Image Processing Procedure

A structure chart outlining the process involved for the shuttle images is shown in
Fig. 4.18. The operation on these shuttle images begins with the analysis of the greyscale
shuttle images using the light.cpp program. The result of this analysis is a sequence of
representative black and white images. This sequence is then input into the difference
generation program to create a series of difference images. Next, the difference images
are used by the Rényi dimension spectrum calculation program, renyi.cpp. The output of

this program is a sequence of text files containing D values. Using the Unix command
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% cat DgO*.txt > Dg.txt

the separate text files may be amalgamated into one large file. Thisfileisthen used as a
data file for the MatLab program PlotVidDg.m which generates a color 3D plot of the

Rényi dimension spectrum, PlotDq.ps.

4.7.2 Percolation Image Generation and Processing Procedure

A structure chart describing the generation and processing of percolation
lightning imagesisgiven in Fig. 4.19. Thefirst step in this procedure is the generation of
a percolation lattice, using 3dperc.cpp, whose status and time-based coloring information
are stored in respective binary files. At this point, a decision must be made as to whether
lattice compression should be employed. Lattice compression is used when creating
black and white images or height-based color images. Lattice compression is not used

when generating percolation time-based color images.

4.7.2.1 Absence of Lattice Compression Option

If the lattice compression option is not used, color bitmaps based on percolation
time will be generated. The lattice status file and time files are read as input by the image
creation program, makebmp.cpp, which produces a sequence of time-based colored

images.
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Input:

- grayscale sequence

(0000.bmp to 0297.bmp)

Shuttle video analysis
(light.cpp)

Output:
- black and white sequence
(0000.bmp to 0297.bmp)

Input:
- black and white sequence
(0000.bmp to 0297.bmp)

Successive difference creation
(diffs.cpp)

Output:
- difference sequence
(difo000.bmp to dif0296.bmp)

Input:
- difference sequence
(difo000.bmp to dif0296.bmp)

Rényi spectrum calculation
(renyi.cpp)
Output:

- dimension sequence
(Dg0000.txt to Dg0296.txt)

Input:
- dimension sequence
(Dg0000.txt to Dg0296.txt)

File concatenation
(% cat DgO*.txt > Dq.txt)

Output:
- combined Dq file
(Dq.txt)

Output:
- combined Dq file
(Dq.txt)

Rényi spectrum plotting
(PlotVidDg.m)

Output:
- 3D spectrum plot
(PlotDq.ps)

Fig. 4.18. Structure chart for shuttle image processing.
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Lattice generation
(3dperc.cpp)

Output:

- status file (3dperc/Stat0000.sta)
- time file (3dperc/Time0000.tim)

Input:
- status file (3dperc/Stat0000.sta)
- time file (3dperc/Time0000.tim)

Image Creation
(makebmp.cpp)
Output:
- time-based color sequence
(0000.bmp to 299.bmp)

Input:
- status file
(3dperc/Stat0000.sta)

Lattice compression|
(Squish.cpp)
Output:
- status file (Squish/Stat0000.sta)
- time file (Squish/Time0000.tim)

Input:
- status file
(Squish/Stat0000.sta)

Image Creation

)

(makebmp.cpp

Output:
- black and white sequence
(0000.bmp to 0299.bmp)

Input:
- status file (Squish/Stat0000.sta)
- time file (Squish/Hgt0000.hgt)

Image Creation
(makebmp.cpp)
Output:

- height color sequence
(0000.bmp to 299.bmp)

Input:
- black and white sequence
(0000.bmp to 0299.bmp)

Input:
- height color sequence
(0000.bmp to 299.bmp)

Successive difference creation

(diffs

cpp)

Output:
- difference sequence
(dif0000.bmp to dif0298.bmp)

Input:
- difference sequence
(dif0000.bmp to dif0298.bmp)

Rényi spectru
(renyi

m calculation
-cpp)

Output:
- dimension sequence
(Dg0000.txt to Dg0298.txt)

Input:
- dimension sequence
(Dq0000.txt to Dg0298.txt)

File concatenation
(% cat Dg0*.txt > Dq.txt)|

Output:
- combined Dq file
(Dg.txt)

Output:
- combined Dq file
(Dq.txt)

Rényi spectrum plotting
(PlotPercDg.m)

Output:
- 3D spectrum plot
(PlotDq.ps)

Fig. 4.19. Structure chart for percolation image generation and processing.

4.7.2.2 Useof Lattice Compression Option

If compression is used, the compression

program, Squish.cpp, reads the status file

and produces a new status file reflecting the compression operation. As well, a height-

based color timefile is generated. Once again, one of two options must now be selected;
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either black and white images may be generated or height-based color images may be

created.

If black and white images are to be formed, the image creation program,
makebmp.cpp, only reads in the compressed lattice status file and outputs a sequence of
images. These images are then used as input for the successive difference image
generation program, diffs.cpp, which produces a sequence of difference images. The
difference images are analysed by the Rényi dimension spectrum program, renyi.cpp.
The result of this program is a sequence of text files containing Dy values. These files

may be concatenated together using the Unix command
% cat DgO*.txt > Dg.txt

to produce one large Dq.txt file. This file forms the input to a MatLab program,
PlotPercDg.m, which generates a color 3D plot of the Rényi dimension spectrum,

PotDqg.ps.

If color images are to be generated, the image creation program, makebmp.cpp,
reads in the compressed lattice file and the height-based time color file. The output of
this program is a sequence of colored images where color is based on connected column

height.

48 User Interface

The following subsections contain screenshots describing the Unix commands

used to run the programs in the modelling package as well as sample inputs to these
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programs. Since the programs in the modelling package are text-based, most common

terminal programs may be used in their invocation.

4.8.1 Analysingthe Shuttle I mages (light.cpp)

File Edit =Zetup Control Window  Help

allianod light

leaze enter the directovy nane and path: ../Howvies/Shuttle/Argensl®s
nter the preface of the file nane: ARGE

leaze enter the lower frane nunber: 0

leaze enter the uppar frade nunbars &

rane 0
lazh centers:
(116, 2721 (159, 304) (309, 309) (277, 3200 (310, 3210 (489, 363)

tane 1
lazh centers:
(133, 2981 (15A, 3031 (212, 319 (276, 319)

TaHe 2
lazh centers:
(130, 2931 (157, 3031 (273, 317

TaHe 3
lash centers:
(130, 2981 (158, 304) (274, 3191 (348, 321)

TaHe 4
lazh centers:
(130, 2981 (347, 3210 (418, 3571 (495, 3600 (469, 3630

Tane &
lazh centers:
(130, 2971 (273, 3181 (417, 34A)

[IHE
allianaf

Fig. 4.20. Screenshot of light.cpp.

-73-



Modelling and Simulation of Lightning Discharge Patterns Chapter 4: Software Organisation

4.8.2 Generating the Percolation L attice (3dperc.cpp)

File Edit Setup Control 'Window Help

allianof 3dperc |a]
etting nerory for the lattice o0m@b0mda00. cvueeeeier s sn s sransnnnnsnssansnnnnssnnnnsnnsnnss

ot nenory for the lattice

ercolat ing

hd Tine: 65 End Tina: 53 End Tina: 72 End Tine: 62 End Tine: 1 End Tine: 72 End Tine: 61 End
ine: 85 End Tine: 77 End Tine: 70 End Tine: 54 End Tine: 59 End Tine: 64 End Tine: 51 End Tine
: 51 End Tine: 52 End Tine: 52 End Tine: 51 End Tine: 56 End Tine: 85 End Tine: S0 End Tine: 53
End Tine: 75 End Tine: 199 End Tine: 74 End Tine: 143 End Tine: 55 End Tine: 50 End Tine: 53 E
d Tine: 57 End Tine: 64 End Tine: 60 End Tine: 76 End Tine: 7% End Tine: 51 End Tine: 74 End T
ite: 53 End Tine: 54 End Tine: 115 End Tine: 68 End Tine: 62 End Tine: 63

leaze enter the runber of layers per frane: &

leaze enter the nunber of lawers to skip by: 3

aying the lattice in color

51 354 357 360 363 366 309 372 375 379 381 384 387 390 393 395 399 407 405 408 411 414 417 420
423 426 420 432 435 438 441 444 447 450 453 456 450 462 465 468 471 474 477 480 483 486 489 49
495 433 501 504 507 510 513 516 519 527 525 528 531 534 537 540 543 546 549 552 555 558 561 5
4 57 570 573 76 G0 G2 585 GOS8 G01 S04 507 600 603 0o 609 12 615 618 62l 624 627 630 633
36 639 642 645 643 651 654 657 R0 663 666 BED 672 675 678 681 654 687 AO0 693 AO6 609 P02 P05
08 A1 VA4 AR VR0 VE3 Ten VRO IR YIS V39 741 44 747 Y50 7RI 7RO VRO AP Peh ed ¥V T4 W
TA0 783 T8a A0 702 705 708 201 804 807 240 813 416 8190 8PP 400 828 931 834 937 840 943 246 8
0 857 BRG 853 861 804 867 870 873 470 870 987 385 588 401 894 897 900 903 906 909 917 915 913
21074 927 930 933 936 939 047 245 043 951 954 057 960 943 00 969 V7 975 OP% 981 984 237 990
003 006 999 1002 1005 1008 1011 1014 1017 1020 1023 1026 1029 1032 1035 1038 1041 1044 1047 10
0 1053 1056 1059 1062 1065 1068 1071 1074 1077 1080 1083 1086 1089 1092 1095 109% 1101 1104 11
71110 1113 1116 1119 1122 1125 1123 1131 1134 1137 1240 1143 1146 1149 1152 1155 1158 1161 11
4 1167 1170 1173 1176 1179 1182 1185 1188 1191 1194 1197 1200 1203 1206 1209 1212 1215 1218 12
1 1274 1287 1230 1233 12360 1239 1247 1245 1249 1251 1254 1257 1260

Fig. 4.21. Screenshot of 3dperc.cpp.
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4.8.3 Compressing the Percolation Lattice (Squish.cpp)

File Edit Setup Control ‘Window Help

allianod Squish
otting nenory for the lattice 2S6w2G6=304

Eallianux cd Squish s

ot nenory for the lattice
Bquizhing the lattice
Betting nenory for the lattice PGAwESAw304

ot nenory for the lattice

Total framez: 300 Layers per frane: &

Baving the lattice in color

D12345a7 8010211121314 152617 18 1920 21 22 23 2425 20 27 28 29 30 31 32 33

45 36 37 38 30 40 41 42 43 49 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5O 60 61 62 63 64 65 66
67 68 69 70 71 72 737475 V6 AP 70 7980 91 92 93 84 85 86 07 85 80 90 91 92 93 94 95 95 97 9
i 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 12
P13 124 126 126 127 128 120 130 131 132 133 134 135 136 137 138 130 140 141 142 143 144 145 1
HE 147 148 149 150 151 152 153 154 156 156 157 168 150 160 161 162 163 164 165 166 167 163 169

170 171 172 173 174 195 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 244 212 243 244 245 246 21
7218 219 220 221 222 @23 224 22h 226 227 228 220 230 231 237 233 234 235 230 237 238 239 240 2
41 242 243 244 245 246 247 248 240 250 251 P52 253 P54 PB5 PE6 257 258 250 200 261 26 203 264

PAL 266 267 260 260 270 271 272 203 XA XS TR 2 2N 200 200 281 282 283 204 280 206 287 208
289 200 291 202 203 294 205 296 207 299 299

nallianod

Fig. 4.22. Screenshot of Squish.cpp.
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4.8.4 Creating the Sequence of Percolation | mages (makebmp.cpp)

File Edit =Zetup Control Window  Help

allianoy nakebnp =l
eherate color bitnaps (ufnl? u

Generate color uzing heights (hl ov times (t1: h
Gatt ing Hedovy for the lattice 2GAmZGAw1

EalliannI cd HakeBap

nalliana? JJ

Fig. 4.23. Screenshot of makebmp.cpp.
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485 Generating the Sequence of Difference Images (diffs.cpp)

File Edit =Zetup Control Window  Help

allianod diffs =l
laaze enter the divectovy nane and path: ../ HakeBups
Fleaze enter the preface of the file nane:

Fleaze enter the lower fvane nunber: 0

Fleaze enter the upper franme nunber: 2649
nalliana? JJ

EalliannI cd Diffs

Fig. 4.24. Screenshot of diffs.cpp.
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4.8.6 Calculating the Rényi Dimension Spectrum (renyi.cpp)

File Edit =Zetup Control Window  Help

allianod renyi

leaze enter the directovy nane and path: ../D0iffsf
Fleaze enter the preface of the file nane: dif
Fleaze enter the lower fvane nunber: 0

Fleaze enter the upper frane nunber: 3

EalliannI cd Renyi =]

Frane [
Frane 1
Frane 2

Frane 3
ipallianod

Fig. 4.25. Screenshot of renyi.cpp.
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4.8.7 Plotting the Rényi Dimension Spectrum (PlotPercDg.m)

File Edit =Zetup Control Window  Help

palliano natLab =]

CHATLABE >
Copyright 1984-1939 The HathHorks, Inc.
Yersion 5.3.0.10183 (R11)
Jan 21 1999

To get starvted, tupe one of these: helpuin, helpdeszk, or deno.
For product infornation, type tour or wizit oouonathuorks.con.

» cd Renyi

» FlotPercln

Harning: Terninal node only supportz Renderer of Painters..
In fappzsHat lab5, 3too lboe/nat 1abigraph ice/print jobs/prepare.n at line 41
In fappziHat lab5. 3 toolbos/nat labs/graph ice/print.n at line 239
In rhonedeedcannonz/Beny i/F lotPevclg.n at line 20

> oquit

68330 flops.
nalliana? JJ

Fig. 4.26. Screenshot of PlotPercDg.m.

Note that if the MatLab program were to be run using an XTerminal, a new
window would be created displaying the plot as opposed to the error messages being
displayed in the terminal window. In either case, the output PostScript file is created

correctly.

The Rényi dimension spectrum for the shuttle video is plotted in exactly the same

manner, except the PlotVidDqg.m program is utilised.
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49 Summary

This chapter presents a detailed description of the lightning modelling package.
Emphasis is placed upon the discussion of the algorithms utilised and their
implementation in software. In addition, a synopsis of the interaction between the

individual programs aswell as their usage is provided.

With the development and implementation of the modelling software now
complete, verification must be performed to ensure the validity of the system. Once this
efficacy is established, properly designed experiments may be run to determine the
capabilities of the system. These two mgjor tasks comprise the basis of Chapter 5 of this

thesis.
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CHAPTER 5
EXPERIMENTAL RESULTSAND DISCUSSION

The previous chapter in this thesis provides an elaborate description of the
organisation and implementation of the lightning software package. Each program in the
suite is discussed individually in the algorithmic, implementation and usage contexts. As

well, the overall system operation and interaction is outlined.

The focus of this chapter is the verification and use of the modelling system. The
purpose of experimentation is given, including the method by which the system is
verified. As well, experiments are designed to determine the range of results that the
percolation model is capable of producing. Finally, these trials are run, and the results

are presented and anal ysed.

5.1 Purpose of Experimentation

The purpose of the experimentation with the lightning discharge modelling
system is twofold. First, tests must be performed for which the expected outcome is
known so that the system may be verified. Second, a number of trials shall be run where
the model parameters are varied. Specifically, the effects of altering the percolation
spreading probability, the number of seeds, the skipping factor and the compression
factor are sought. These experiments will determine the capabilities of the percolation

model in simulating actual lightning images.
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5.2 SoftwareTools

The mgor software employed in the experiments consists of those programs
described in Chapter 4. The source code for the system is provided in Appendix A. As
well, a third party animation tool is used to generate QuickTime movies from the

resulting sequences of images.

5.3 System Verification

The verification of the modelling system can be decomposed into its three distinct
components, namely the Rényi dimension spectrum measurement module, the shuttle
image analysis module and the percolation module. The verification of these constituents
shall be performed individually, with the overall evaluation of percolation as a lightning

model ling technique being done through experimentation.

5.3.1 Reényi Dimension Spectrum Calculation

To determine the validity of the program responsible for the computation of the
Rényi dimension spectrum, two images for which the shape of the Rényi curve is known
are selected as test cases. The first such image is a completely white image. A plot of
the Rényi dimension spectrum produced for this image is shown in Fig. 5.1. It can be
seen that the dimension for all values of q is equal to two. This result is accurate since

the dimension of afilled box isindeed two.
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Fig. 5.1. Rényi dimension spectrum of a completely white image.

The second test image is one which contains a fractal structure, as shown in Fig.
5.2. The dimension of this picture should range between that of aline and that of a box,
namely 1 and 2, and should be a nonincreasing function. The result of the Rényi
dimension spectrum calculation is plotted in Fig. 5.3. It can be seen that the Rényi
program does indeed produce conforming results. Only a slight inaccuracy is present in
the form of overshoots when the slope of the curve changes considerably. It is believed
that these deviations occur due to the use of a least squares line fitting agorithm in
calculating the Rényi dimension. Hence, a more robust algorithm would likely reduce

these errors.

These two test cases demonstrate that the computation of the Rényi dimension

spectrum is indeed being performed correctly.
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Fig. 5.2. Fractal test image for the Rényi dimension spectrum calculation.
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Fig. 5.3. Rényi dimension spectrum of the fractal image.
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5.3.2 Shuttlelmage Analysis

In order to calculate the Rényi dimension spectrum of shuttle lightning images,
these images are first converted into representative black and white images. To verify
this process, a simple comparison between the locations of lightning discharges in the
greyscale images with those in the black and white images is performed. Two distinct
shuttle images are shown in Fig. 5.4(a) and Fig. 5.4(b) and their corresponding black and
white versions are given in Fig. 5.4(c) and Fig. 5.4(d). It is clearly visible that the

lightning discharges have been located and converted correctly.

5.3.3 Percolation Image Generation

The remaining major component to be verified is the percolation program itself.
To test this system, a percolation lattice is generated and a representative single frame is
selected. The Rényi dimension spectrum for this image is then calculated to determine if
the complexity of the image is fractal. The chosen image is displayed in Fig. 5.5 while
the corresponding Rényi dimension spectrum is shown in Fig. 5.6. The resulting Rényi
plot is typica for a fractal embedded in two dimensions, and hence, the percolation

moduleis verified.
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(b)

(©) (d)

Fig. 5.4. Two shuttle images and their corresponding black and white representations.
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Fig. 5.5. Test image produced using the percolation model.
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Fig. 5.6. Rényi dimension spectrum for percolation model test image.
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534 Summary

The previous three subsections have verified the correctness of the maor
components of the modelling software. With this fact established, experimental results

may now be gathered and examined.

54 Design of Experiments

In order to view the full range of capabilities of the percolation lightning model,
experiments must be designed meticulously. This section outlines the experiments
chosen to illustrate the key features of the model, and describes the reasoning behind

their selection.

The percolation model possesses six major parameters:

» L attice side length.

* Lattice height.

* Spreading probability.

* Number of percolation seeds.
» Lattice compression factor.

* Skipping factor.

To manage this wide range of flexibility provided by the percolation model, a number of
simulations are run to establish viable ranges for each of the parameters. These ranges
are based upon the visual effects produced by the varying of each parameter. Using this

information, four main experiments are designed which span appropriate ranges for the
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lightning simulation, as shown in Table 5.1. The remainder of this section describes the

influences of each of these six parameters.

Table 5.1. Percolation parameter values selected for experimentation.

Experiment| Lattice |Lattice| Spreading|Number offCompression
Number [SideLength|Height|Probability] Seeds Factor

1 256 1300 0.730 1000 5
2 256 1300 0.725 1000 5
3 256 1300 0.725 1500 5
4 256 1300 0.700 1500 5

Although the lattice side length need not determine the size of the percolation
images produced (due to the ability to scale the lattice when generating bitmaps), this
value does impact the image appearance. When a smaller lattice size is used, the images
must be scaled more to increase their size to 512 x 512 for use in the Rényi dimension
spectrum calculation. Consequently, the percolation fractals appear more blocky and less
detailed. However, the larger the side length used, the more space required to store the
lattice, both in memory and in the status file. Therefore, alattice size of 256 is selected

for al of the experiments.

The next mgjor parameter is the height of the percolation lattice. Since seeds are
placed randomly throughout the lattice, this factor is not of drastic importance to the
actual images produced. However, it is desirable to choose frames slightly away from the
top and bottom edges of the lattice. This selection is preferred since percolation which is
too close to these edges can die out prematurely due to lack of room in which to spread.
The other main factor which controls the selection of alattice height is simply the need to

ensure that enough layers are available from which to output the required number of
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frames, including the use of the skipping factor. A formula which provides a general idea
of the lattice height required is given in Eq. 5.1, where Sis the skipping factor, T is the
total number of frames and C is the compression factor. This equation is not precisely

accurate, however it does provide a good estimate of the necessary height.

Height > 2(S)(T +C -1) - 2(T) +2 Eq. 5.1

The next parameter upon which attention should be focused is the spreading
probability, p, used when percolation occurs. As discussed in Section 2.4, the percolation
process is quite sensitive for a small range of p values and otherwise produces fairly
uninteresting structures. Through a number of trials, this range is determined to be
around a probability of 0.725, with larger vaues significantly reducing the amount of
spreading and lower values producing fairly large percolation clusters. Hence spreading

probabilities of 0.7, 0.725 and 0.73 are selected for extensive experimentation.

The number of seeds used during percolation is another factor which can be
varied in the percolation model. By observing a number of initial simulations, typical
seed numbers appear to be approximately 1250 seeds. However, this variable tends not
to have the extreme effects one might expect on the resulting images for typically sized
lattices. For example, if alattice of size 256 x 256 x 1300 is used, atypical seed value of
1500 comprises just 0.00176% of the total number of squares. Since a seed value of 1000
on the same lattice fills 0.00117% of the total sguares, notable, but not extreme,
differences would be visible in the output image sequences. Consequently, the number of

seeds used in the main four system experiments includes both 1000 seeds and 1500 seeds.
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The compression factor parameter refers to the size of the sliding window utilised
when compressing the lattice. Effectively this value controls the quantity of black
speckles within a lightning flash. If this factor is too low, then a large number of
speckles are present. However, if this parameter is increased too greatly, it may exceed
the actual vertical portion of the lattice occupied by the flash in question. This effect
causes the flash to appear in the image sequence for too long a period of time, in a
somewhat frozen state. For typica values of the other simulation parameters, a
compression factor of five appears to provide an acceptable balance between excessive

speckles and persistence, and hence thisvalue is used in all four main experiments.

The final variable in the percolation model is the skipping factor, which describes
the amount of space between the lattice layers output as image frames. For example, a
skipping factor of three indicates that every third layer in the lattice is to be used as an
output bitmap. The effects of the variation of this parameter are mainly apparent when
the sequences of images are combined into a movie format. As the value of the skipping
factor is decreased, the resultant videos appear to progress more slowly. In other words,
lightning persists for too long of a period of time and new lightning flashes are not born
quickly enough. Increasing the skipping factor causes movement through the lattice to be
quicker, resulting in the videos appearing to move at a faster rate. However, if thisvalue
is increased too greatly, successive images will lose their correlation, resulting in
digointed videos. Based on a number of trial percolation ssimulations, a value of threeis
selected for experimentation purposes, as it appears to generate videos at a reasonable

speed while still maintaining frame correlation.
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Since the percolation parameters to be used in the magjor system experiments have
been determined, the experimentation process may now commence. Each experiment
consists of the generation of a 300 frame sequence of lightning discharge images using
the percolation model. The differences between successive frames are then computed
and 299 difference images are generated. These images are then used as input into the
Rényi dimension spectrum calculation program, and 3D plots of the spectra over all
frames are produced. For each experiment, both a qualitative and quantitative
comparison is performed against the shuttle lightning images in order to assess the

performance of the percolation model.

55 Presentation and Analysis of Results

The results gathered from the use of the modelling software can be separated into
five sections. The first is the images resulting from the processing of the greyscale
shuttle lightning sequence. The remaining components are comprised of the four main
experiments with the percolation model outlined in Section 5.4. The following

subsections provide and analyse these results [ CaKi00].

551 Shuttlelmage Analysis

A selection of six successive images from the greyscal e shuttle sequence is shown
in Fig. 5.7. The corresponding black and white equivalent images are displayed in Fig.
5.8. Asnoted at the time of system verification, these output images correctly isolate and

represent the lightning flashes in the original images. For example, in image Fig. 5.7(a),
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atotal of four distinct flashes can be seen, and image Fig. 5.8(a) includes these discharges

in the appropriate locations.

The Rényi dimension spectrum for the sequence of black and white shuttle
difference imagesis displayed in Fig. 5.9. This plot displays the relationship between Dy,
g and frame number for the given image sequence. It can be seen that the Rényi spectra
of the shuttle images conform to the typical curve structure expected for such a fracta,
namely the dimension values range primarily between 0.8 and 2, with a drastic drop
occurring about q = 0. It is the presence of this significant gradient in the slope which
indicates the multifractal nature of the images. When the D, values for negetive q are
considered, it may be seen that the actual lightning video is quite constant with a value of
2. However, when the dimensions for positive q values are examined, the actual video
possesses a Dy range from approximately 0.8 to 1.2, indicating the non-stationarity of the
discharge patterns. The occurrence of these ripples demonstrates that the actual video
images are sensitive predominantly to higher p, values (positive g values). However,
there exist a small number of exceptions to the general shape of the spectra of the actual
lightning video, where D, remains constant at avalue of 2 for al g values. This anomaly
results from the fact that the image does not contain any filled pixels, which is caused by
the lack of change between two successive video frames. Hence, the shuttle lightning
video contains approximately three sets of frames for which no difference is apparent in

the black and white images.
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(b)

(d)

(€)

Fig. 5.7. Six successive frames from the shuttle lightning sequence.

(f)
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(b)

(©) (d)

(€)
Fig. 5.8. Black and white representations of shuttle imagesin Fig. 5.7.

(f)
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Fig. 5.9. Rényi dimension spectrum of the black and white shuttle images.

552 Experiment 1

In the first experiment, the percolation parameters shown in Table 5.2 were used.
Toillustrate the types of images obtained using percolation in thistrial, Fig. 5.10 through
Fig. 5.12 contain six successive frames from the sequence in black and white, height-
based color and time-based color, respectively. The resultant Rényi dimension spectrum

for the entire black and white sequenceisdisplayed in Fig. 5.13.
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Table 5.2. Percolation parameter values selected for experiment 1.

Experiment| Lattice |Lattice|Spreading|Number of| Compression|Skipping
Number [Side Length|Height|Probability] Seeds Factor Factor
1 256 1300 0.730 1000 5 3

To begin the analysis of these results of the percolation lightning model, a visual
inspection of the black and white still images is performed. The first observation which
is made is that the size of lightning discharges, relative to the shuttle images, is
comparable, but perhaps dlightly too small. This fact suggests that the spreading
probability is too great. As well, the model produces flashes which are somewhat less
solid than those seen in the shuttle images, indicating that increasing the compression
factor may be necessary. Another point deserving attention is that the number of
discharges present in the percolation images is noticeably |ess than that seen in the actual
lightning frames. This discrepancy is likely caused by the number of seeds being too

low, and, to some extent, the spreading probability being too high.

The next phase in analysing the results of experiments 1 is the evaluation of the
video produced from the sequence of images. When this animation is compared against
that of the black and white shuttle sequence, the lack of a sufficient number of flashesis
even more apparent. As well, the size of the flashes themselves is confirmed to be
somewhat on the small side. A final comment pertaining to the percolation video is that
even with the use of a skipping factor of three, the percolation video does appear to run at
a slower rate than the shuttle video, even though the frame rates of both videos are equal.
It is possible that this speed variation may be rectified by increasing slightly the skipping

factor.
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(b)

(d)
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Fig. 5.10. Six successive black and white percolation images for experiment 1.

(f)
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(b)
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Fig. 5.11. Six successive height-based colored percolation images for experiment 1.
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(b)

(d)
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Fig. 5.12. Six successive time-based colored percolation images for experiment 1.

(f)
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Fig. 5.13. Reényi dimension spectrum of the black and white images in experiment 1.

The final form of analysis performed is the quantitative evaluation based on the

Rényi dimension spectrum, Fig. 5.14, of successive difference frames. The first obvious

observation is the presence of the variation in dimension values (between approximately

2 and 0.8) with g, which confirms the multifractal nature of the difference images. The

next remark which may be made pertaining to the spectrum for experiment 1 is that

significantly more frames exist for which the dimension remains fixed at two over al g

values. These occurrences indicate the presence of all black frames, and collaborate the

previous visual assessment that not enough lightning activity is present in these results,

-101 -



Modelling and Simulation of Lightning Discharge Patterns Chapter 5: Experimental Results and Discussion

likely due to the high spreading probability and lower number of seeds. Findly, it can be
seen that in the Rényi dimension spectrum for experiment 1, the drastically changing
values of the curves on the positive side of g = 0 occur a a more varied rate, with respect
to frame number, than those in the shuttle images. This variation indicates even more of

asengitivity to high values of p; than that seen in the shuttle sequence.

553 Experiment 2

For the second of the four major experiments, the percolation parameters utilised
are given in Table 5.3. Six representative successive frames from the percolation-
generated image sequence are displayed in black and white, height-based color and time-
based color in Fig. 5.14, Fig. 5.15 and Fig. 5.16, respectively. The resultant Rényi

dimension spectrum plot over all framesisgivenin Fig. 5.17.

Table 5.3. Percolation parameter values selected for experiment 2.

Experiment| Lattice |Lattice|Spreading|Number of| Compression|Skipping
Number [Side Length|Height|Probability] Seeds Factor Factor
2 256 1300 0.725 1000 5 3

To commence the evaluation of the percolation lightning model with this
experiment, the black and white still images are considered. As seen in experiment 1, the
size of the lightning discharges is quite similar to those appearing in the shuttle images,
indicating that the spreading probability is close to adesirable value. However, it appears
that the number of lightning discharges is again insufficient when compared with the
actua lightning images. This deviation can possibly be corrected by increasing the

number of seeds used in the model, and perhaps decreasing the spreading probability just
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dightly. With the use of alower spreading value than in experiment one, the percolation
clusters are allowed to expand more, which results in fewer black speckles in a given

lightning flash for the same compression factor.

Next, the video produced from the sequence of lightning images in experiment 2
is compared against the black and white equivalent to the greyscale shuttle video. This
viewing confirms the belief that the size of the lightning flashes created by percolation
closely resembles those of the shuttle video. In fact, afew larger flashes are observed in
the shuttle video and similar occurrences are seen in the percolation-based animation. As
well, the video alows the growth and decay of individual flashes to be observed more
easily. It is seen that the percolative growth and decay generated by the simulation is an
accurate replica of that present in the actual lightning animation. Although the amount of
lightning activity in the video is increased over that in experiment one, due to the
decrease in spreading probability, alack of discharges remains with respect to the shuttle
video. Again, this discrepancy may be corrected through the use of more seeds in the
simulation. Finally, the speed at which the video of this experiment moves also appears
to be less then the rate of the shuttle video. Hence, a higher value for the skipping factor

may be required.
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(b)

(d)
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Fig. 5.14. Six successive black and white percolation images for experiment 2.

(f)
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Fig. 5.15. Six successive height-based colored percolation images for experiment 2.
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Fig. 5.16. Six successive time-based colored percolation images for experiment 2.
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Fig. 5.17. Reényi dimension spectrum of the black and white images in experiment 2.
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The remaining type of analysis to be performed for experiment two is the
guantitative examination using the Rényi dimension spectrum, Fig. 5.17. The first
observation which should be made is the occurrence of the standard dimension curve,
with Dq values ranging primarily between 0.75 and 2. As well, the large change in the
slope of the curve is present about g = 0, confirming the multifractality of the difference
images. Next, it is apparent that the number of frames for which a constant Dy value of
two is present is greater than in the shuttle sequence. This observation substantiates the

earlier conclusion based on visual evidence that the percolation sequence does not
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contain a sufficient amount of lightning activity. Increasing the number of seeds will
assist in the reduction of these sets of frames for which no changes occur. On the other
hand, the amount of ripple present in the dimension value, with respect to frame number,
for negative values of q, is very little, as seen in the shuttle sequence spectrum. When
positive g values are considered, the ripple produced by the change in the dimension
slope, with respect to frame number, is slightly greater than in the shuttle images. This
increased ripple establishes that the images generated through percolation in this

experiment are more sensitive to the p; probability values than the actual shuttle images.

554 Experiment 3

The third main experiment in this thesis is very similar to the second, as only an
increase in the number of seeds used in percolation is present. The major percolation
parameters employed in this trial are given in Table 5.4. Three sets, black and white,
height-based coloring and time-based coloring, of six successive images from the
resulting sequences are shown in Fig. 5.18, Fig. 5.19 and Fig. 5.20, respectively. As
well, the computed Rényi dimension spectrum over the entire sequence is plotted in Fig.

5.21.

Table 5.4. Percolation parameter values selected for experiment 3.

Experiment| Lattice |Lattice|Spreading|Number of| Compression|Skipping
Number [Side Length|Height|Probability] Seeds Factor Factor
3 256 1300 0.725 1500 5 3

Once again, the analysis process for experiment three shall begin with the

examination of the still images resulting from the percolation simulation. First, it is noted
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that the size of the lightning flashes is consistent with those seen in the shuttle video,
which is expected since the spreading probability has not changed between experiments
two and three. Next, it is noted that the solidity of each flash is more representative of
actua lightning discharges due to the reduced spreading probability and the use of the
compression factor. The maor improvement of this experiment over those previous is
the presence of an increased number of discharges. This expansion activity is generated

from the use of a greater number of seedsin the simulation.

At this point, the results of experiment three are reviewed in their video format.
An initial observation made through the viewing of the animation sequences is that the
number of lightning flashes present in this experiment does indeed more closely match
the number in the shuttle videos, as discerned earlier from the still images. In addition,
the size of the discharges is seen to be more representative of actual lightning flashes.
Once again, the occasional larger bursts of lightning which occur in the shuttle video may
also be seen in the simulation sequence. Since the same spreading probability is used in
both experiments three and two, the percolative growth and decay of flashes is clearly
visible in these results and provides a proper representation of the movement of actual
lightning discharges, as seen in the black and white shuttle video. The only significant
apparent discrepancy between the percolation video and the shuttle video is, again, the
seemingly different frame rates of the two animations. Correction of this observed speed
difference may be possible with an increase in the skipping factor. However, the size of
the lattice required to perform such a simulation is approximately 256 x 256 x 1850,
which would likely require between 450 and 500 MB of memory to maintain high

execution speeds.
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Fig. 5.18. Six successive black and white percolation images for experiment 3.

(f)
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Fig. 5.19. Six successive height-based colored percolation images for experiment 3.
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Fig. 5.20. Six successive time-based colored percolation images for experiment 3.

(f)
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Fig. 5.21. Rényi dimension spectrum of the black and white images in experiment 3.
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Finally, a quantitative analysis of the results obtained in experiment three is
undertaken using the plot of the Rényi dimension spectrum, as seen in Fig. 5.21. The
characteristic Rényi curve is apparent with dimension values occurring between 0.8 and
2, and rapid descent about g = 0, confirming the multifractality of the lightning difference
images. Another point of interest in the Rényi dimension spectrum of experiment threeis
an observable decrease in the number of frames for which the dimension is constant at a
value of two. This reduction confirms the belief that more lightning activity is present,
since these frames with constant Dy equal to 2 are indicative of the lack of change

between frames caused by sparse lightning occurrences. However, the number of such

-113-



Modelling and Simulation of Lightning Discharge Patterns Chapter 5: Experimental Results and Discussion

frames is still dlightly higher than visible in the shuttle spectrum, meaning that lightning
activity should be increased dlightly further. Similar to the previous experiments, the
degree of rippling with respect to frame number for negative values of q is quite low, as
in the shuttle plot. In addition, the Rényi dimension spectrum in this experiment more
closely matches the desired spectrum when the dimension variation, with respect to frame
number, is considered for positive values of q. Hence, modelling using this set of
parameters, with the increase in seeds over experiment two, provides a closer
approximation of the sensitivity to higher p; values and discharge non-stationarity

displayed in the shuttle video.

555 Experiment 4

The last of the magor experiments performed using the percolation lightning
discharge model is now presented and discussed. The percolation parameters chosen for
this simulation are listed in Table 5.5. Six frames from each of the resulting black and
white, height-based color and time-based color images are given in Fig. 5.22, Fig. 5.23
and Fig. 5.24, respectively. The plot of the Rényi dimension spectrum of the entire

sequence of framesisdisplayed in Fig. 5.25.

Table 5.5. Percolation parameter values selected for experiment 4.

Experiment| Lattice |Lattice|Spreading|Number of| Compression|Skipping
Number [Side Length|Height|Probability] Seeds Factor Factor
4 256 1300 0.700 1500 5 3

The first form of analysis performed on this experiment is the assessment of the

selected six images from the sequence. It isimmediately apparent that the decrease in the
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spreading probability has lead to an increase in the size of the percolation clusters.
Consequently the size of the lightning flashes is somewhat large when compared with
those in the shuttle images. As well, the combination of the low spreading probability
and the high number of seeds has caused the number of discharges to be increased
substantialy. However, in actuality, this observed rate is not significantly higher than
that seen in the shuttle sequence. When one individua flash is examined, it can be
noticed that a fairly large portion of black speckles is present, likely due to the lower
spreading probability, which alows percolation to form more complex patterns. To

compensate for this fact, a greater compression factor may be required.

The next segment of analysis for experiment four is based upon the video created
from the sequence of percolation images. As expected, the percolation video clearly
demonstrates the presence of quite large lightning flashes caused by the low value for the
spreading probability. As well, the number of discharges is seen to be larger than in
previous experiments, due to the lower spreading probability and the higher number of
seeds, athough not unreasonably larger than that in the shuttle video. The growth and
decay of the individual lightning flashes in this video is extremely fractal in nature, and
as a result, too much movement in space is present. This effect, too, is a result of the
spreading probability of 0.7. The appearance of nonsolid lightning flashes as a result of
the complex percolation formations is even more noticeable in the video than in the still
images. Findly, the video in this experiment aso suffers from the seemingly different
frame rate than the shuttle video, however, this effect is somewhat masked by the wealth

of lightning activity occurring.
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Fig. 5.22. Six successive black and white percolation images for experiment 4.
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(d)

(f)

Fig. 5.23. Six successive height-based colored percolation images for experiment 4.
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(b)

(d)

(f)

Fig. 5.24. Six successive time-based colored percolation images for experiment 4.
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The examination of the Rényi dimension spectrum of the percolation sequence of
experiment four, Fig. 5.25, reveals a number of interesting features. Although the
dimension curves shown in this plot conform to the typica Rényi dimension curves,
including the dominating slope gradient about g = 0, the dimensions themselves range
between values of approximately 1.1 and 2.1 in this experiment. This variance is
indicative of the large percolation clusters visible in the images caused by the lower
spreading probability. Since these structures cause occupation of a more significant
portion of the difference images, the fractal structure is beginning to possess an
appearance closer to that of a solid box, which has adimension of 2. In addition, the lack
of frames with a constant dimension value of two is visible in the spectrum plot. This
absence confirms the presence of a large amount of lightning activity, since no two
successive frames in the sequence are the same. A final noteworthy point for the Rényi
graph deals with occurrence of fairly severe variation in Dq values, with respect to frame
number, for both negative and positive values of g. These ripples are not nearly as
extreme in the shuttle images and their presence in the percolation spectrum reflects the

intense non-stationarity seen in the video.
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Fig. 5.25. Rényi dimension spectrum of the black and white images in experiment 4.

5.5.6 Percolation Image Coloring Techniques

In the case of coloring using column heights, as seen in Fig. 5.11, Fig. 5.15, Fig.
5.19 and Fig. 5.23, it can be noted that flashes first appear in the images with colors
which are more “hot” (reds, yellows and greens), and as they fade away, the color
progresses through the cooler shades (blues, purples and pinks). Another visible effect
which can be seen in the images is the predominance of cooler colors. This occurs
because a global maximum connected column height is maintained and used in the

mapping from height to color, as opposed to normalising the values in each individual
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column with respect to the local maximum height. Consequently, the majority of pixels
are mapped to cooler shades, as their dight variation in heights over time is fairly
insignificant when compared to the large maximum which was likely generated by one or
two widely spreading flashes. Although this method of coloring does not reflect the
growth of individual portions of a flash with time, it does provide a description of the

overall persistence of the lightning discharge through time.

The use of color based on percolation filling time, as shown in Fig. 5.12, Fig.
5.16, Fig. 5.20 and Fig. 5.24, produces significantly different results than the height-
based scheme. An initia observation made from these figures is that a more diverse use
of color is obtained with the time-based method than with the height-based method. This
feature is due to the percolation times being normalised to the local maximum spreading
time for each seed. Although some progression through the spectrum from reds to
purples can be seen, the use of color appears mostly random in these images. This
observation suggests that the time in which a sguare was filled during the percolation
does not correlate particularly well with the growth of lightning flashes in the sequence
over time. Thisfact is not entirely surprising, since the source of time progression in the
sequence is solely height-based. In percolation, time is somewhat related to spatial
spreading from a seed, but not entirely representative of this growth since the percolation
process may backtrack or form long offshoots due to the degree of randomness in the
algorithm. The filling time in percolation is determined more by the presence of a fixed
time step clock. As aresult, the use of coloring based on percolation filling time is not

overly effective as aindicator of flash growth with timein the image sequences.
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However, one interesting aspect of the percolation model can be observed through
comparison of the lightning locations and sizes in the two coloring methods, namely the
direct effects of the compression factor. The height-based colored images are generated
using the compressed lattice while for ease of computation, the time-based images are
constructed before the lattice is compressed. By examining corresponding images, it is
seen that the compressed-based images produce lightning flashes which are much more
full and less speckled than those seen in the uncompressed images. Hence, the use of the
compression factor does indeed produce lightning images which more closely resemble

those gathered from shuttle videos.

557 Summary of Results

The results and analysis of the experiments presented in the previous subsections
allow a number of comments to be made pertaining to the parameter variation trends and

the overall usability of the percolation system.

To begin, the value of the spreading probability is seen to play an integra rolein
the output images. The primary effect of atering this parameter is a change in size of the
lightning flashes. An ideal value appears to be 0.725. Even small deviations from this

value cause rather large or quite small discharges to be produced.

The other major parameter which is varied throughout the course of the four
experiments is the number of percolation seeds used. Rather large changes in this value
are required to create noticeable differences in the output. A value of 1500 is found to

generate a reasonable number of lightning discharges.
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The remaining major parameters of lattice size, compression factor and skipping
factor are not varied through the experiments, yet the effects of these variable are clearly
visible. The skipping factor alters the perceived frame rate of the resulting videos. A
value of three is used for this factor due to memory limitations, however, the output
videos still appear slow in comparison with the shuttle video. The compression factor is
responsible for the elimination of some of the observed black speckles within a given
lightning flash, due to the complexity of percolation. The value for this factor is selected
to be five, and appears to perform adequately for the more optimal values of the other

percolation parameters.

The four experiments outlined in the previous subsections are al within the realm
of possible lightning storms. The sequence of experiment one is representative of a storm
for which little lightning activity is present. Experiments two and three produce results
which could be used to describe a medium sized storm with moderate lightning. Finally,

experiment four presents the model of an extremely intense thunderstorm.

5.6 Summary

This chapter is responsible for the verification of the lightning modelling system,
as well as experimentation with its usage to ascertain the types of simulations which the

percolation model is capable of producing.

The system is verified based upon its major components, while their interaction is
proven during the experimental phase. This validation is achieved by analysing the
Rényi dimension spectrum program, the shuttle image processing program and the

percolation program.
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This chapter then develops the experiments which are to be run using the
modelling software. The experiments are designed carefully, based upon basic tria runs
to establish reasonable parameter values, so as to determine the various formations which

can be generated, while still remaining in the relevant domain of lightning discharges.

The experimentation portion of this chapter is divided into five distinct
components, namely the use of the shuttle image analysis program and four percolation
experiments. The purpose of the shuttle experiment is to illustrate further the output of
this component of the system. The four experiments contain different sets of percolation
parameter values. These trials establish trends caused by the variation of these
parameters and isolate a particular set which generates quite accurate lightning discharge

simulations.
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CHAPTER 6
CONCLUSIONSAND RECOMMENDATIONS

6.1 Conclusions

The purpose of this thesis is to develop and implement a model which is capable
of simulating lightning discharge patterns observed from above during space shuttle
missions. The motivation for the creation of such a system is the insight which it will
provide into thunderstorm processes themselves. This knowledge may then be used to

assist in the pursuit of the ultimate goal of thunderstorm trajectory prediction.

The basis for the new lightning model described in this thesis is selected to be
percolation theory. With only slight refinements, the standard percolation process may
be used in three dimensions to generate sequences of images which model black and
white versions of space shuttle lightning videos. A number of experiments are undergone
to establish the capabilities of the percolation model, and a quantitative fractal

comparison of the resulting images with a representative shuttle sequence is performed.

These experiments illustrate that a wide range of lightning simulations can be
produced by the percolation model simply by varying a few key parameters.
Specificaly, the effects of varying the percolation spreading probability and the number
of seeds utilised are studied, and genera trends are found. The percolation model is
sensitive to even dlight changes in the spreading probability, with the most accurate
results being produced with a value of 0.725. Through the variation of this parameter,

different sized lightning discharges can be generated. Higher values of the spreading
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probability, such as 0.73, result in simulations which can be used to demonstrate storms
for which little lightning activity is present. Lower values of the spreading probability,
for example 0.7, produce sequences for which extensive electrical activity is occurring.
The other focal parameter in the percolation simulations is the number of seeds used.
This parameter must be varied by significantly greater amounts to produce noticeable
changes in output bitmaps. Experiments are run using values of 1000 and 1500 seeds,
and this parameter is determined to influence the number of lightning discharges present
in the sequences. The experiments in which 1500 seeds are chosen resulted in the

creation of lightning videos with moderate sized storms.

The quantitative metric of the Rényi dimension spectrum is used to concretely
verify the visual conclusions drawn by observing both still images and video sequences.
This measure is applied to images representing differences between successive lightning
frames. It is found that the experiment using a spreading probability of 0.725 and 1500
seeds conforms to the spectrum of the selected shuttle sequence. This spectrum isonein
which dimension values vary approximately between 1 and 2, with almost no variation
over time for negative moment orders and slight ripples over time for positive moment
orders. Hence, the Rényi dimension spectrum illustrates the multifractality of lightning
discharges in both space and time. As well, this spectrum contains a small portion of
completely black frames, representing no change in the actual lightning sequence for two

successive frames.

The experimental results presented in this thesis clearly demonstrate that the
percolation model can generate lightning image sequences which are both qualitatively

and quantitatively representative of those fractal patterns visible for typica
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thunderstorms.  As well, the percolation lightning discharge model has the ability to
create sequences portraying both unredisticaly large and small thunderstorms,
demonstrating the behavioral characteristics and conditions behind these natural

phenomena.

6.2 Recommendations

A number of recommendations are possible as to the future research extensionsin
the use of percolation to mode lightning discharge patterns. A selection of these

suggestions are as follows:

e The implementation of the Rényi dimension spectrum calculation contains some
inefficiencies which are used ssimply to increase the ease of coding. However, the
resulting program does not run as quickly as desired. Hence, this code could be

optimised to decrease the computation time required by this program.

* Since the focus of this thesis is the development and implementation of the
percolation model itself to test the feasibility of its use as a lightning discharge
simulation technique, a graphical user interface is not developed. With the promise
of the model now established, the creation of a GUI would significantly increase the

system’ s usability.

» Although the major functionality of the percolation model has been displayed through
the four major experiments in this thesis, only a small fraction of the available

combinations of the percolation parameters have been examined. Hence, further
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testing of the capabilities of the percolation model would likely prove quite

enlightening.

» The purpose of the use of color in the percolation image sequence is to illustrate the
growth of individual lightning discharges with time. The height-based coloring does
provide an indication of the position within the overal lifespan of a given flash,
however, it does not illustrate the growth of the discharge on a smaller, say single
time step, basis. Consequently, refinements to the coloring algorithms could be made

to better reflect this procession.

* This thesis demonstrates that the percolation model is successful in accurately
representing the lightning discharge patterns observed from the space shuittle.
However, only one such shuttle video is used for comparison purposes. Althoughitis
believed that this technique does model the underlying structure common to
thunderstorms in general, the system should be tested against other shuttle sequences
to determine the percolation parameters required and the relative accuracy of the

system.

6.3 Contributions

The contributions made by the research and development of this thesis may be

summarised as follows:

e The brief summarisation and commentary on the current techniques used to model

lightening discharge patterns.

- 128 -



Modelling and Simulation of Lightning Discharge Patterns Chapter 6: Conclusions and Recommendations

e The development and implementation of a percolation-based model capable of

simulating lightning sequences recorded from the space shuttle.

* The experimentation using the percolation modelling software to determine the

operation range of the model and the effects of the various parameters.

» Theexpanse of the diversity of applications for which percolation may be employed.

» Thedevelopment of my persona image processing and modelling skills as well as my

understanding of fractals and disordered systems.

- 129 -



Modelling and Simulation of Lightning Discharge Patterns References

[Aren96]

[BuHa91]

[CaKi00]

[Dool984]

[Dool98b]

[Enviog]

[FedeS8]
[Good994]

[Good99h]

[ Good00a]

[Good00Db]

REFERENCES

L. Arendt, “Stochastic modelling and multifractals characterisation of
dielectric discharges using Laplacian fractals” M.Sc. Thesis, Dept.
Electrical & Computer Engineering, University of Manitoba, Sept. 1996,
311 pp.

A. Bunde and S. Havlin, Fractals and Disordered Systems. New York,
NY: Springer-Verlag, 1991, 350 pp.

J. Cannons and W. Kinsner, “Modelling of lightning discharge patterns as
observed from space,” Mathematical Modelling and Scientific Computing,
vol. 10, 2000, 8 pages submitted.

D. Dooling, “ Space science news,”
http://science.msf c.nasa.qgov/newhome/headlines/essd19may98 2.htm, as
of 21 February 2000.

D. Dooling, “Space science news,”
http://science.msfc.nasa.gov/newhome/headlines/essd24aug98 2.htm, as
of 21 February 2000.

Environment Canada, “ Satellite images,”
http://www.cmc.ec.gc.ca/cmce/htmls/satellite.html, as of 7 June 1999.

J. Feder, Fractals. New York, NY: Plenum Press, 1988, 283 pp.

M. Goodman, “Lightning detection and ranging (LDAR) dataset
summary,” http://mmwghrc.msfc.nasa.gov/uso/readme/ldar.html, as of 4
March 2000.

S. Goodman, “LDAR browse calendar,”
http://thunder.msfc.nasa.qov/lightning-cgi-bin/ldar/ldar browse.pl, as of
30 May 1999.

S. Goodman, “Lightning detection from space, A lightning primer,”
http://thunder.msfc.nasa.gov/primer/, as of 4 March 2000.

S. Goodman, “ Space research and observations, Space shuttle lightning
experiments,” http://thunder.msfc.nasa.gov/shuttle.html, as of 4 March
2000.

- 130 -



Modelling and Simulation of Lightning Discharge Patterns

References

[Harr99]

[HaNK 89

[Kins94]

[LeBT83]

[LeTz86]

[Mcgu9l]

[Micro9]

[Milloo]

[Moll0O]

[Natioo]

[NoBLO1]

[PelS92]

[PVSHO2]

S. Harrison, “National lightning detection network (NLDN) of improved
performance from combined technology (IMPACT) radio frequency
antenna system,”
http://ghrc.msfc.nasa.gov:5721/sensor_documents/NLDN _antenna.html,
as of 4 March 2000.

W. W. Hager, J. S. Nisbet, and J. R. Kasha, “The evolution and discharge
of electric fields within a thunderstorm,” J. of Computational Physics, vol.
82, pp. 193-217, 1989.

W. Kinsner, “Fractal and Chaos Engineering,” Course Notes, Dept.
Electrical & Computer Engineering, University of Manitoba, 1994.

Z. Levin, W. J. Borucki, and O. B. Toon, “Lightning generation in
planetary atmospheres,” Icarus, vol. 56, pp. 80-115, 1983.

Z. Levin and I. Tzur, “Models of the development of the electrica
structure of clouds,” in The Earth’'s Electrical Environment, Sudies in
Geophysics.  Washington, D.C.: National Academic Press, pp. 131-145,
1986.

M. McGuire, An Eye for Fractals. Redwood City, CA: Addison-Wesley,
1991.

Microsoft Corporation, “Microsoft Encarta Encyclopaedia 99”, 1999.

T. Miller, “Optical transient detector,”
http://wwwghcc.msfc.nasa.qgov/OTD/imagesd OKstorm OTDflash NLDNf
lash.qif, as of 21 February 2000.

A. Moaller, “Lightning,”
http://ww?2010.atmos.ui uc.edu/(Gh)/guides/mtr/svr/dngr/light.rxml, as of
21 February 2000.

National Weather Service, “The WSR-88D doppler radar,”
http: //www.jannws.state.ms.us/wsr 88d1.html, as of 4 March 2000.

K. Norville, M. Baker, and J. Latham, “A numerical study of thunderstorm
electrification: Model development and case study,” J. of Geophysical
Research, vol. 96(D4), pp. 7463-7481, 1991.

H. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals. New York,
NY: Springer-Verlag, 1992.

D. E. Pitts, O. H. Vaughan Jr., C. A. Sapp, D. Helms, M. Chambers, P.
Jaklitch, and M. Duncan, “Analysis of lightning flash video from the space
shuttle using blob and morphological techniques,” International
Geoscience and Remote Sensing Symposium, vol. 2, pp. 1556-1558, 1992.

- 131 -



Modelling and Simulation of Lightning Discharge Patterns References

[RinNn85]

[SeWeo3]

[Staco4]

[Syst99]

[VaMPag]

[Vaug97]

[Vics92]

[Whip82]

[Wsico9]

[YalTo5]

K. Rinnert, “Lightning on other planets,” J. of Geophysical Research, vol.
90(D4), pp. 6225-6237, 1985.

D. Sentman and E. Wescott, “Observations of upper atmospheric optical
flashes recorded from an aircraft,” Geophysical Research Letters, vol. 20,
no. 24, pp. 2857-2860, 1993.

G. Stacey, “Stochastic fractals modelling of dielectric discharges,” M.Sc.
Thesis, Dept. Electrical & Computer Engineering, University of Manitoba,
Nov. 1994, 308 pp.

Systems Acquisition Office, Nationa Oceans and Atmospheric
Administration, “Geostationary operational environmental satellite
(GOES) acquisition,” http://mww.sao0.noaa.gov/goes/goes.ntml, as of 4
March 2000.

J. Vadivia, G. Milikh, and K. Papadopoulos, “Model of red sprites due to
intracloud fractal lightning discharges,” Radio Science, vol. 33, no. 6, pp.
1655-1668, 1998.

O. H. Vaughan, Jr., “ Space shuttle observations of lightning - Mesoscale
lightning experiment,” http://www.ghcc.msfc.nasa.gov/skeets.html, as of
21 February 2000.

T. Vicsek, Fractal Growth Phenomena. River Edge, NJ: World Scientific,
1992 (2nd ed.), 488 pp.

A. Whipple, Sorm. Alexandria, Virginia: Time-Life Books, 1982.

Weather Services International, http://www.wsicorp.com, as of 2
September 1999.

Y. Yair, Z. Levin, and S. Tzivion, “Lightning generation in a Jovian
thundercloud: Results from an axisymmetric numerical cloud model,”
Icarus, vol. 115, pp. 421-434, 1995.

- 132 -



Modelling and Simulation of Lightning Discharge Patterns

Appendix A: Software Listing

Al

APPENDIX A: SOFTWARE LISTING

InitUnit.h

/* This unit contains type definitions and constants used by the najority of

the simulation prograns. */
/* include files */
#i f def PC32
#i ncl ude <w ndows. h> /* For 32-bit machines only */
#endi f
/* type */
#i f def PCl6
//typedef unsigned short int WORD,
/* TypeDef WORD to 16 bits, only VC */
t ypedef unsigned int WORD; /* TypeDef WORD to 16 bits, only TC */
t ypedef unsigned long int DWORD; /* TypeDef DWORD to 32 bits */
t ypedef unsigned char BYTE; [* TypeDef BYTE to 8 bits */
#endi f
#i fdef LI NUX
t ypedef unsigned char BYTE; /* TypeDef BYTE to 8 bits */
t ypedef unsigned short int WORD, /* TypeDef WORD to 16 bits */
t ypedef unsigned i nt DWORD; /* TypeDef DWORD to 32 bits */
#endi f
#i fdef UNI X
t ypedef unsigned char BYTE; /* TypeDef BYTE to 8 bits */
t ypedef unsigned short int WORD; /* TypeDef WORD to 16 bits */
t ypedef unsigned int DWORD; /* TypeDef DWORD to 32 bits */
#endi f
/* const */
#defi ne XMax 256
#defi ne YMax 256
#defi ne ZMax 1300
/* x, yand z y max of lattice */
/* NOTE: Make sure that XMax * YMax is divisible by 8! */
#define Scale 2
/* Factor by which to scale the output bnps */
#define Dead 3
#define Fill edND 2
#define FilledD 1
#define Enpty O
/* Map pixel states to integers: */
/* dead, filled and not done, filled and done, enpty */
#define Tot Franmes 300
/* Total nunber of franes generated */
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A.2 FileUnit.h

/* This unit contains all type and procedure / function declarations used in
the managing of the files. */

/* interface */
#i ncl ude <stdio. h>
#i f def PC32
#i ncl ude <w ndows. h> /* For 32-bit machines only */
#endi f
/* type */
#i f def PCLl6

/ltypedef unsigned short int WORD,
[* TypeDef WORD to 16 bits, only VC */

t ypedef unsigned int WORD, /* TypeDef WORD to 16 bits, only TC */
t ypedef unsigned long int DWORD; /* TypeDef DWORD to 32 bits */
t ypedef unsigned char BYTE; /* TypeDef BYTE to 8 bits */
#endi f
#i fdef LI NUX
t ypedef unsigned char BYTE; /* TypeDef BYTE to 8 bits */
t ypedef unsigned short int WORD; /* TypeDef WORD to 16 bits */
t ypedef unsigned int DWORD; /* TypeDef DWORD to 32 bits */
#endi f
#i fdef UNI X
t ypedef unsigned char BYTE; /* TypeDef BYTE to 8 bits */
t ypedef unsigned short int WORD; /* TypeDef WORD to 16 bits */
t ypedef unsigned int DWORD; /* TypeDef DWORD to 32 bits */
#endi f

void InitFile (char *DirNane, int Frame, FILE * & File, char *RW;
/* This procedure initializes the file. */
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A.3 FileUnit.cpp

/* This unit contains all type and procedure / function declarations used in
the managing of the files. */

/* inmplenentation */

#include "FileUnit.h"
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <string. h>

void InitFile (char *DirName, int Frane, FILE * & File, char *RW
/* This procedure initializes the file. */

{
char Tenp [256] = ""; /* Tenporary string for fopen */
int Digit; /* Temporary current digit of frame nunmber */
char Letter [2]; /* Tenporary string value of current digit */
i nt | ndex; /* Loop counter to pull off digits */
strcat (Tenp, DirNane); /* Add on directory */

for (Index = 1000; Index >= 1; Index = Index / 10)
{ /* For each of the 4 digits in the frane nunber starting at left */

Digit = (Frame / |Index) % 10; [* Pull off correct digit */
Letter [0] ='0" + Digit; /* Convert to char */
Letter [1] = O; /* Add null termination */
strcat (Tenp, Letter); /* Add to string */
}
if (! strenp (RW "wb") || ! strenp (RW "rb")) /* If is a binary file */
if (strstr (Tenmp, "Stat") != NULL) /* check if is a status file */
strcat (Tenp, ".sta");
else if (strstr (Tenp, "Tinme") != NULL) /* check if atime file */
strcat (Tenp, ".tinl);
else if (strstr (Tenp, "Hgt") !'= NULL) /* if height file */
strcat (Tenp, ".hgt");
el se strcat (Tenp, ".bmp"); /* else assume bmp */
el se strcat (Tenmp, ".txt"); /* el se add txt extension */
File = fopen (Tenp, RW; /* Open the file */

if (File == NULL)
printf ("Can't open file");
fflush (stdout);
exit (0);

}
} /* InitFile */
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A.4 bmpunit.h

This unit contains all
the managing of bitmap files.

/| *
*/

/* interface */

#i ncl ude <stdio. h>

#i f def PC32

#include ".. \InitUnit\InitUnit.h"
#endi f
#i fdef UN X

#include "../InitUnit/InitUnit.h"
#endi f

#i fdef LI NUX
#i ncl ude
#endi f

/* type */
#i f def PC32

#pragma pack (push,
#endi f

1)

#ifdef UNIX
#pragma pack (1)
#endi f

#i fdef LI NUX
#pragma pack (1)
#endi f

typedef struct _BnpHeader Type

WORD | mageFi | eType;

DWORD Fi | eSi ze;

WORD Reservedl;

WORD Reserved?;

DWORD | mageDat aOr f set ;
} BnpHeader Type;

typedef struct _Bnpl nf oHeader Type
{

"o/ InitUnit/InitUnit. h"

/* For 32-bit machines only

/* For UNI X

/* For LI NUX

/* Record type for a 3.x bnp header

/* Image file type, always 424Dh ("BM')
/* Physical file size in bytes

/* Al ways 0

/[* Always 0

/* Start of inmage data offset in bytes

/* Record type for a 3.x bnp info header

DWORD Header Si ze;

DWORD | mageW dt h;

DWORD | mageHei ght ;

WORD Nunber of | magePl anes;
WORD Bi t sPer Pi xel ;

DWORD Conpr essi onMet hod;

/* 0 = unconpressed,

/* Size of this header

/* Image width in pixels

/* 1mage height in pixels

/* Nunber of planes (always 1)

/* Bits per pixel (1, 4, 8 or 24)

/* Conpression nethod used (0, 1, or 2)
1 =8-bit RLE, 2 = 4-bit RLE

DWORD Si zeOf Bi t nap; /* Size of the bitmap in bytes
DWORD Hor i zRes; /* Horizontal resolution in pixels per neter
DWORD Vert Res; /* Vertical resoltion in pixels per neter
DWORD Nuntol or sUsed:; /* Nunmber of colors in the i mage
DWORD Nunfi gCol or s; /* Nunber of inmportant colors in palette

} Bnpl nf oHeader Type;

typedef struct _RGBType

/* Record type for one RGB pi xel

type and procedure / function declarations used in

*/

*/

*/

*/

*/
*/

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
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BYTE R /* One byte for */
BYTE G /* each of RR G and B */
BYTE B; /* For "grayscale", R=G=B */
} RGBType;
#i f def PC32
#pragma pack (pop) /* For 32-bit machines only */
#endi f
typedef struct _BnpDataType /* Record type for bnp data */
RGBType **Array; /* 2D array of bnp pixels (of RGBType) */
DWORD W dt h; /* Wdth of array */
DWORD Hei ght ; /* Height of array */

} BnpDat aType;

voi d ReadBnpHeaders (FILE *InFile, BnpHeader Type & BnpHeader,
Bmpl nf oHeader Type & Bnpl nf oHeader) ;
/* This procedure reads in the bnp header and info header fromlInFile. */

voi d Fi xBnpHeaders (BnpHeader Type & BnpHeader
Bnpl nf oHeader Type & Bnpl nf oHeader) ;
/* This procedure fixes the BigEndian / LittleEndian conflict for Unix
boxes. */

voi d Creat eBmpHeaders (BmpHeader Type & BnpHeader,
Bnpl nf oHeader Type & Bnpl nf oHeader, DWORD Hei ght,
DWORD W dt h) ;

/* This procedure creates the bnp header and info header. */

void WiteBnpHeaders (BnpHeader Type BnpHeader,
Bnpl nf oHeader Type Bnpl nfoHeader, FILE *QutFile);
/* This procedure wites the bnp header and info header to the QutFile. */

void WiteBmpData (FILE *QutFile, BnpDataType BnpData);
/* This procedure wites the bnp data to the file. */

voi d PrintBnpData (BnpDat aType BnpDat a) ;
/* This procedure prints the bnp data to the screen. */

void WiteBmpPi xel (FILE *QutFile, RGBType Pixel);
/* This procedure wites the bnp pixel to the file. */

voi d ReadBnpPi xel (FILE *InFile, RGBType & Pixel);
/* This procedure reads a bnmp pixel fromthe file. */

voi d PrintBnpHeaders (BnpHeader Type BnpHeader,
Bnpl nf oHeader Type Bnpl nf oHeader) ;
/* This procedure prints out the contents of the two bnp headers. */

voi d Set W dt hAndHei ght (BnpDat aType & BnpDat a,
Bnpl nf oHeader Type Bnpl nf oHeader) ;
/* This procedure sets the height and width fields in BnpData as specified
i n Brpl nf oHeader. */

voi d Get BnpDat aSpace (BnpDataType & BnpData);
/* This procedure allocates an anount of menory for the bnp data as cal ul ated
fromthe i mage height and width. */

voi d FreeBnpDat aSpace (BnpDataType & BnpData);
/* This procedure frees the menory allocated for the bnmp array. */
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voi d ReadBnmpData (FILE *InFile, BnpDataType BnpData, DWORD | nageDataCffset);
/* This procedure reads the bnp data of the specified size, beginning at the
specified offset, fromthe image file into BnpData. */

RGBType Pixel Gen (BYTE R BYTE G BYTE B);
/* This function take in the RGB values for a pixel and return the pixel. */

int Pixellntensity (RGBType Pixel);
/* This function takes in a pixel and returns it's intensity. */

voi d Fi ndAvBnpl ntensity (BnpDataType BnpData, int & BnpAvintensity);
/* This procedure finds the average intensity of the bnp and stores it in
BnpAvl ntensity. */
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A.5 bmpunit.cpp

/* This unit contains all type and procedure / function declarations used in
the managing of bitmap files. */

/* inmplenentation */

#i ncl ude "bnpunit.h"
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <mal |l oc. h>

| F e L e e e e e e e e e e e e e e e e eeeiaaas * [

voi d ReadBnpHeaders (FILE *InFile, BnpHeader Type & BnpHeader,
Bnpl nf oHeader Type & Bnpl nf oHeader)
/* This procedure reads in the bnp header and info header fromlInFile. */

{
fread (& BnpHeader, sizeof (BnpHeaderType), 1, InFile); /* Read header */

fread (& Bnpl nf oHeader, sizeof (BnplnfoHeaderType), 1, InFile);
/* Read the info header */
} /* ReadBnpHeaders */

| F L e e e e e e e e e e e e e e eeiiaaas * [

voi d ChangeMeShort (long *var)
/* This procedure converts short variables (WORDs) between Bi gEndi an and
Littl eEndian. */

{
char tnp; /* Tenp var for swapping bytes */

tnp = ((char *) var)[0];
((char *) var)[0] = ((char *) var)[1];
((char *) var)[1] = tnp;

} /* ChangeMeShort */

/* _______________________________________________________________________ */

voi d ChangeMeLong (1 ong *var)

/* This procedure converts |ong variabl es (DWORDs) between Bi géndi an and
Littl eEndi an. */
char tnp; /* Tenp var for swapping bytes */
tnp = ((char *) var)[0];

((char *) var)[0] ((char *) var)[3];
((char *) var)[3] t np;

tnp = ((char *) var)[1];
((char *) var)[1] ((char *) var)[2];
((char *) var)[2] t np;

} /* ChangeMeLong */

voi d Fi xBnpHeaders (BrmpHeader Type & BnpHeader,
Bnpl nf oHeader Type & Bnpl nf oHeader)
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/* This procedure fixes the BigEndian / LittleEndian conflict for Unix
boxes. */

ChangeMeShort ((long *) & BnpHeader. | nmageFil eType); /* Fix the header */
ChangeMeLong ((long *) & BnpHeader. FileSize);
ChangeMeShort ((long *) & BnpHeader. Reservedl);
ChangeMeShort ((long *) & BnpHeader. Reserved?2);
ChangeMeLong ((long *) & BnpHeader. | mageDat aOf f set);
ChangeMeLong ((long *) & Bnpl nfoHeader. Header Size); /* Fix info header */
ChangeMeLong ((long *) & Bnpl nf oHeader. | mageW dt h) ;

ChangeMeLong ((long *) & Bnpl nf oHeader . | mageHei ght);

ChangeMeShort ((long *) & Bnpl nf oHeader. Nunber of | nagePl anes) ;
ChangeMeShort ((long *) & Bnpl nfoHeader. Bit sPer Pi xel );

ChangeMeLong ((long *) & Bnpl nf oHeader. Conpr essi onMet hod) ;
ChangeMeLong ((long *) & Bnpl nf oHeader. Si zeOf Bi t nap) ;
ChangeMeLong ((long *) & Bnpl nf oHeader. Hori zRes) ;
ChangeMeLong ((long *) & Bnpl nf oHeader. Vert Res) ;
ChangeMeLong ((long *) & Bnpl nf oHeader . Nuntol or sUsed) ;
ChangeMeLong ((long *) & Bnpl nf oHeader . Nuntsi gCol ors) ;

} /* Fi xBnpHeaders */
/2 * [

int Pixellntensity (RGBType Pixel)
/* This function takes in a pixel

{

and returns it's intensity. */

/* NOTE: Assune 24-bit grayscale image (R = G = B) */
return ((unsigned char)Pi xel . R);
i xel I ntensity
/* Pixell i */

/* _______________________________________________________________________ */
voi d Creat eBnmpHeaders (BnpHeader Type & BnpHeader,

Bnpl nf oHeader Type & Bnpl nf oHeader, DWORD Hei ght,

DWORD W dt h)
/* This procedure creates the bnp header and info header. */

{
BnpHeader . | nageFi | eType = 0x4d42;

BnpHeader. Fil eSize = Height * Wdth * 3 + 54;

/* NOTE: Assunes 24-bit color */
BnpHeader . Reser vedl 0; /* Always 0 */
BnpHeader . Reserved2 = 0; /* Always 0 */
BnpHeader . | mageDat aCf f set = 54; /* 54 bytes to data */

/* Hex neaning it is a bnp */

Bnpl nf oHeader . Header Si ze 40; /* Info header is 40 bytes long */
Bnpl nf oHeader . | nageW dt h W dt h; /* Wdth in pixels */
Bnpl nf oHeader . | mageHei ght = Hei ght ; /* Height in pixels */
Bnpl nf oHeader . Nunber of | nagePl anes = 1; /[* Always 1 */
Bnpl nf oHeader . Bi t sPer Pi xel = 24; /* NOTE: Assunes 24-bit color */
Bnpl nf oHeader . Conpr essi onMet hod = 0; /* NOTE: Assumes unconpressed */

Bnpl nf oHeader .

SizeOBitnmap = Height * Wdth * 3;

/* NOTE: Assunes 24-bit color */
Bnpl nf oHeader . Hori zRes = O; /* Just because */
Bnpl nf oHeader . Vert Res = 0;
Bnpl nf oHeader . NuntCol or sUsed = 0;
Bnpl nf oHeader . Nunti gCol ors = O;
} /* CreateBnpHeaders */
/2 * [
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void WiteBnpHeaders (BnpHeader Type BnpHeader,
Bnpl nf oHeader Type Bnpl nf oHeader, FILE *QutFile)
/* This procedure wites the bnp header and info header to the QutFile. */

fwite (& BnpHeader, sizeof (BnpHeaderType), 1, QutFile);
/* Wite header */
fwite (& Bnpl nfoHeader, sizeof (BnplnfoHeaderType), 1, QutFile);
/* Wite the info header */

} /* WiteBnpHeaders */

| F e e e e e e e e e e e e e e e e eeeiiaaas * [

void WiteBmpData (FILE *QutFile, BnpDataType BnpDat a)
/* This procedure wites the bnp data to the file. */

DWORD Row, /* Loop counter for current row */
DWORD Col ; /* Loop counter for current colum */

/* NOTE: Assume 24-bit inmage with no conpression */
/* Wite in one pixel at a time fromthe 2D array */
for (Row = 0; Row < BnpDat a. Hei ght; Row++)
for (Col = 0; Col < BrpData.Wdth; Col ++)
fwite (& BnpData. Array [Col][Row], sizeof (RGBType), 1, QutFile);
} /* WiteBnpData */

| F L e e e e e e e e e e e e e e e e eeiiaaas * [

voi d Print BmpData (BnpDat aType BnpDat a)
/* This procedure prints the bnp data to the screen. */

{

DWORD Row, /* Loop counter for current row */
DWORD Col ; /* Loop counter for current colum */

/* NOTE: Assunme 24-bit inage with no conpression */
/* Wite in one pixel at a time fromthe 2D array */
for (Row = 0; Row < BnpDat a. Hei ght; Row++)
{
for (Col = 0; Col < BnpData.Wdth; Col ++)
if (Pixellntensity (BnpData.Array [Col][Row]) == 255)

printf ("1 ");
else printf ("0 ");
printf ("\n");

}
printf ("\'n\n");
} /* PrintBnpData */

void WiteBmpPi xel (FILE *QutFile, RGBType Pixel)
/* This procedure wites the bnp pixel to the file. */

fwite (& Pixel, sizeof (R&BType), 1, QutFile);
} /* WiteBnpPi xel */

voi d ReadBmpPi xel (FILE *InFile, RG@Type & Pixel)
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/* This procedure reads a bnp pixel fromthe file. */

{
fread (& Pixel, sizeof (RGBType), 1, InFile);
} /* ReadBnpPi xel */

voi d Print BrpHeaders (BnpHeader Type BnpHeader,
Bnpl nf oHeader Type Bnpl nf oHeader)
/* This procedure prints out the contents of the two bnmp headers. */

#i f def PC32
printf ("lmage file type: %x \n", BnpHeader. | mageFil eType);
printf ("File size: %u \n", BnpHeader.FileSize);
printf ("Reserved 1: %wu \n", BnpHeader.Reservedl);
printf ("Reserved 2: %wu \n", BnpHeader.Reserved2);
printf ("lImage data offset: % u \n", BnpHeader.|nageDataCf fset);
printf ("Header size: %u \n", BnplnfoHeader. HeaderSi ze);
printf ("lmage width: % u \n", BnplnfoHeader.|mageW dth);
printf ("lmage height: % u \n", BnplnfoHeader.|mgeH
printf ("Nunmber of inage planes: %wu \n",
Bnpl nf oHeader . Nunber of | magePl anes) ;
printf ("Bits per pixel: %wu \n", BnplnfoHeader. BitsPerPixel);
printf ("Conpression nethod: % u \n", BnplnfoHeader. Conpressi onMet hod);
printf ("Size of bitmap: % u \n", BnplnfoHeader.SizeO'Bitnap);
printf ("Horizontal resolution: %u \n", BnplnfoHeader.HorizRes);
printf ("Vertical resolution: %u \n", BnplnfoHeader. VertRes);
printf ("Number of colors used: %u \n", BnplnfoHeader.NunCol orsUsed);
printf ("Number of significant colors: % u\n", Bmpl nf oHeader . Nunti gCol ors) ;
#endi f
#ifdef UNIX
printf ("Image file type: %x \n", BnpHeader.|mageFil eType);
printf ("File size: % \n", BnpHeader.FileSize);
printf ("Reserved 1: % \n", BnpHeader. Reservedl);
printf ("Reserved 2: % \n", BnpHeader.Reserved2);
printf ("Inmage data offset: % wu \n", BnpHeader. | mageDataCO fset);
printf ("Header size: %wu \n", BnplnfoHeader. HeaderSize);
printf ("lImage width: % \n", BnplnfoHeader. | mageW dth);
printf ("Inmage height: % \n", BnplnfoHeader.|nmageHei ght);
printf ("Nunmber of inmage planes: % \n",
Bnpl nf oHeader . Nunber of | magePl anes) ;
printf ("Bits per pixel: % \n", BnplnfoHeader.BitsPerPixel);
printf ("Conpression nethod: %u \n", BnplnfoHeader. Conpressi onMet hod);
printf ("Size of bitmap: %wu \n", BnplnfoHeader.SizeO Bitnap);
printf ("Horizontal resolution: %wu \n", BnplnfoHeader. Hori zRes);
printf ("Vertical resolution: %wu \n", BnplnfoHeader. VertRes);
printf ("Nunber of colors used: %u \n", BnplnfoHeader. NuntCol orsUsed);
printf ("Number of significant colors: %u\n", Brpl nf oHeader . Nuni gCol ors) ;
#endi f
} /* PrintBnpHeaders */

voi d Set W dt hAndHei ght (BnpDat aType & BnpDat a,
Bnpl nf oHeader Type Bnpl nf oHeader)
/* This procedure sets the height and width fields in BnpData as specified
i n Bnpl nf oHeader. */

BrnpDat a. W dt h = Bnpl nf oHeader . | mageW dt h;
BmpDat a. Hei ght = Bnpl nf oHeader . | mageHei ght ;
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} /* Set W dt hAndHei ght */

voi d Get BnpDat aSpace (BnpDataType & BnpDat a)
/* This procedure allocates an anount of menory for the bnp data as cal ul ated
fromthe i mage height and width. */

DWORD | ndex; /* Loop counter for array index */

/* Dynamically get space for 2D array pf pixels */
BrpDat a. Array = (RGBType **) nalloc (BnpData. Wdth * sizeof (RGBType *));
for (Index = 0; Index < BnpData.Wdth; |ndex++)
{
BnpDat a. Array [Index] =
(RGBType *) malloc (BnpData. Hei ght *
si zeof (RGBType) ) ;
if (BnpData.Array [Index] == NULL)

printf("Error: Not enough nmenory avail able for data space\n");

exit (1);
}

}
} /* GetBnpDat aSpace */
/* _______________________________________________________________________ */

voi d FreeBnpDat aSpace (BnpDat aType & BrpDat a)
/* This procedure frees the nmenory allocated for the bnmp array. */

{

DWORD | ndex; /* Loop counter for array index */
for (Index = 0; Index < BnpData.Wdth; |ndex++) /* For all colums */

free ((void *) BnpData.Array [Index]); /* Free row nmenory */
free ((void *) BnpData. Array); /* Free columm list */
BnpDat a. Array = NULL; /* Set pointer to null */
BnpData. Wdth = O; /* and height and width to 0 */

BnpDat a. Hei ght = O
} /* FreeBnpDat aSpace */

| F e e e e e e e e e e e e e e e e e eiiiaas * [

voi d ReadBnmpData (FILE *InFile, BnpDataType BnpData, DWORD | nageDataCr f set)
/* This procedure reads the bnp data of the specified size, beginning at the
specified offset, fromthe image file into BnpData. */

DWORD Row; /* Loop counter for current row */
DWORD Col ; /* Loop counter for current colum */

fseek (InFile, |InmageDataCffset, SEEK SET);
/* Moves file pointer to start of data */

/* NOTE: Assume 24-bit inmage with no conpression */
/* Read in one pixel at atime into the 2D array */
for (Row = 0; Row < BnpDat a. Hei ght; Row++)
for (Col = 0; Col < BrpData.Wdth; Col ++)
fread (& BnpData. Array [Col ][ Row], sizeof (R&BType), 1, InFile);
} /* ReadBnpData */

| F e e e e e e e e e e e e e e e e e eiiiaas * [
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RGBType Pi xel Gen (BYTE R, BYTE G BYTE B)
/* This function take in the RG values for a pixel and return the pixel. */

RGBType Tenp; /* Tenmporary pixel */
Temp.R = R, /* Set RGB val ues */
Temp. G = G
Tenp. B = B;

return (Tenp);
} /* Pixel Gen */

/2 * [
voi d Fi ndAvBnpl ntensity (BnpDataType BnpData, int & BnpAvilntensity)

/* This procedure finds the average intensity of the bnp and stores it in
BnpAvl ntensity. */

{
i nt RunAv; /* Running average intensity of the bnp */
I ong int RunSum /* Running sumof intensity for current row */
DWORD Row; /* Loop counter for current row */
DWORD Col ; /* Loop counter for current colum */
RunAv = O; /* Initialize running average to 0 */
for (Row = 0; Row < BnpDat a. Hei ght; Row++)
{
RunSum = 0; [* Initialize for current row */

for (Col = 0; Col < BnpData.Wdth; Col ++)
RunSum = RunSum + Pi xel Intensity (BrmpData.Array [Col][Row);
/* Add current pixel's contribution */
RunAv = RunAv + RunSum / BnpData. W dt h;
/* Add current row s contribution */
}
BnpAvl ntensity = (RunAv / BnpDat a. Hei ght);
} /* AvBnplntensity */

| F e e e e e e e e e e e e e e e e e e e eaiaaas * [
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A.6 LatUnit.h

/* This unit contains all type and procedure / function declarations used in
the managing of the 3D lattice type. */

/* interface */

#i ncl ude <stdio. h>

#i f def PC32
#i ncl ude <w ndows. h> /* For 32-bit machines only */
#include ". . \lnitUnit\InitUnit.h"

#endi f

#i fdef UNI X
#include "../InitUnit/InitUnit.h"

#endi f

#i fdef LI NUX
#include "../InitUnit/InitUnit.h"
#endi f

#i f def PC32
#pragma pack (push, 1) /* For 32-bit machines only */
#endi f

#i fdef UNI X
#pragma pack (1) /* For UNI X */
#endi f

#i f def LI NUX
#pragma pack (1) /* For LINUX */
#endi f

/* type */
typedef struct _Lat SqType /* Record type for a 3D lattice square */

int Status; /* Status of square (Dead, FilledND, FilledD, Enpty) */
WORD Ti ne; /* Time at which square was filled, initially 0 */
} Lat SqType;

#i f def PC32
#pragma pack (pop) /* For 32-bit machines only */
#endi f

void InitLattice (LatSqType *** Lattice, DWORD X, DWORD Y, DWORD Z);
/* This procedure initializes the lattice to all enpty squares. */

voi d GetlLatticeSpace (LatSqType **** Lattice, int x, int y, int z);
/* This procedure dynanmically gets enough space for the lattice. */

void GetlntLatticeSpace (int **** Lattice, int x, int vy, int z);
/* This procedure dynanmically gets enough space for the lattice. */

voi d Savelattice (LatSqType *** Lattice);

/* This procedure saves the relevant part of the lattice to a file. Assumng
bl ack and white bitrmaps, 8 pixels are encoded into 1 byte and then
witten to the file. */
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voi d SavelatticeCol or (LatSgType *** Lattice, FILE * & StatFile,
FILE * & TineFile, WORD MaxTi ne, DWORD LowZ,
DWORD Hi ghZ, int LayersPerFrane, int SkipFactor);
/* This procedure saves the time at which a square was filled (0 = not
filled) to a file. The first WORD is the maxinumtinme step / nmaxi mum
hei ght reached in the sinulation.

This procedure al so saves the pixel status information to another file.
The first integer in this status file is the nunber of |ayers per frane.
*/

int Status (LatSqType *** Lattice, DWORD x, DWORD y, DWORD z);
/* This function returns the status of the requested pixel in the lattice. */

WORD Tine (Lat SqType *** Lattice, DWORD x, DWORD y, DWORD z);
/* This function returns the tine of the requested pixel in the lattice. */

voi d SetStatus (LatSgType *** Lattice, DWRD x, DWORD y, DWORD z,
int Status);
/* This procedure set the status of the requested pixel in the lattice. */

void SetTinme (LatSqType *** Lattice, DWORD x, DWORD y, DWORD z, WORD Tine);
/* This procedure set the time of the requested pixel in the lattice. */

voi d ReadLatticeStat (LatSqType *** Lattice, FILE *StatFile,
int LayersPerFrane);
/* This procedure reads in the lattice status data stored in the status
file into the lattice. */

voi d Squi shLattice (LatSqType **** Lattice, int LayersPerFrane);
/* This procedure generates a new |l attice (of the same di mensions) where
each layer is the OR of LayersPerFrame neighboring laters. */
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A.7 LatUnit.cpp

/* This unit contains all type and procedure / function declarations used in
the managing of the 3D lattice type. */

/* inmplenentation */

#include "LatUnit. h"
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <mal |l oc. h>
#i ncl ude <string. h>

#i f def PC32
#include "..\FileUnit\FileUnit.h"

#include ". . \lnitUnit\InitUnit.h"
#endi f
#i fdef UNI X

#include "../FileUnit/FileUnit.h"

#include "../InitUnit/InitUnit.h"
#endi f

#i fdef LI NUX
#include "../FileUnit/FileUnit.h"
#include "../InitUnit/InitUnit.h"
#endi f

void InitLattice (LatSqType *** Lattice, DWORD X, DWORD Y, DWORD Z)
/* This procedure initializes the lattice to all enpty squares. */

{

DWORD Loopl; /* Loop counters */
DWORD Loop2;
DWORD Loop3;
for (Loopl = 0; Loopl < X; Loopl++) /* For entire lattice */
for (Loop2 = 0; Loop2 < Y, Loop2++) /* set squares */
for (Loop3 = 0; Loop3 < Z; Loop3++) /[* to enpty */
Lattice [Loopl][Loop2][Loop3].Status = O;
Latti ce [Loopl][Loop2][Loop3].Tine = O;
}
} /* InitLattice */
/* _______________________________________________________________________ */

voi d GetlLatticeSpace (LatSgType **** Lattice, int x, int y, int z)
/* This procedure dynamically gets enough space for the lattice. */

{
int Loopl, Loop2; /* Tenp | oop counters */

printf ("Getting nmenmory for the lattice %ix%x%", x, y, z);
*Lattice = (LatSqType ***) malloc (x * sizeof (LatSqType **));
if (*Lattice == NULL)

printf ("Can't allocate nmenory for lattice x dimension");
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exit (0);

for (Loopl = 0; Loopl < x; Loopl++)
{
printf (".");
fflush (stdout);
(*Lattice) [Loopl] =
(Lat SqType **) malloc (y * sizeof (LatSqType *));
if ((*Lattice) [Loopl] == NULL)
{
printf ("Can't allocate nenory for lattice y dinmension");
exit (0);

}
for (Loop2 = 0; Loop2 < y; Loop2++)
(*Lattice) [Loopl][Loop2] =
(Lat SqType *) malloc (z * sizeof (LatSqType));
if ((*Lattice) [Loopl][Loop2] == NULL)

printf ("Can't allocate nmenory for lattice z dinmension");
exit (0);

}

printf ("\nCGot menory for the lattice\n");
} /* GetlLatticeSpace */

void GetlntLatticeSpace (int **** Lattice, int x, int y, int z)
/* This procedure dynanmically gets enough space for the lattice. */

{
int Loopl, Loop2; /* Tenp loop counters */

printf ("Getting nenory for the lattice ");
*Lattice = (int ***) malloc (x * sizeof (int **));
if (*Lattice == NULL)

printf ("\nCan't allocate menory for lattice x dinmension\n");

exit (0);
}
for (Loopl = 0; Loopl < x; Loopl++)
{
printf (".");

fflush (stdout);
(*Lattice) [Loopl] =

(int **) malloc (y * sizeof (int *));
if ((*Lattice) [Loopl] == NULL)

printf ("\nCan't allocate nenory for lattice y dinension\n");
exit (0);
}
for (Loop2 = 0; Loop2 < y; Loop2++)

(*Lattice) [Loopl][Loop2] =
(int *) malloc (z * sizeof (int));
if ((*Lattice) [Loopl][Loop2] == NULL)
{

printf
("\nCan't allocate nenory for lattice z dinension\n");
exit (0);
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}

}
printf ("\nGot nmenory for the lattice\n");
} /* GetlntLatticeSpace */

voi d SavelLattice (LatSqType *** Lattice)

/* This procedure saves the relevant part of the lattice to a file. Assumng
bl ack and white bitmaps, 8 pixels are encoded into 1 byte and then
witten to the file. */

{

FILE *CQutFile; /* File to output lattice to */
DWORD x, vy, z; /* Loop counters for lattice */
BYTE Tenp; /* Current byte to be witten */
BYTE Bit; /* Value of 1 only in the current bit */
InitFile ("Stat", 0, QutFile, "wbh");

Tenp = O; /* Initialize tenp byte to 0 */
Bit = 0x80; [* Set to first bit */

for (z =2ZMax / 2 - 1; z > ZMax [/ 2 - 1 - (DWORD) TotFrames; z--)
/* For required | ayers */

for (y = 0; y < YMax; y++) /[* For all y values */
for (x = 0; x < XMax; Xx++) /* For all x values */
if (Lattice [x][y][z].Status == Fill edD) [* 1f filled */
Tenp = Tenp | Bit; /* Set current bit in Tenp to 1 */
Bit = Bit >> 1; /* Move to next bit */
if (Bit == 0) /[* 1f finished a byte */
{
Bit = 0x80; /* Reset to first bit */
fwite (& Tenp, sizeof (BYTE), 1, QutFile);
Temp = O; /* Reset next BYTE to 0 */
}

} /* Savelattice */
/* _______________________________________________________________________ */

voi d SavelLatticeCol or (LatSgqType *** Lattice, FILE * & StatFile,
FILE * & TimeFile, WORD MaxTi ne, DWORD LowZ,
DWORD Hi ghZ, int LayersPerFrane, int SkipFactor)
/* This procedure saves the time at which a square was filled (0 = not
filled) to a file. The first WORD is the maxinumtime step / nmaxi mum
hei ght reached in the sinulation.

This procedure al so saves the pixel status information to another file.
Ski pFactor is used to output, for exanple, every second |ayer of the
lattice only. The appropriate starting and ending | ayers (using a skipping

factor of 1) are received as input to the procedure. The first integer in
this status file is the nunber of |ayers per frane.

*/

{ .
DWORD x, Yy, Z; /* Loop counters for lattice */
BYTE Tenp; /* Current byte to be witten */
BYTE Bit; /* Value of 1 only in the current bit */
printf ("Saving the lattice in color\n");
fwite (& LayersPerFrane, sizeof (int), 1, StatFile);

Temp = 0; /* Initialize tenp byte to 0 */
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Bit = 0x80; /* Set to first bit */
fwite (& MaxTinme, sizeof (WORD), 1, TineFile); /* Wite max tinme */

/* Save layers starting at the mddl e and going down */

/* Also save LayersPerFrane - 1 extra layers so can perform?*/

/* squishing for the first frane */

for (z = LowZ;, z <= Highz, z++) /* For required | ayers */

{
printf ("% ", LowZ + (z - LowZ) * SkipFactor);
fflush (stdout);
for (y = 0; y < YMax; y++) /[* For all y values */
for (x = 0; x < XMax; x++) /* For all x values */

if (Lattice [x][y][LowZ + (z - LowZ) * SkipFactor]. Status

== Fil |l edD) [* 1f filled */
{
Tenp = Tenp | Bit; /* set current bit in Tenp to 1 */
fwite (& Lattice [x][y]
[LowZ + (z - LowZ) * SkipFactor].Tine,
si zeof (WORD), 1, TimeFile);
}
Bit = Bit >> 1; /* Move to next bit */
if (Bit == 0) [* 1f finished a byte */
{
Bit = 0x80; /* Reset to first bit */
fwite (& Tenmp, sizeof (BYTE), 1, StatFile);
Tenp = 0; /* Reset next BYTE to 0 */
}
}
}
printf ("\n");
} /* SavelatticeCol or */
/* _______________________________________________________________________ */

int Status (LatSgType *** Lattice, DWORD x, DWORD y, DWORD z)
/* This function returns the status of the requested pixel in the lattice. */

{
return (Lattice [x][y]l[z]. Status);
} /* Status */
/* _______________________________________________________________________ */
WORD Ti me (Lat SqType *** Lattice, DWORD x, DWORD y, DWORD z)

/* This function returns the tine of the requested pixel in the lattice. */

{
return (Lattice [x][y]l[z].Tine);
} I Time */

voi d Set Status (LatSqType *** Lattice, DWORD x, DWORD y, DWORD z, int Stat)
/* This procedure set the status of the requested pixel in the lattice. */

Lattice[x][y][z].Status = Stat;
} /* SetStatus */
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void SetTinme (LatSqType *** Lattice, DWORD x, DWORD y, DWORD z, WORD Ti ne)
/* This procedure set the tinme of the requested pixel in the lattice. */

{
Lattice [x][y][z].Time = Tine;
} /* SetTime */

/* _______________________________________________________________________ */

voi d ReadLatticeStat (LatSqType *** Lattice, FILE *StatFile,
int LayersPer Frane)
/* This procedure reads in the lattice status data stored in the status
fileinto the lattice. */

{
DWORD x, vy, zZ; /* Current x, y and z values of the lattice */
int CurrByte; /* Current byte of |ayer */
BYTE Bit; /* Value of 1 only in the current bit */
int Loop; /* Current bit of current byte */
BYTE Tenp; /* Current byte read */

for (z =0; z < TotFrames + (DWORD) LayersPerFrane - 1; z++)
{

X = 0; /* Initialze lattice indexes to 0 */
y = 0;
for (CurrByte = 0; CurrByte < XMax * YMax / 8; CurrByte++)
/* For all bytes making up one |ayer */
fread (& Tenp, sizeof (BYTE), 1, StatFile); /* Read byte */
Bit = 0x80; /* Set to looking at first bit */
for (Loop = 0; Loop < 8; Loop++) /* For all bits in byte */
{
if ((Bit & Tenp) !'=0) /* If current bit intenmpis 1 */
Lattice [x][y]l[z] -Status = FilledD, /* Set filled */
else Lattice [x][y][z].Status = Enpty;
/* else set to empty */
Bit = Bit >> 1; /* Move to next bit */
X++; /* Increanent x index */
if (x == XMax) /* If hit end of row */
{
X = 0; /* Reset x */
y++; /* NMove to next row */
}
}
}

} /* ReadLatticeStat */
/* _______________________________________________________________________ */

void FreeLattice (LatSqType **** Lattice, DWORD X, DWORD Y, DWORD 2)
/* This procedure free the nenory occupied by the lattice. */

{

DWORD Loopl, Loop2; /* Loop indices */
for (Loopl = 0; Loopl < X; Loopl++) /* For all x values */
for (Loop2 = 0; Loop2 < Y; Loop2++) /* For all y values */

free ((*Lattice) [Loopl][Loop2]); /* Free a z colum */

free ((*Lattice) [Loopl]); /* Free ay colum */

free (*Lattice); /* Free the row of x's */

(*Lattice) = NULL;
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} /* FreelLattice */
/2 * [
voi d Squi shLattice (LatSqType **** Lattice, int LayersPerFrane)

/* This procedure generates a new lattice (of the sane di mensions) where
each layer is the OR of LayersPerFrame neighboring laters. */

{
DWORD x, vy, Z; /* Current x, y and z values in the lattice */
Lat SqType **** NewLat = NULL; /* Tenmporary squi shed lattice */
/* 4 *s to avoid lattice address being on stack */
int Stat; /* Tenp status var for current x, y square */
DWORD Cur r Layer ; /* Current |ayer (between O and LayersPerFrane - 1) */

printf ("Squishing the lattice\n");
NewLat = (LatSqType ****) malloc (sizeof (LatSqType ***));
/* Get space on heap for the lattice pointer */
Get Latti ceSpace (NewLat, Xwax, YMax, TotFrames + LayersPerFrame - 1);
/* Note: Don't pass & NewLat since declared as **** */
printf ("Total frames: %l Layers per frame: % \n", TotFranes,
Layer sPer Frame) ;
InitLattice ((*NewLat), Xwmax, YMax, TotFrames + LayersPerFrane - 1);
for (y =0, y < YMax; y++)
{

for (x = 0; x < XMax; X++)

{
for (z = TotFrames - 1; (int) z >= 0; z--)
{
Stat = Enpty; /* Init to enpty */
CurrlLayer = LayersPerFrame; /* Look at newest in lat */
while (Stat != FilledD && CurrLayer > 0)
/* Check if this x, y filled in any of layers */
if ((*Lattice) [x][yl[z + CurrlLayer - 1].Status ==
Fi |l edD)
Stat = FilledD
el se CurrlLayer--;
switch (Stat) /* Set pixel in squished lattice */
case FilledD: (*NewLat) [x][y]l[z].Status =
Fill edD;
br eak;
case Enpty: (*NewLat) [x][y]l[z].Status = Enpty;
br eak;
}
}
}

FreeLattice (Lattice, Xwax, YMax, TotFrames + LayersPerFrame - 1);
(*Lattice) = (*NewlLat); /* Set lattice pointer to new squished lattice */
} /* SquishLattice */
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A.8 light.cpp

/1 This programallows the user to enter the path of a sequence of

/'l greyscale bnp i mages (froma shuttle |ightning video)

/1 which are naned bl ah000, bl ah001, etc where blah is also entered by
/1 the user. The user must also specify the index number of the first
/1 frame and that of the last frame. The bright pixels in the inmge
/1 are selected as those which exceed a threshold value multiplied

/1 by the average intensity of the bitmap. Adjacent pixels are then
/1 grouped into lists. Each of these lists that exceeds a constant

/'l nunber of pixels is said to be a "lightning flash" and

/1 a new sequence of black and white bnp i mages are created

/1 which contain white pixels only for the lightning flashes

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <vector>

#i f def PC32
#i ncl ude <wi ndows. h>
#i ncl ude <io. h>
#i ncl ude ". .\ BmpUni t\ brpuni t. h"
#include ".. \lnitUnit\InitUnit.h"
#include "..\FileUnit\FileUnit.h"
#endi f

#i fdef UNI X
#i nclude "../BmpUni t/bnpunit.h"
#include "../InitUnit/InitUnit.h"
#include "../FileUnit/FileUnit.h"
#endi f

#i f def LI NUX
#i ncl ude ./ BrpUni t / brpuni t . h"
#include "../InitUnit/InitUnit.h"
#include "../FileUnit/FileUnit.h"
#endi f

usi ng nanespace std;

/* const */
#define Threshold 2.4
/* Intensity threshold (as a decimal) for identifying bright spots */
#defi ne Pi xel sPerFl ash 5
/* Nunber of pixels required to nmake up a flash */
/* Shoul d change with resol ution */

/* type */
cl ass CoordType /* Cass for one coordinate */
{

public:
DWORD Row; /* The row */
DWORD Col ; /* The colum */
CoordType () {Row = 0; Col = 0;} /* Constructor */

int operator< (const CoordType Coord2) const
{

if (Row < Coord2. Row ||
Row == Coor d2. Row && Col < Coord2. Col)
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return (1);
el se return (0);

}
int operator== (const CoordType Coord2) const

if (Coord2. Row == Row && Coord2. Col == Col)
return (1);
el se return (0);

}

int operator!= (const CoordType Coord2) const

if (Coord2. Row == Row && Coord2. Col == Col)
return (0);
el se return (1);

/* Dummy overl oading so can use vector class of CoordType */

/* _______________________________________________________________________ */

voi d GetDirName (char *DirNane)
/* This procedure reads in the directory name where the inmages are
| ocated. */

char Pref [10]; /* Tenmporary string for first part of file name */

printf ("Please enter the directory name and path: ");
gets (DirNane);

printf ("Enter the preface of the file name: "); /* Get preface */
gets (Pref);
strcat (DirNane, Pref);

} /* GetDirName */

| F e e e e e e e e e e e e e e e e e eeaiaaas * [

voi d Fi ndBright Pi xel s (BnpDat aType BnpData, int BrnpAvlntensity,
vect or <CoordType> & Bri ght Pi xel s)
/* This procedure finds and stores the coordinates of all the pixels having
intensities greater than Threshold * the average intensity (lightning
candi dates). */

{
DWORD Row, /* Loop counter for current row */
DWORD Col ; /* Loop counter for current colum */
Coor dType Tenp; /* Tenporary coordinate */
[lprintf ("Bright pixels: \n");
for (Row = 0; Row < BnpDat a. Hei ght; Row++) /* For each pixel, */
for (Col = 0; Col < BnpData.Wdth; Col ++) /* check intensity */

if (Pixellntensity (BnpData.Array [Col][Row) >
Threshol d * BnpAvl nt ensity)

{
[lprintf ("(%, %) ", Col, Row);
Tenp. Row = Row; /* Add the pixel */
Tenp. Col = Col; /* to the end of the list */

Bri ght Pi xel s.insert (BrightPixels.end (), Temp);
}
} /* FindBrightPixels */

/* _______________________________________________________________________ */
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int | sNei ghbor (CoordType Pixell, CoordType Pixel 2)
/* This function returns 1 iff pixell and pixel 2 are nei ghbors. */

{
if (abs (Pixell. Row - Pixel2. Row) <= 1 &&

abs (Pixel 1. Col - Pixel2. Col) <= 1)
return (1);
else return (0);

} /* IsNei ghbor */

/2 * [
int InVector (CoordType Pixel, vector <CoordType> List)

/* This function takes in a pixel to look for inthe list. It returns the
index of the pixel if it is found or else returns -1. */

{
DWORD | ndex; /* Current index */
| ndex = O; /* Prime the | oop */
while (Index < List.size () && List [Index] != Pixel)
| ndex++;
/* Continue while haven't checked whole Iist and haven't found match */
if (Index < List.size ()) /* If found match */
return ((int) Index); /* return I ndex */
else return (-1); /* else return -1 */

} /* InVector */
/* _______________________________________________________________________ */

Coor dType UpNei ghbor (CoordType Pixel)
/* This function returns the coordi nate of the upward nei ghbor of the
speci fied pixel. */

Coor dType Tenp; /* Tenporary pixel */

Tenp. Row = Pi xel . Row + 1;
Tenp. Col = Pi xel . Col ;
return (Tenp);

} /* UpNei ghbor */

| F e e e e e e e e e e e e e e e e e eiiiaas * [

Coor dType DownNei ghbor (CoordType Pixel)
/* This function returns the coordi nate of the downward nei ghbor of the
speci fied pixel. */

Coor dType Tenp; /* Tenporary pixel */

Tenp. Row = Pi xel . Row - 1;
Tenp. Col = Pi xel . Col ;
return (Tenp);

} /* DownNei ghbor */

/2 * [
Coor dType Left Nei ghbor (CoordType Pixel)

/* This function returns the coordinate of the |eft neighbor of the
speci fied pixel. */
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Coor dType Tenp; /* Tenporary pixel */

Tenp. Row = Pi xel . Row,
Tenp. Col = Pixel.Col - 1;
return (Tenp);

} /* LeftNeighbor */

/* _______________________________________________________________________ */

Coor dType Ri ght Nei ghbor (CoordType Pi xel)
/* This function returns the coordi nate of the right nei ghbor of the
speci fied pixel. */

Coor dType Tenp; /* Tenporary pixel */

Tenp. Row = Pi xel . Row,
Tenp. Col = Pixel.Col + 1;
return (Tenp);

} /* RightNeighbor */

| F e e e e e e e e e e e e e e e eeeiiaaas * [

Coor dType URNei ghbor (CoordType Pixel)
/* This function returns the coordinate of the upper right neighbor of the
speci fied pixel. */

Coor dType Tenp; /* Tenporary pixel */

Tenp. Row = Pi xel . Row + 1;
Tenp. Col = Pixel.Col + 1;
return (Tenp);

} /* URNei ghbor */

| ® e e e e e e e e e e e e e e e eeeaiaaas * [

Coor dType ULNei ghbor (CoordType Pixel)
/* This function returns the coordi nate of the upper |eft neighbor of the
speci fied pixel. */

Coor dType Tenp; /* Tenporary pixel */

Tenp. Row = Pi xel . Row + 1;
Tenp. Col = Pixel.Col - 1;
return (Tenp);

} /* ULNei ghbor */

/* _______________________________________________________________________ */

Coor dType DRNei ghbor (CoordType Pixel)
/* This function returns the coo
speci fied pixel. */

Coor dType Tenp; /* Tenporary pixel */

Tenp. Row = Pi xel . Row - 1;
Tenp. Col = Pixel.Col + 1;
return (Tenp);

} /* DRNei ghbor */
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| F L e e e e e e e e e e e e e e e e eeeiiaaas * [

Coor dType DLNei ghbor (CoordType Pixel)
/* This function returns the coordinate of the |ower |eft neighbor of the
speci fied pixel. */

Coor dType Tenp; /* Tenmporary pixel */

Tenp. Row = Pi xel . Row - 1;
Tenp. Col = Pixel.Col - 1;
return (Tenp);

} /* LLNei ghbor */

/* _______________________________________________________________________ */

voi d CheckPi xel (CoordType Pixel, vector <CoordType> & Bright Copy,
DWORD G oupNum
vector < vector <CoordType> > & Bri ght Groups)
/* This procedure is called recursively. It checks if the pixel specified
is still inthe bright pixel list copy and if it is it: inserts it into
the group specified, renoves it fromthe bright |ist copy, and recurses on
the nearest and next nearest neighbors. */

{
i nt Foundl ndex; /* Index where found pixel, -1 if not found */
Foundl ndex = I nVector (Pixel, BrightCopy); [* Get index if found */
i f (Foundl ndex != -1) /* 1f is still in bright pixel list copy */
{

Bri ght G oups [ GroupNum .insert (BrightGoups [G oupNuni.end (),
Pi xel ); /* Put in matrix */
Bri ght Copy. erase (& Bright Copy [ (DWORD) Foundl ndex]);
/* Remove fromlist copy */
CheckPi xel (UpNei ghbor (Pixel), BrightCopy, G oupNum BrightG oups);
CheckPi xel (LeftNei ghbor (Pixel), BrightCopy, G oupNum
Bri ght G oups) ;
CheckPi xel (Ri ght Nei ghbor (Pixel), BrightCopy, G oupNum
Bri ght G oups) ;
CheckPi xel (DownNei ghbor (Pixel), BrightCopy, G oupNum
Bri ght G oups) ;
CheckPi xel (URNei ghbor (Pixel), BrightCopy, G oupNum BrightG oups);
CheckPi xel (ULNei ghbor (Pixel), BrightCopy, G oupNum BrightG oups);
CheckPi xel (DRNei ghbor (Pixel), BrightCopy, G oupNum BrightG oups);
CheckPi xel (DLNei ghbor (Pixel), BrightCopy, G oupNum BrightG oups);
/* Recurse on nei ghbors */

}
} /* CheckPi xel */
/* _______________________________________________________________________ */

voi d GroupBright Pi xel s (vector <CoordType> Bri ghtPi xel s,
vector < vector <CoordType> > & Bright Groups)
/* This procedure takes in the vector list of bright pixels and groups
nei ghboring pixels into a 2D array. Each row contains all those pixels
whi ch may nake up one flash (provided there are enough of then). */

{
vect or <Coor dType> Bri ght Copy; /* Copy of bright list so can change */
DWORD Gr oupNum /[* Current flash group nunber */
DWORD | ndex; /* Loop counter for copying */
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vect or <Coor dType> Tenp; /* Tenporary vector to set up matrix row */

G oupNum = 0; /* Initialize group nunber */
for (Index = 0; Index < BrightPixels.size (); Index++) /* Copy to tenp */
Bri ght Copy.insert (BrightCopy.end (), BrightPixels [Index]);

whil e (BrightCopy.size () !'= 0) /* While still pixels in list copy */
Bri ght Groups.insert (Bright&oups.end (), Tenp); /* Set up row */
CheckPi xel (BrightCopy [0], BrightCopy, G oupNum BrightG oups);
/* Check first pixel and recursively pull out all pixel in flash */
G oupNumt+; /* Done with that group so increnent */
}
} /* G oupBrightPixels */
/2 * [

Coor dType Fl ashCenter (vector <CoordType> OneRow)
/* This function takes in one row with each el enent being a bright pixel and
return the approxi mate center coordinate for the group. */

{

Coor dType Tenp; /* Val ue returned */
DWORD | ndex; /* Loop counter for vector */
DWORD RowSum /* Runni ng sum of row coordi nates */
DWORD Col Sum /* Runni ng sum of col um coordi nates */
RowSum = 0; /* Initialze row and col um */
Col Sum = 0; /* sums to 0 */
for (Index = 0; Index < OneRow.size (); Index ++) /* For each pixel */

{
RowSum = RowSum + OneRow [ | ndex] . Row, /* Add coordinates to */
Col Sum = Col Sum + OneRow [ | ndex] . Col ; /* running totals */

}
Tenp. Row = (DWORD) (RowSum / OneRow. size ()); /* Divide by number of */
Tenp. Col = (DWORD) (Col Sum/ OneRow.size ()); /* pixels to get averages */

return (Tenp);
} /* FlashCenter */

/* _______________________________________________________________________ */

voi d Fi ndFl ashes (vector < vector <CoordType> > Bright Groups,

vector <CoordType> & Fl ashLi st)

/* This procedure takes in the 2D array of grouped pixels and checks each row
to determine if there are enough elenents to constitute a flash. |If there
are, the center coordinate of the flash is found and stored in the flash
list. */

Coor dType Tenp; /* Temporary var to store flash center */
DWORD Row, /* Row i ndex */

printf ("Flash centers: \n");
for (Row = 0; Row < BrightGoups.size (); Rowt+) /* For all rows */
if (BrightGoups [Row].size () >= PixelsPerFlash)/* If enough pixels */
{
Temp = FlashCenter (BrightGoups [Row); /* Find center */
Fl ashList.insert (FlashList.end (), Tenp); /* Insert in list */
printf ("(%, %) ", Tenp.Col, Tenp.Row);

}
} /* FindFlashes */

| ® e e e e e e e e e e e e e e e e e eeiiaaas * [
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voi d Fi ndLi ght ni ng (BrpDat aType BmpData, int BnpAvintensity,
vector <CoordType> & Bri ghtPi xel s,
vector < vector <CoordType> > & Bright Groups,
vector <CoordType> & Fl ashLi st)
/* This procedure finds the coordi nates of the center nost pixel of each of
the lightning discharges in the bnp. */

Fi ndBri ght Pi xel s (BnpDat a, BnpAvlntensity, BrightPixels);
GroupBri ght Pi xel s (BrightPi xels, BrightGoups);
Fi ndFl ashes (Bright G oups, FlashList);

} /* FindLightning */

/* _______________________________________________________________________ */

voi d FreeLists (vector <CoordType> & BrightPi xel s,
vector < vector <CoordType> > & Bright G oups,
vector <CoordType> & Fl ashLi st)
/* This procedure clears all the tenporary vectors used to find and group
the bright pixels. */

DWORD | ndex; /* Loop counter */

Bri ght Pi xel s.clear ();
Fl ashLi st.clear ();
for (Index = 0; Index < BrightGoups.size (); |ndex++)
Bri ght G oups [Index].clear ();
Bri ght G oups. clear ();
} /* FreeLists */

/* _______________________________________________________________________ */
void WiteBrightPixels (vector <CoordType> BrightPixels, int Frane,

DWORD Hei ght, DWORD W dt h)
/* This procedure wites a 2 color bnmp of the bright pixels. */

{

FILE *QutFil e; [* Qutput file buffer */
BnpHeader Type BH; /* Tenporary bnmp header */
Bnpl nf oHeader Type Bl H; /* Tenporary bnp info header */
DWORD Loopl, Loop2; /* Tenporary | oop counters */
Coor dType Pi xel ; /* Current coordinate */
RGBType Tenp; /* Tenporary pixel to be witten */

InitFile ("", Frame, QutFile, "wb");
Cr eat eBnmpHeaders (BH, BIH Height, Wdth);

#i fdef UNI X
Fi xBnmpHeaders (BH, BIH);
#endi f
WiteBnpHeaders (BH, BIH, QutFile);
for (Loopl = 0; Loopl < Height; Loopl++) /* For each pixel */
for (Loop2 = 0; Loop2 < Wdth; Loop2++) /* in new inmage */
{
Pi xel . Row = Loopl; /* Generate the coordinate */
Pi xel . Col = Loop2;
if (InVector (Pixel, BrightPixels) !=-1) /* Wite color */
Tenp = Pi xel Gen (Oxff, Oxff, Oxff); /* Waite if bright */
el se Tenp = Pixel Gen (0x00, 0x00, 0x00); /* Else black */

WiteBnpPi xel (QutFile, Tenp);

}
fclose (QutFile);
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} /* WiteBrightPixels */

/* */
void main (void)
{
/* var */
char DirName [256] = ""; /* Directory nane entered by user */
FILE *InFile; /* Input brmp file buffer */
BnpHeader Type BnpHeader; /* The bnp header */
Bnpl nf oHeader Type Bnpl nf oHeader ; /* The bnp info header */
BnpDat aType BnpDat a; /* The bnp pixel data */
int BnpAvlntensity; /* The average intensity of the bnp */
vect or <CoordType> Bri ght Pi xel s; /* List of bright pixels in the bnp */
vector < vector <CoordType> > Bright G oups; /* 2D array of bright */
[ * pixels where each row contains nei ghbors */
vect or <Coor dType> Fl ashLi st ; /* List of center corrdinates */
/* of all flashes in the imge */
int Frane; /* Current frame in sequence */
vector < vector <CoordType> > Fl ashMatri x; /* 2D array where each row */
/* contains flash centers for the frame nunber of the row i ndex */
i nt LowFrare; /* Low frame nunber to be witten */
i nt Hi ghFraneg; /* High frame nunber to be witten */
/* main program */

Get Di r Nane (Di r Nane) ;

printf ("Please enter the |lower frane nunber: ");

scanf ("%", & LowFrane);

printf ("Please enter the upper frane nunber: ");

scanf ("%", & Hi ghFrane);

for (Frane = LowFrane; Frane <= Hi ghFranme; Frame++)

{

printf ("\'n\nFrame % \n", Frame);
InitFile (DirNane, Frane, InFile, "rb");
ReadBnpHeaders (I nFile, BnpHeader, Bmpl nfoHeader);

#ifdef UNI X

Fi xBmpHeader s ( BnpHeader,

#endi f

Set W dt hAndHei ght (BnpDat a,
[/ Print BhpHeader s (BnpHeader,

if (Frame LowFr ane)

Bnpl nf oHeader) ;

Bnpl nf oHeader) ;
Bnmpl nf oHeader) ;

Get BnpDat aSpace (BnpDat a) ;

el se FreeLists (BrightPixels,
BrmpDat a,
Fi ndAvBnpl ntensity (BnpDat a,

BnpAvl ntensity,

ReadBnpDat a (I nFil e,

Fi ndLi ght ni ng (BnpDat a,
Fl ashLi st);

Fl ashMatri x. i nsert

fclose (InFile);

WiteBrightPixels (BrightPixels,
Bnpl nf oHeader . | nageW dt h) ;

}

printf ("\'n\nDONE \n");
} /¥ main */

(FlashMatrix.end (),

Bri ght G oups, FlashList);
BrmpHeader . | nageDat aOf f set ) ;

BnpAvl ntensity);

Bri ght Pi xel s, Bright G oups,

Fl ashLi st);

Frame, Bnpl nf oHeader. | mageHei ght,
/* Make BWimage */
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A.9 3dperc.cpp

/1 This programcreates a 3D lattice of pixels using percolation. The
/1 size of the lattice is given by XMax x YMax x ZMax. A nunber of
/1 seeds given by NuntSeeds are placed randomy within the lattice. For

/1 each of the seeds the percolation is run using recursion. The resulting

/1 lattice status (filled or enpty) is saved in a binary file nanmed
/1 Stat0000.sta and the tinmes at which squares were filled (if they are

/1 filled) are saved in a binary file called Tine0000.tim The first WORD

/1 inthe time file is the maximumtinme step reached in the percol ation

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <nmal |l oc. h>
#i ncl ude <tine.h>

#i ncl ude <i ostream h>
#i ncl ude <math. h>

#i ncl ude <string. h>
#i ncl ude <vector>

#i f def PC32
#i ncl ude ". .\ BrpUni t\ BmpUni t. h"
#include "..\LatUnit\LatUnit.h"
#include ". . \FileUnit\FileUnit.h"
#include "..\InitUnit\InitUnit.h"
#endi f

#i fdef UNI X
#i nclude "../BmpUni t/bnpunit.h"
#include "../LatUnit/LatUnit.h"
#include "../FileUnit/FileUnit.h"
#include "../InitUnit/InitUnit.h"
#endi f

#i fdef LI NUX
#i ncl ude "../BmpUni t/bnpunit.h"
#include "../LatUnit/LatUnit.h"
#include "../FileUnit/FileUnit.h"
#include "../InitUnit/InitUnit.h"
#endi f

/* const */

#define ps 0.725
/* Percol ation spreading probability, higher = harder
#define Bias 0.0
/* Bias probability for upward / downward spreadi ng
/* Positive = easier spreading upward / downward
#defi ne NunSeeds 1500
/* Nunber of percolation seeds per frane

#defi ne Noi seThreshol d 50
/* Number of time steps percolation on one seed

/* must exceed to be considered not noise
/* type */
cl ass CoordType /* Cdass for one coordinate
public:
DWORD x; /* The x coordinate

*/

*/
*/
*/

*/
*/

*/

*/
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DWORD y; /* The y coordinate */
DWORD z; /* The z coordinate */
CoordType () {x =0; y =0; z =0;} /* Constructor */

int operator< (const CoordType Coord2) const

if (sqgrt (x*x + y*y + z*z) <
sqrt (pow (Coord2.x, 2) + pow (Coord2.y, 2) +
pow (Coord2.z, 2)))
return (1);
el se return (0);

int operator== (const CoordType Coord2) const

if (Coord2.x == x && Coord2.y ==y && Coord2.z == z)
return (1);
el se return (0);

}
int operator!= (const CoordType Coord2) const

if (Coord2.x == x && Coord2.y ==y && Coord2.z == z)
return (0);
else return (1);

/* Dunmmy overl oading so can use vector class of CoordType */

/* _______________________________________________________________________ */

voi d LatticeToBnp (LatSqType *** Lattice, FILE *QutFile, int Layer)
/* This procedure converts the specefied | ayer of the lattice into the RGB
pi xels and wites themto the bmp file. */

{
DWORD X; /* x loop index */
DWORD y; /[* y loop index */
RGBType Tenp; /* Tenporary pixel to be witten */
for (y =0, y < YMax; y++) /* For entire lattice */

for (x = 0; x < XMax; Xx++)

switch (Status (Lattice, x, y, Layer))
/* Switch on square state */

{ /* and wite colored data accordingly */
case Enpty: Tenmp = Pixel Gen (0x00, 0x00, 0x00);
br eak; /* Hex for black */
case FilledD: Tenmp = Pixel Gen (Oxff, Oxff, Oxff);
br eak; /* Hex for white */
case FilledND: Tenp = Pixel Gen (0x37, 0x37, 0x37);
br eak; /* Hex for grey */
case Dead: Tenp = Pixel Gen (0x00, 0x00, 0x00);
br eak; /* Hex for black */

}
WiteBnpPi xel (QutFile, Tenp);
}
} /* LatticeToBnp */
/2 * [
void PrintBnp (LatSqType *** Lattice, FILE *QutFile, int Layer)

/* This procedure prints the specefied | ayer of the lattice as a bmp file. */

BnpHeader Type BnpHeader ; /* Tenporary bnp header */

-A30-



Modelling and Simulation of Lightning Discharge Patterns

Appendix A: Software Listing

Bnpl nf oHeader Type Bnpl nf oHeader ; /* Tenporary bnp info header */

Cr eat eBnpHeader s (BnpHeader, Bnpl nf oHeader, YMax, XMax);
#i fdef UNI X

Fi xBmpHeader s (BnpHeader, Bmnpl nf oHeader);
#endi f
Wit eBnmpHeader s (BnpHeader, BnplnfoHeader, QutFile);
LatticeToBnp (Lattice, QutFile, Layer);

} /* PrintBnp */

/* _______________________________________________________________________ */
Coor dType UpNei ghbor (CoordType Pixel)
/* This function returns the coordi nate of the upward nei ghbor of the
speci fied pixel. */
{
Coor dType Tenp; /* Tenporary pixel */
Tenp. x = Pixel . x;
Tenp.y = Pixel.y;
Tenp.z = Pixel.z + 1,
return (Tenp);
} /* UpNei ghbor */
/* _______________________________________________________________________ */
Coor dType DownNei ghbor (CoordType Pixel)
/* This function returns the coordi nate of the downward nei ghbor of the
speci fied pixel. */
{ _
Coor dType Tenp; /* Tenporary pixel */
Tenmp. x = Pixel . x;
Tenp.y = Pixel.y;
Tenmp.z = Pixel.z - 1,
return (Tenp);
} /* DownNei ghbor */
/* _______________________________________________________________________ */
Coor dType Left Nei ghbor (CoordType Pixel)
/* This function returns the coordinate of the |eft neighbor of the
speci fied pixel. */
{ _
Coor dType Tenp; /* Tenporary pixel */
Tenmp.x = Pixel.x - 1;
Tenp.y = Pixel.y;
Tenmp.z = Pixel.z;
return (Tenp);
} /* LeftNei ghbor */
/* _______________________________________________________________________ */
Coor dType Ri ght Nei ghbor (CoordType Pi xel)
/* This function returns the coordinate of the right nei ghbor of the
speci fied pixel. */
Coor dType Tenp; /* Tenporary pixel */
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Tenmp.x = Pixel.x + 1;
Tenp.y = Pixel.y;
Tenmp.z = Pixel.z;
return (Tenp);

} /* RightNei ghbor */

/* _______________________________________________________________________ */
Coor dType Forwar dNei ghbor ( CoordType Pi xel)

/* This function returns the coordi nate of the right nei ghbor of the
speci fied pixel. */

{
Coor dType Tenp; /* Tenporary pixel */
Tenmp. x = Pixel . x;
Tenp.y = Pixel.y + 1;

Tenmp.z = Pixel.z;
return (Tenp);
} /* ForwardNei ghbor */

/* _______________________________________________________________________ */
Coor dType Backwar dNei ghbor (CoordType Pi xel)

/* This function returns the coordinate of the right nei ghbor of the
speci fied pixel. */

{
Coor dType Tenp; /* Tenporary pixel */
Tenp. x = Pixel . x;
Tenp.y = Pixel.y - 1,
Tenp.z = Pixel.z;

return (Tenp);
} /* RightNeighbor */

| F L e e e e e e e e e e e e e e e e e eeiiaaas * [

int PixellnLattice (CoordType Pixel)
/* This function returns 1 iff the pixel is a coordinate within the
lattice. */

if (Pixel.x < XMax && Pixel.y < YMax && Pixel.z < ZMax)
return (1); /* Check if in lattice */
el se return (0);
} /* PixellnLattice */

/* _______________________________________________________________________ */

voi d NornaliseTine (LatSqType *** Lattice, WORD Pi xel MaxTi ne,
vect or <CoordType> & Pi xel Li st)
/* This procedure normalises the times of the pixels stored in the pixel
list to between 0 and 120. */

{
Coor dType Pi xel ; /* Current pixel removed fromlist */
while (PixellList.size () !'= 0) /* Waile still pixels in list */
Pi xel = PixelList.back (); /* Copy back pixel */
Pi xel Li st. pop_back (); /* Renmpbve back pixel */
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Lattice [Pixel.x][Pixel.y][Pixel.z].Tine = (WORD)
(120.0 * Lattice [Pixel.x][Pixel.y][Pixel.z].Tine /
Pi xel MaxTi nme) ;
/* Normalise and save that pixel's tine */

} /* NormaliseTine */

voi d Eval uat ePi xel (LatSqType *** Lattice, CoordType Pixel,
float p, WORD Tine, WORD & Pi xel MaxTi ne,
vect or <CoordType> & Pi xel Li st)

/* This procedure checks the current pixel. |If it is filled and not done
it is marked as done and this procedure is called recursively on the
nei ghboring pixels. If it is enpty, a random nunber is generated and if

it is greater than the spreading probability, the pixel is marked as
done and this procedure is called recursively on the neighboring
pi xels. Al pixels which are filled fromone seed are recorded in the

pixel list. The time at which a pixel is filled is also stored. */
{
fl oat Nunber; /* Random nunber for chance to fill site */
if (Status (Lattice, Pixel.x, Pixel.y, Pixel.z) == FilledND)
{ /* 1f filled and not done */

Set Status (Lattice, Pixel.x, Pixel.y, Pixel.z, FilledD;
/* Mark as done */
Pi xel List.insert (PixellList.end (), Pixel);
SetTine (Lattice, Pixel.x, Pixel.y, Pixel.z, Tinge);
Ti me++; /* Increment the tinme */
if (PixellnLattice (UpNei ghbor (Pixel))) /* Recurse on */
Eval uat ePi xel (Lattice, UpNeighbor (Pixel), ps - Bias, Ting,
Pi xel MaxTi me, Pixel List);
if (PixellnLattice (DownNei ghbor (Pixel))) /* nearest */
Eval uat ePi xel (Lattice, DownNei ghbor (Pixel), ps - Bias, Tineg,
Pi xel MaxTi me, Pixel List);
if (PixellnLattice (LeftNeighbor (Pixel))) /* nei ghbor */
Eval uat ePi xel (Lattice, LeftNeighbor (Pixel), ps, Tineg,
Pi xel MaxTi me, Pixel List);
if (PixellnLattice (RightNeighbor (Pixel)))
Eval uat ePi xel (Lattice, RightNeighbor (Pixel), ps, Tine,
Pi xel MaxTi me, Pixel List);
if (PixellnLattice (ForwardNei ghbor (Pixel)))
Eval uat ePi xel (Lattice, ForwardNei ghbor (Pixel), ps, Ting,
Pi xel MaxTi me, Pixel List);
if (PixellnLattice (BackwardNei ghbor (Pixel)))
Eval uat ePi xel (Lattice, BackwardNei ghbor (Pixel), ps, Tineg,
Pi xel MaxTi me, Pixel List);

}
else if (Status (Lattice, Pixel.x, Pixel.y, Pixel.z) == Enpty)
[* |f enpty */
Nunber = (float) (rand ()) / (float) (RAND_MAX);
i f (Nunmber >= p) /* If random nunber is greater than p */
{ /* mark as filled & not done and recurse, else dead */
Set Status (Lattice, Pixel.x, Pixel.y, Pixel.z,
FilledD); /* Set and put in list */
Pi xel List.insert (PixellList.end (), Pixel);
SetTine (Lattice, Pixel.x, Pixel.y, Pixel.z, Tinge);
Ti me++; /* Increment the time step */
/* Recurse on nearest nei ghbours */
if (PixellnLattice (UpNeighbor (Pixel)))
Eval uat ePi xel (Lattice, UpNei ghbor (Pixel),
ps - Bias, Tine, Pixel MaxTine,
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Pi xel Li st);
if (PixellnLattice (DownNei ghbor (Pixel)))
Eval uat ePi xel (Lattice, DownNei ghbor (Pixel),
ps - Bias, Tine, PixelMaxTine,
Pi xel Li st);
if (PixellnLattice (LeftNeighbor (Pixel)))
Eval uat ePi xel (Lattice, LeftNeighbor (Pixel), ps,
Ti me, Pixel MaxTi me, Pi xel List);
if (PixellnLattice (RightNeighbor (Pixel)))
Eval uat ePi xel (Lattice, RightNeighbor (Pixel), ps,
Ti me, Pi xel MaxTi me, Pi xel List);
if (PixellnLattice (ForwardNeighbor (Pixel)))
Eval uat ePi xel (Lattice, ForwardNei ghbor (Pixel),
ps, Tine, Pixel MaxTine, Pixellist);
if (PixellnLattice (BackwardNei ghbor (Pixel)))
Eval uat ePi xel (Lattice, BackwardNei ghbor (Pixel),
ps, Tine, Pixel MaxTine, Pixellist);

el se SetStatus (Lattice, Pixel.x, Pixel.y, Pixel.z,

Dead) ;
if (Tinme > Pixel MaxTi ne) /[* If this pixel's time is greater than max */
Pi xel MaxTi ne = Ti ne; /* save new max tine */
} /* Eval uatePi xel */
/2 * [

voi d Get RandSeed (CoordType & Seed)
/* This procedure generates coordinates for a random seed. */

Seed.x = (DWORD) ((rand () / (double) RAND MAX) * XMax); /* Cenerate */
Seed.y = (DWORD) ((rand () / (double) RAND MAX) * YMax); /* valid */
Seed.z = (DWORD) ((rand () / (double) RAND MAX) * ZMax); I* x, y, z*/
} /* Get RandSeed */
/* _______________________________________________________________________ */

int Done (int Franme)
/* This function returns 1 iff all franmes have been done. */

{
if (Frame == Tot Fr anes)
return (1);
else return (0);
} /* Done */
/* _______________________________________________________________________ */

voi d RenoveNoi se (Lat SqType *** Lattice, WORD & Pi xel MaxTi ne,
vector < CoordType > & Pixel List)
/* This procedure sets the pixels contained in the pixel list to enpty
if the total tinme for a percolation seed is |ess than Noi seThreshold. */

Coor dType Pi xel ; /* Current pixel renmoved fromlist */

i f (Pixel MaxTi me < Noi seThreshol d) /* If didn't percolate | ong enough */

{
while (PixellList.size () !'= 0) /* Waile still pixels in list */
{
Pi xel = PixelList.back (); /* Copy back pixel */
Pi xel Li st. pop_back (); /* Renmpbve back pixel */
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Lattice [Pixel.x][Pixel.y][Pixel.z].Tine =
Lattice [Pixel.x][Pixel.y][Pixel.z].Status Dead;
/* Reset pixel's time and status */

0,

}
Pi xel MaxTi ne = 0;
}
} /* RenpbveNoi se */
/2 * [
voi d Percol ateCor (LatSqType *** Lattice)

/* This procedure is the nmain percolation |oop. Each frane is generated
by taking sucessive |ayers of the lattice. */

{
i nt Dummy; /* Loop counter */
Coor dType Seed; /* Percol ation seeds */
FILE *StatFil e; /* Qutput file buffer for status */
FI LE *Ti neFil e; /* Qutput file buffer for tine */
WORD MaxTi ne; /* Maximumtime step for all seeds */
WORD Pi xel MaxTi ne; /[* Maximumtinme step for current seed */
vect or <Coor dType> Pi xel Li st ; /* Pixels set by current seed */
i nt Layer sPer Frane; /* Nunber of layers to be ORed to formone frane */
int Ski pFactor; /* 1 or 2 based on YesSkip */
printf ("Percolating \n");
InitLattice (Lattice, Xwax, YMax, ZMax); /* Initialize the lattice */
MaxTi ne = O; /* Initialise max time step */
for (Dumy = 1; Dummy <= NunBSeeds; Dunmy++) /* For all seeds */
{
Pi xel List.clear (); [* Init list to enpty */
Get RandSeed ( Seed); /* Get random coordi nate */
if (Status (Lattice, Seed.x, Seed.y, Seed.z) != FilledD)
{ /* 1f not done pixel */

Pi xel MaxTine = 0; /* Initialize the max tine for this seed */
SetStatus (Lattice, Seed.x, Seed.y, Seed.z, FilledND);
SetTine (Lattice, Seed.x, Seed.y, Seed.z, 1); /* Set time */
Eval uat ePi xel (Lattice, Seed, ps, 1, Pixel MaxTine, Pixel List);
/* Percolate */

i f (Pixel MaxTi nme > MaxTi ne) /* 1f found new nax time */
MaxTi me = Pi xel MaxTi ne; /* save it */
RenmoveNoi se (Lattice, Pixel MaxTine, PixelList);
if (Pixel MaxTime !'= 0)
printf ("End Time: % ", Pixel MaxTine);
Normal i seTine (Lattice, Pixel MaxTi me, PixelList);

}
printf ("\n");
MaxTi ne = 120;

/* Nunmber of layers to squish into one bitmap */
printf ("Please enter the nunber of |ayers per frame: ");
scanf ("%", & LayersPerFrane);
printf ("Please enter the nunber of layers to skip by: ");
scanf ("%l", & SkipFactor); /* Qutput every X layer of lattice */

InitFile ("Stat", 0, StatFile, "wb"):
InitFile ("Time", 0, TimeFile, "wb"):

/* Save Tot Frames + LayersPerFranme - 1 franmes fromthe mddle */
/* of the lattice. Low frame nunbers correspond to |ower z values. */
SavelLatticeColor (Lattice, StatFile, TineFile, MxTine,
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ZMax | 2 + LayersPerFrame - 1 -
(Tot Frames + LayersPerFrame - 1) + 1,
ZMax | 2 + LayersPerFrame - 1,
Layer sPer Frame, SkipFactor);
} /* Percol ateCor */

/2 * [
voi d Percol ate (LatSgType *** Lattice)

/* This procedure is the nmain percolation |oop. Each frane is generated
i ndependently of the others. */

{

i nt Dummy; /* Loop counter */
int Frane; /* Current franme nunber */
Coor dType Seed,; /* Percol ati on seeds */
FILE *QutFil e; [* Qutput bnp file buffer */
WORD MaxTi ne; /* Maximumtinme step for all seeds */
WORD Pi xel MaxTi ne; /[* Maximumtime step for current seed */
vect or <Coor dType> Pi xel Li st ; /* Pixels set by current seed */
Frame = 0O;

while (! Done (Frane))

{

printf ("Frame % \n", Franme);
InitFile ("", Frame, QutFile, "wb");

InitLattice (Lattice, Xwax, YMax, ZMax); /* Init the lattice */
MaxTi ne = O; /* Initialise max time step */
for (Dummy = 1; Dummy <= NunBSeeds; Dunmy++) /* For all seeds */
{
Get RandSeed ( Seed); /* Get random coordi nate */
Seed.z = 0;
if (Status (Lattice, Seed.x, Seed.y, Seed.z) != FilledD)
{ /* 1f not done pixel */

Pi xel MaxTinme = 0; [/* Init the max tinme for this seed */
SetStatus (Lattice, Seed.x, Seed.y, Seed.z, FilledND);
SetTine (Lattice, Seed.x, Seed.y, Seed.z, 1);
Eval uat ePi xel (Lattice, Seed, ps, 2, Pixel MaxTine,
Pi xel List);
/* Fill & perc */

Normal i seTine (Lattice, MaxTine, PixellList);
i f (Pixel MaxTi ne > MaxTi ne) /* 1f found new nax time */
MaxTi me = Pi xel MaxTi ne; /* save it */

}
/1 PrintLatticeTop (Lattice);
PrintBmp (Lattice, QutFile, ZMax - 1);

fclose (QutFile); /* Close the file */
Frame++;

} /* Percolate */

/* */

void main (void)

{

[* var */
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/*

Lat SqType ***Lattice = NULL;
mai n program */

srand (time (NULL));

Get LatticeSpace (& Lattice,

/1 Percolate (Lattice);
Percol ateCor (Lattice);

XMax, YMax, ZMax);

printf ("\nDONE\n");

} /* main */

/* Pixel lattice */

/* Set up random zation */
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A.10 Squish.cpp

/1 This programtakes in the .sta file created by the 3dperc programwhich is
/1 1ocated at ../3DPerc/Stat0000.sta and generates a new .sta file. The new
/1 file is generated by squishing a nunber of |ayers together to form one

/1 layer in the new lattice. Effectively a sliding window is used. The

/'l nunber of layers to conpress is the first integer of the original .sta

/1 file. This nunber is also saved to the new .sta file. Also, a coloring
/1 file is created entitled Hgt0000. hgt. The time values in this file (which
/1 will later be mapped to colors) are related to the relative height of a
/1 filled pixel to other filled pixels (to which it is connected) in the sane
/1 col um.

#i ncl ude <stdio. h>

#i f def PC32
#include "..\InitUnit\InitUnit.h"
#include ". . \FileUnit\FileUnit.h"
#inlcude "..\LatUnit\LatUnit.h"
#endi f

#i fdef UN X
#include "../InitUnit/InitUnit.h"
#include "../FileUnit/FileUnit.h"
#include "../LatUnit/LatUnit.h"
#endi f

#i f def LI NUX
#inlcude "../InitUnit/InitUnit.h"
#inlcude "../FileUnit/FileUnit.h"
#inlcude "../LatUnit/LatUnit.h"
#endi f

| F L e e e e e e e e e e e e e e e e eeiiaaas * [

voi d Fi ndConnect edHei ghts (Lat SqType *** Lattice, WORD & MaxHei ght,
i nt Layer sPer Frane)
/* This procedure calculates the time fields in lattice to hold the nunber of
pi xel s to which the current pixel is connect (striaght upwards).
The default (non connected) value is 1 since it is connected to itself. */

{

int Col Start; /* Current connected colum start height */
DWORD x, Yy, Z; /* Loop indices for the lattice */

MaxHei ght = 0;
for (y = 0; y < YMax; y++) /* For each x, y square */

for (x = 0; x < XMax; X++)

Col Start = -1; /* Initialisation for current colum */
for (z = TotFranes - 1; /* For all layers */
(int) z >=0; z--) /* being saved */

if (Lattice [x][y][z].Status != Enpty) /[* If not enpty */
{

if (ColStart == -1) /* If was enpty square above */
Col Start = z; /* Set start of connected col */
Lattice [x][y]l[z].Time = Col Start - z + 1;
/* Set field */
if (ColStart - z + 1 > MaxHei ght)
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/* 1f found a new */
MaxHei ght = Col Start - z + 1;
/* tallest colum, save */
el se

Col Start = -1; /* 1f enpty then reset */
Lattice [x][y]l[z]-Time = O; /* Set field */

}
4 _
} /* FindConnectedHei ghts */

/* */

void main (void)

{

/* var */
Lat SqType ***Lattice = NULL; /* Pixel lattice */
FILE *StatInFile; /* Input lattice status file from 3dperc */
FILE *Stat QutFi | e; /* Qutput squished lattice status file */
FILE *HeightFile; /* Qutput file of connected columm heights */
WORD MaxHei ght ; /* Tall est connected colum of pixels */
i nt LayersPer Frane; /* Nunmber of layers to be squished to one frame */

/* main program*/

#i fdef UNI X /* Initialise all the files */
InitFile ("../3DPerc/Stat", 0, StatlnFile, "rb")

#endi f

#i fdef LI NUX
InitFile ("../3DPerc/Stat", 0, StatlnFile, "rb")

#endi f

#i f def PC32
InitFile ("../3DPerc/Stat", 0, StatlnFile, "rb")

#endi f

InitFile ("Stat", 0, StatQutFile, "w");

InitFile ("Hgt", O, HeightFile, "wb");

fread (& LayersPerFranme, sizeof (int), 1, StatlnFile);

MaxHei ght = 0; /* Initialisation */

Cet LatticeSpace (& Lattice, Xvax, YMax, TotFranmes + LayersPerFrane - 1);
InitLattice (Lattice, XMax, YMax, TotFranes + LayersPerFranme - 1);
ReadlLatticeStat (Lattice, StatlnFile, LayersPerFrane);
Squi shLattice (& Lattice, LayersPerFrane);
Fi ndConnect edHei ghts (Lattice, MaxHei ght, LayersPerFrane);
SavelLatticeCol or (Lattice, StatCQutFile, HeightFile, MxHeight,

0, TotFranes - 1, LayersPerFrane, 1);

fclose (StatlnFile);

fclose (StatQutFile);

fclose (HeightFile);
} /* main */
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A.11 makebmp.cpp

/1 This prograns reads in the lattice status file and generates a sequence of

/1 bitmaps. The user nmy specify whether color is to be used or not. |If

/1 black and white inmages are desired, the lattice file

/1 ../Squish/Stat0000.sta is used. |If color is desired, either time-based or
/'l hei ght-based col oring must be chosen. [If time-based is chosen, the

/] status file ../3DPerc/Stat0000.sta and the tinme file

/1 ../ 3DPerc/ Tine0000.timare used. If height-based color is chosen, the

/1 status file ../Squish/Stat0000.sta and the time file ../Squish/Hgt0000. hgt
/! are used.

/1 In all of the three above cases, a 2D image is created for each of the
/1 layers in the status file, and pixel coloring is applied as necessary.
/1 The Scal e constant nay be used to scale the |layers when producting the
/'l bitmaps.

#i ncl ude <stdio. h>

#i ncl ude <mal |l oc. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

#i f def PC32
#i ncl ude ". .\ BrpUni t\ BmpUni t. h"

#include "..\InitUnit\InitUnit.h"
#include ". . \FileUnit\FileUnit.h"
#inlcude "..\LatUnit\LatUnit.h"
#endi f
#i fdef UN X
#i ncl ude "../BmpUni t/bnpunit.h"
#include "../InitUnit/InitUnit.h"
#include "../FileUnit/FileUnit.h"
#include "../LatUnit/LatUnit.h"
#endi f

#i fdef LI NUX
#i nclude "../BmpUni t/bnpunit.h"
#include "../InitUnit/InitUnit.h"
#include "../FileUnit/FileUnit.h"
#include "../LatUnit/LatUnit.h"
#endi f

voi d Get2DLatticeSpace (int *** Lattice, int x, int y)
/* This procedure dynanically gets enough space for a 2D lattice. */

{

int Loopl; /* Tenmp | oop counter */

*Lattice = (int **) malloc (x * sizeof (int *));
if (*Lattice == NULL)

printf ("Can't allocate nmenory for lattice x dimension");
exit (0);
}
for (Loopl = 0; Loopl < x; Loopl++)

(*Lattice) [Loopl] = (int *) malloc (y * sizeof (int));
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if ((*Lattice) [Loopl] == NULL)
{
printf ("Can't allocate nenory for lattice y dinmension");
exit (0);
}

}
} /* Get2DLatticeSpace */

voi d Get2DTi neLatticeSpace (RGBType *** Lattice, int x, int y)
/* This procedure dynamically gets enough space for a 2D time lattice. */

{

int Loopl; /* Tenmp loop counter */

*Lattice = (RGBType **) malloc (x * sizeof (RGBType *));
if (*Lattice == NULL)

printf ("Can't allocate nmenory for lattice x dinmension");
exit (0);

for (Loopl = 0; Loopl < x; Loopl++)

(*Lattice) [Loopl] = (RGBType *) malloc (y * sizeof (RGBType));
if ((*Lattice) [Loopl] == NULL)

printf ("Can't allocate nenory for lattice y dinmension");
exit (0);
}
}
} /* Get2DTi neLatti ceSpace */
/2 * [
voi d ReadLayer (FILE *StatFile, LatSqType ***Lattice)

/* This procedure reads in one layers worth of data fromthe infile and
stores it in the lattice. */

{
DWORD X, V; /* Current x and y values of the lattice */
int CurrByte; /* Current byte of |ayer */
BYTE Bit; /* Value of 1 only in the current bit */
int Loop; /* Current bit of current byte */
BYTE Tenp; /* Current byte read */
X = 0; /* Initialze lattice indexes to 0 */
y =0;
for (CurrByte = 0; CurrByte < XMax * YMax / 8; CurrByte++)
/* For all bytes making up one |ayer */
fread (& Tenp, sizeof (BYTE), 1, StatFile); /* Read one byte */
Bit = 0x80; /* Set to looking at first bit */
for (Loop = 0; Loop < 8; Loop++) /* For all bits in byte */
{
if ((Bit & Tenp) !'= 0) /* 1f current bit intenpis 1 */
Lattice [x][y][0].Status = FilledD; /* Set to filled */
else Lattice [x][y][0].Status = Enpty; /* else enpty */
Bit = Bit >> 1; /* Move to next bit */
X++; /* Increanent x index */
if (x == XMax) /* If hit end of row */
{
x = 0; /* Reset x */
y++; /* Move to next row */
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}
}
} /* ReadLayer */
/* _______________________________________________________________________ */
voi d ReadLayers (FILE *StatFile, int ***Lattice, int Frane,
i nt Layer sPer Frane)

/* This procedure reads in LayersPerFrane |layers worth of data fromthe
infile and stores it in the lattice. */

{
DWORD x, ; /* Current x and y values of the lattice */
DWORD Cur r Layer ; /* Current |ayer (between O and LayersPerFrane - 1) */
int CurrByte; /* Current byte of |ayer */
BYTE Bit; /* Value of 1 only in the current bit */
int Loop; /* Current bit of current byte */
BYTE Tenp; /* Current byte read */

fseek (StatFile, XMax * YMax / 8 * Frane + sizeof (int), SEEK SET);
for (CurrLayer = 0; CurrlLayer < (DWORD) LayersPer Franme; CurrlLayer ++)
{ /* For all LayersPerFranme |ayers */

X = 0; /* Initialze lattice indexes to 0 */
y = 0;
for (CurrByte = 0; CurrByte < XMax * YMax / 8; CurrByte++)
/* For all bytes making up one |ayer */
fread (& Tenp, sizeof (BYTE), 1, StatFile); /* Read byte */
Bit = 0x80; /* Set to looking at first bit */
for (Loop = 0; Loop < 8; Loop++) /* For all bits in byte */
{
if ((Bit & Tenp) !'=0) /* If current bit intenpis 1 */
Lattice [x][y][CurrLayer] = FilledD;
el se Lattice [x][y][CurrLayer] = Enpty;
Bit = Bit > 1; /* Move to next bit */
X++; /* Increanent x index */
if (x == XMax) /* 1f hit end of row */
{
X = 0; /* Reset x */
y++; /* Move to next row */
}
}
}
}
} /* ReadLayers */
/2 * [

voi d ReadTine (FILE *TinmeFile, WORD & Tine)
/* This procedure reads the next time fromthe tinme file. */

fread (& Tine, sizeof (WORD), 1, TineFile);
} /* ReadTime */
/* _______________________________________________________________________ */
void TineToCol or (WORD Ti ne, WORD MaxTine, BYTE & R, BYTE & G BYTE & B)

/* This procedure converts the tine into RGB color values. Earlier tines
are mapped to blue shades and later tinmes are mapped to red shades. */
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float Sl ope; /* Slope of color lines */
Slope = 265 / (MaxTine / 6.0); /* Set slope */
if (Time >0 * MaxTine / 6.0 & Tinme <= 1 * MaxTinme / 6.0) /* Pink-blue */
{
R = (BYTE) (255 - Slope * (Tine - (0 * MaxTine / 6.0 + 1)));
G=0; /* Decrease red linearly, rest */
B = 255; /* constant */
[lprintf ("Time: % R % G % B: %l pink-blue\n", Time, (int)R (int)G
I (int)B);
}
if (Tine >1* MaxTine / 6.0 & Tine <= 2 * MaxTine / 6.0) /* Blue-teal */
{
R = 0; /* Increase green linearly, */
G = (BYTE) (Slope * (Time - (1 * MaxTinme / 6.0 + 1))); /* rest */
B = 255; /* constant */

[lprintf ("Time: % R % G % B: %l blue-teal\n", Time, (int)R (int)G
I (int)B);

}
if (Time >2 * MaxTine / 6.0 & Time <= 3 * MaxTine / 6.0)/* Teal -green */
{
R = 0; /* Decrease blue */
G = 255; /* linearly, rest constant */
B = (BYTE) (255 - Slope * (Tine - (2 * MaxTine / 6.0 + 1)));
[lprintf ("Time: % R % G % B: %l teal-green\n", Tinme, (int)R (int)G
/1 (int)B);
}
if (Time >3 * MaxTine / 6.0 & Tinme <= 4 * MaxTine / 6.0)
{ /* Green-yellow */
R = (BYTE) (Slope * (Tine - (3 * MaxTine / 6.0 + 1)));
G = 255; /* Increase red linearly, rest */
B = 0; /* constant */
[lprintf ("Time: %u R % G % B: % green-yellown", Tine, (int)R (int)G
/1 (int)B);
}
if (Time >4 * MaxTine / 6.0 & Tinme <= 5 * MaxTine / 6.0)
{ /* Yellowred */
R = 255; /* Decrease green linearly */
G = (BYTE) (255 - Slope * (Time - (4 * MaxTine / 6.0 + 1)));

B 0; /* rest constant */
[lprintf ("Time: % R % G % B: %l yellowred\n", Time, (int)R (int)G
I (int)B);

}
if (Tinme >5 * MaxTine / 6.0 & Tine <= 6 * MaxTine / 6.0) /* Red-pink */
{
R = 255; /* lncrease blue */
G=0; /* linearly, rest constant */
B = (BYTE) (Slope * (Time - (5 * MaxTine / 6.0 + 1)));

[lprintf ("Time: % R % G % B: %l red-pink\n", Tine, (int)R (int)G
I (int)B);

} /* TinmeToCol or */

/2 * [

void LatticeToBi gCol orBnmp (Lat SqType *** Lattice, FILE *QutFile, FILE *TinmeFile,
WORD Max)

/* This procedure converts the lattice into the color RG pixels and wites
themto the bmp file. */

- A43-



Modelling and Simulation of Lightning Discharge Patterns Appendix A: Software Listing

DWORD X; /* x loop index */
DWORD y; /* y loop index */
DWORD Loopl, Loop2; /* Tenmp | oop counters */
WORD Ti ne; [* Time at which current filled pixel was set */
BYTER G B; /* Col or values corresponding to current time */
RGBType Pi xel ; /* Current pixel to be witten */
for (y = 0; y < YMax; y++) /[* For all y of lattice */
for (Loopl = 0; Loopl < Scal e; Loopl++) /* Scale y val ues */
for (x = 0; x < XMax; x++) /* For all x of lattice */
for (Loop2 = 0; Loop2 < Scal e; Loop2++) /* Scal e x val ues */
if (Loopl == 0 && Loop2 == 0 && /* 1If "base" square */
Lattice [x][y][0]. Status ==Fill edD) /* and filled */
ReadTinme (TineFile, Tine); /* Read tinme */
Lattice [x][y][O].Time = Tinme;
}
switch (Lattice [x][y][O]. Status) /* Switch on */
{ /* state and wite colored data accordingly */
case Enpty: Pixel = Pixel Gen (0x00, 0x00, 0x00);
br eak; /* Hex for black */

case Fill edD:

Ti meToCol or (Lattice [x][y][O].Tine,
Max, R, G B);
/* Convert time to color */
Pi xel = PixelGen (B, G R);
/* Reverse B and R values to fix since bnps are always little endian */
} Il case
br eak;
} I/ switch
WiteBmpPi xel (QutFile, Pixel);

}
} /* LatticeToBi gCol orBnmp */

void LatticeToBi gBnp (Lat SqType *** Lattice, FILE *QutFile)
/* This procedure converts the lattice into the RGB pixels and wites them
to the bnp file. */

{

DWORD X; /* x loop index */
DWORD y; /* y loop index */
DWORD Loopl, Loop2; /* Tenp loop counters */
RGBType Tenp; /* Tenporary pixel to be witten */

[lprintf ("\n\n\n");
for (y = 0; y < YMax; y++) /* For all y of lattice */
for (Loopl = 0; Loopl < Scale; Loopl++) /* Scale y values */
for (x = 0; x < XMax; Xx++) /* For all x of lattice */
for (Loop2 = 0; Loop2 < Scal e; Loop2++) /* Scal e x values */

{
/1if (Stat == FilledD) printf ("*"); else printf (".");
[1if (x == XMax - 1 && Loop2 == Scale - 1) printf ("\n");

switch (Lattice [x][y][O]. Status) /* Switch on */

{ /* square state & wite colored data accordingly */
case Enpty: Tenmp = Pixel Gen (0x00, 0x00, 0x00);

br eak; /* Hex for black */

case FilledD: Tenmp = Pixel Gen (Oxff, Oxff, Oxff);
/* Hex for white */
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br eak;
}
WiteBmpPi xel (QutFile, Tenp);

}
} /* LatticeToBi gBnp */

void PrintBigBnmp (LatSqType *** Lattice, FILE *QutFile)
/* This procedure prints the lattice as a bnp file Scale tinmes its size. */

{
BnpHeader Type BnpHeader; /* Tenmporary brmp header */

Bnpl nf oHeader Type Bnpl nf oHeader ; /* Tenporary bnp info header */

Cr eat eBnpHeader s (BnpHeader, Bnpl nfoHeader, YMax * Scal e, XMax * Scal e);
#i fdef UNI X
Fi xBmpHeader s (BnpHeader, Bmnpl nf oHeader);
#endi f
Wit eBnpHeaders (BnpHeader, BnplnfoHeader, QutFile);

} /’I:a;t@ Ce;pBiBanE/ (Lattice, QutFile);
ri nt Bi gBnp

voi d PrintBigCol orBnmp (Lat SqType *** Lattice, FILE *QutFile, FILE *TinmeFile,
WORD Max)
/* This procedure prints the lattice as a bnp file Scale tinmes its size. */

{
BnpHeader Type BnpHeader ; /* Tenporary bnmp header */

Bnpl nf oHeader Type Bnpl nf oHeader ; /* Tenporary bnp info header */

Cr eat eBnmpHeader s (BnpHeader, Bnpl nfoHeader, YMax * Scal e, XMax * Scal e);
#i fdef UNI X
Fi xBnmpHeader s (BmpHeader, Bnpl nf oHeader);
#endi f
Wit eBnmpHeaders (BnpHeader, BnplnfoHeader, QutFile);

Latti ceToBi gCol orBnp (Lattice, QutFile, TinmeFile, Max);
} /* PrintBigCol orBmp */

/* */

void main (void)

{

/* var */
FILE *StatFil e; /* Input status file for the lattice */
FI LE *Ti neFil e; /* Input time file for the lattice */
FILE *QutFil e; /* Qutput file for the bnp */
i nt Layer sPer Frane; /* Nunmber of layers to be ORed to formone frane */
int Frane; /[* Current franme nunber */
char Col or; /* y if bnps to be printed in color */
char Col or Met hod; /* h if color based on heigh, t if based on tine */
WORD Max; /* Maximumtinme step / conected colum height in sim?*/
Lat SqType ***Latti ce; [* "2D"' lattice for current frane */

/* main program */
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printf ("Generate color bitmaps (y/n)? ");
scanf ("\n%", & Color);
if (Color =="y")

printf ("Generate color using heights (h) or times (t): ");
scanf ("\n%", & Col or Method);
if (ColorMethod == "h")

InitFile ("../Squish/Stat", 0, StatFile, "rb");

else InitFile ("../3DPerc/Stat", 0, StatFile, "rb");

}
else InitFile ("../Squish/Stat", 0, StatFile, "rb");
fread (& LayersPerFranme, sizeof (int), 1, StatFile);

if (Color == "'y")
{
if (ColorMethod == "'h")
InitFile ("../Squish/Hgt", O, TinmeFile, "rb");
else InitFile ("../3DPerc/Time", 0, TineFile, "rb");
ReadTinme (TimeFile, Max); /* Read nax step time / col height */

}

Get LatticeSpace (& Lattice, XMvax, YMax, 1); /* Really 2D lattice */
InitLattice (Lattice, XMax, YMax, 1);
printf ("\nGenerating bitmaps ");
for (Frane = 0; Frane < Tot Franes; Franme++)
{
printf (".");
fflush (stdout);
InitFile ("", Frame, QutFile, "wb");
ReadLayer (StatFile, Lattice);
if (Color =="'y")
PrintBigCol orBnp (Lattice, QutFile, TinmeFile, Mx);
else PrintBigBnmp (Lattice, QutFile);
fclose (QutFile);
system ("gzip *.bm");

}
if (Color =="y")
fclose (TinmeFile);
printf ("\n");
} /¥ main */
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A.12 diffs.cpp

/1 This programallows the user to enter the path of a sequence of

/'l greyscale bnp images (froma [sinmulated] shuttle Iightning video)

/1 which are naned bl ah000, bl ah001, etc where blah is also entered by
/1 the user. The user must also specify the index number of the first
/1 frame and that of the last frame. A sequence of inages is generated
/1 nanes dif0000, dif0001, etc where each pixel in dif000n is given the
/1 value as conputing using corresponding pixels as bl ah000n - bl ah000o.

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <mal |l oc. h>
#i ncl ude <math. h>

#i f def PC32
#i ncl ude <w ndows. h>
#i ncl ude ". .\ BrpUni t\ BmpUni t. h"
#include "..\FileUnit\FileUnit.h"
#endi f

#i fdef UNI X
#i nclude "../BmpUnit/bnpunit.h"
#include "../FileUnit/FileUnit.h"
#endi f

#i f def LI NUX
#i ncl ude "../BmpUni t/brpunit. h"
#include "../FileUnit/FileUnit.h"
#endi f

void InitlnputBnps (int Frame, BnpHeader Type & BHl, BnpHeader Type & BH2,
Bnpl nf oHeader Type & BI H1, Bmpl nf oHeader Type & BI H2,
BnpDat aType & BDl1, BnpDataType & BD2,
char Di rNane [200])

/* This procedure opens and reads the two successive bnps. */

{

FILE *I nFil el; /* Input file buffer for |ower frame */
FILE *InFil e2; /* Input file buffer for higher frame */

InitFile (DirName, Franme, InFilel, "rb");
InitFile (DirNane, Frane + 1, InFile2, "rb");
ReadBnpHeaders (InFilel, BHl, BIHl);
ReadBnmpHeaders (I nFile2, BH2, BIH2);
#i fdef UNI X
Fi xBnmpHeaders (BH1, BIH1);
Fi xBnpHeaders (BH2, BIH2);
#endi f
Set W dt hAndHei ght (BD1, BIHl);
Set W dt hAndHei ght (BD2, BIH2);
CGet BrrpDat aSpace (BD1);
Get BnpDat aSpace (BD2);
ReadBmpData (InFilel, BD1, BHL.|nmageDataC fset);
ReadBmpData (InFile2, BD2, BH2.I|nmageDataCr fset);
fclose (InFilel);
fclose (InFile2);
} /* InitlnputBnps */
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void I nitQutputBnp (int Frame, BnpHeader Type BH, Bnpl nfoHeader Type Bl H,
FILE * & QutFile)
/* This file opens the output file and wites the bnmp headers. */

{

InitFile ("dif", Frame, QutFile, "wb");

#ifdef UNIX

Fi xBmpHeaders (BH, BIH);
#endi f
W iteBnpHeaders (BH, BIH QutFile);
/* NOTE: Assunes all bnps in the sequence have the sane headers */

} /* InitQutputBmp */

/* */

void main (void)

{
[* var */

int Frane; /* Current frame nunber */
FILE *CQutFile;

BnpHeader Type BH1, BHZ2;

Bnpl nf oHeader Type BI H1, BI H2;

BmpDat aType BD1, BD2;

DWORD x, V;

int IDf;

char Pref [10]; /* String for first part of file name */
char Di rNane [200]; /* String for directory name */
i nt LowFr ane; /* Low frame nunber to be witten */
i nt Hi ghFrane; /* High frame nunber to be witten */

/* main program*/

printf ("Please enter the directory name and path: ");

gets (DirNane);

printf ("Please enter the preface of the file nane: "); [/* Get preface */
gets (Pref);

strcat (DirNane, Pref);

printf ("Please enter the |ower frane nunber: ");

scanf ("%", & LowFrane);

printf ("Please enter the upper frane nunber: ");

scanf ("%", & Hi ghFrane);

for (Frane = LowFrane; Franme < H ghFrane; Franme++)

{
InitlnputBnps (Frane, BH1, BH2, BIHl, BIH2, BDl1, BD2, DirNane);
InitQutputBnp (Frane, BHl, BIHL, QutFile);
for (y = 0; y < BIH2. | mageHei ght; y++) /* For each pixel */
for (x = 0; x < BIH2. I nageW dt h; x++)
{ /* Find the intensity diff: lower frane - higher frane */
IDf = (int) fabs (Pixellntensity (BDl.Array [x][y])
- Pixellntensity (BD2. Array [x][y]));
WiteBmpPi xel (QutFile, PixelGen ((BYTE) IDf, (BYTE) IDf,
(BYTE) 1Dif));
} /* Wite intensity diff to output bnp */
fclose (QutFile);
Fr eeBmpDat aSpace (BD1);
Fr eeBnpDat aSpace (BD2);
}
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} /* main */
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A.13 renyi.cpp

/1 This programallows the user to enter the path of a sequence of

/'l black and white bnp inages (froma [sinmulated] shuttle lightning video)

/'l which are naned bl ah000, bl ah001, etc where blah is also entered by

/1 the user. Each inmage represents the difference between two successive

/1 images in the video sequence. The user nust also specify the index nunber
/1 of the first frame and that of the last frane.

/1l For each frame, the Renyi spectrumis calculated. First, a grid list is
/'l generated where each entry is a 2D array defining the covering

/1 probabilities for a specific r value. Next, the Dq values for a range of g
/'l values and a range of r values are calculated for the current frane.

/1 These Dgq values are witten to a text file, called

/'l Dg<FranmeNunber>.txt. |If these Dgq files are conbined into one |arge

/1 text file in increasing frame nunber order, MatlLab scripts may be used

/1 to plot the Renyi spectra

/1 1t is also possible to generate files entitled

/1 x<FrameNumber >. t xt and y<FrameNunber>.txt, containing the ogl0 (1 / r)
/1 and entropy val ues, respectively, used to conpute a Dg value (for a

/1 specificr and q value). Two files containing a list of the q values and
/1 the frame nunbers maybe al so be created, called q.txt and F.txt

/'l respectively.

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <mal |l oc. h>
#i ncl ude <math. h>

#i f def PC32
#i ncl ude <wi ndows. h>

#i nclude "..\BrmpUni t\BnpUnit.h"
#include ". . \lnitUnit\InitUnit.h"
#include "..\FileUnit\FileUnit.h"
#endi f
#i fdef UN X

#include "../BnpUnit/bnpunit.h"

#include "../InitUnit/InitUnit.h"

#include "../FileUnit/FileUnit.h"
#endi f

#i fdef LI NUX
#include "../BmpUnit/bnpunit.h"
#include "../InitUnit/InitUnit.h"
#include "../FileUnit/FileUnit.h"
#endi f

/* const */

#define Threshold 2.4
/* Intensity threshold (as a decimal) for identifying bright spots */

/* type */
typedef struct _GidType /* Record type for 2D grid */
{
doubl e **Array; /* The actual grid */
DWORD W dt h; /* The grid width */
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DWORD Hei ght ; /* The grid height */
} GidType;

/* _______________________________________________________________________ */

void PrintGidSum (GidType Gid)
/* This procedure prints the sumof all the grid squares to the screen. */

{

DWORD x, V; /* Loop counters */
doubl e Tenp; /* Running sum */
Tenp = 0;

for (y =0; y < Gid. Height; y++)
for (x = 0; x < Gid.Wdth; x++)
Tenp = Tenp + Gid. Array [x][vy];
printf ("% \n", Tenp);
} /* PrintGidSum */

| F e e e e e e e e e e e e e e e e e eeiiaaas * [

void PrintGid (GidType Gid)
/* This procedure prints the grid to the screen. */

{
DWORD x, ; /* Loop counters */

for (y = 0; y < Gid. Height; y++)
{
for (x = 0; x < Gid Wdth; x++)
printf ("%4f ", Gid Array [x][y]);
printf ("\n");

printf ("\n \n");
Y /X PrintGid */

void GetGidSpace (GidType & Gid)
/* This procedure dynanmically gets enough space for the grid. */

{
DWORD Loop1; /* Tenp | oop counter */

Gid. . Array = (double **) malloc (Gid.Wdth * sizeof (double *));
for (Loopl = 0; Loopl < Gid.Wdth; Loopl++)
Gid.Array [Loopl] = (double *) malloc (Gid.Height * sizeof (double));
} /* GetGidSpace */

void GetFilledCounts (GidType & Gid, int & Total Filled,
BnpDat aType BnpData, float Pixel sPerSide)
/* This procedure goes through the bnp data and counts the nunber of filled

pi xel s per grid square. It also returns the total nunber of filled
pi xels. */

{
DWORD X, V; /* Loop counters for the grid */
DWORD Loopl, Loop2; /* Tenporary | oop counters for the bnp */
i nt Squar eCount ; /* Running total of filled pixels in current square */
for (y =0; vy < Gid. Height; y++) /* For each grid square */
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for (x =0; x < Gid. Wdth; x++)
{
Squar eCount = 0; /* Initialize counter */
if (PixelsPerSide >= 1.0) /* If coarser grid */

for (Loopl = 0; Loopl < (DWORD) (Pixel sPerSide); Loopl++)
for (Loop2 = 0; Loop2 < (DWORD) (Pixel sPersSide);
Loop2++)
if (Pixellntensity (BnpData.Array
[(DWORD) (x * Pixel sPerSide) + Loop2]
[ (DWORD) (y * Pixel sPerSide) + Loopl])
>= 255)
Squar eCount = Squar eCount + 250;
el se Squar eCount ++;
}
el se [* If finer grid */
if (Pixellntensity (BnpData.Array
[(DWORD) (x * Pixel sPerSide)]
[(DWORD) (y * Pixel sPerSide)])
>= 255)
Squar eCount = Squar eCount + 250;
el se Squar eCount ++;
Gid. Array [x][y] = SquareCount;
Total Filled = Total Filled + SquareCount;

}
} /* GetFilledCounts */
/2 * [
voi d Convert ToProbs (GidType & Gid, int Total Filled)

/* This procedure converts the grid of occurrences to a grid of
probabilities. */

{
DWORD x, ; /* Tenporary | oop counters for grid */
for (y =0, y < Gid Height; y++) /* For each grid square */
for (x = 0; x < Gid.Wdth; x++) /* divide by total to get prob */

Gid Array [x][y] = Gid.Array [x][y] / Total Filled;
} /* ConvertToProbs */

/* _______________________________________________________________________ */

void GetGidProbs (GidType & Gid, float PixelsPerSide, int Frane,
char *Di r Nane)
/* This procedure reads in the input file and cal culates the grid
probabilities. */

{
FILE *InFile; /* Input file buffer */
BnpHeader Type BnpHeader; /* Tenporary bnp header */
Bnpl nf oHeader Type Bnpl nf oHeader ; /* Tenporary bnp info header */
BnpDat aType BnpDat a; /* Tenporary bnp data */
int Total Filled; /* Total nunber of filled pixels */

Total Filled = 0;
InitFile (DirNane, Frane, InFile, "rb");
ReadBnmpHeaders (I nFile, BnpHeader, BnplnfoHeader);
#i fdef UNI X

Fi xBnmpHeader s (BrmpHeader, Bnpl nf oHeader);
#endi f
Set W dt hAndHei ght (BnpDat a, Bnpl nfoHeader);
Cet BrrpDat aSpace ( BnpDat a) ;
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ReadBnpData (I nFile, BnpData, BnpHeader.!|nmageDataC fset);
fclose (InFile);

Gid.Wdth = (DWRD) (Bnpl nfoHeader. | nageWdth / Pi xel sPer Si de);
Gid. Height = (DWORD) (Bnpl nfoHeader. | mageHei ght / Pi xel sPer Si de);
Get Gri dSpace (Gid);
GetFilledCounts (Gid, Total Filled, BnpData, PixelsPerSide);
Convert ToProbs (Gid, Total Filled);
Fr eeBnpDat aSpace (BnpDat a) ;

} /* GetGidProbs */

void Fit (double *x, double *y, int ndata, double *sig, int mm, double *a,
doubl e *b, double *siga, double *sigh, double *chi2, double *q)
/* Gven a set of data points x[1l..ndata], y[1l..ndata] w th individual

standard deviations sig[1l..ndata], fit themto a straight |ine y=a +bx by

m nimzing chi square. Returned are a,b and their respective probable

uncertainties siga and sigh, the chi-square chi1l2, and the goodness-of-fit

probability q (that the fit would have chi2 this large or larger). If
mm =0 on input, then the standard devi ati ons are assumed unavailble: q i
returned as 1.0 and the nornalization of chil2 is to unit standard

devi ation on all points.

Taken from Nunerical Reciped in C. */

double wt, t, sxoss, sx=0.0, sy=0.0, st2=0.0, ss, sigdat;

*b = 0.0;
if (mu)
{
ss = 0.0;
for (i = 0;i <= ndata - 1; i++)
{
w =1.0/ SQR (sig[i]);
SS += Wt ;
sx += x [i] * wt;
sy +=y [i] * w;
}
}
el se
{
for (i = 0; i <= ndata - 1; i++)
{
sx += x [i];
) sy +=y [i];
ss = ndat ga;
}
SX0SS = sXx / ss;
if (mu)
for (i =0; i <= ndata - 1; i++)
{
t = (x [i] - sxoss) / sig [i];
st2 +=t * t;
*bh+=t * y [i] / sig[i];
}

S
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el se
for (i =0; i <= ndata - 1; i++)

{
t = x [i] - sxoss;
st2 +=t * t;
boa=t oy [i];

}

*b /= st2;

*a = (sy - sx * (*b)) / ss;

*siga = sqrt ((1.0 + sx * sx / (ss * st2)) / ss);
*sigb = sqrt (1.0 / st2);
*chi2 = 0.0;
if (mt == 0)
{
for (i =0; i <= ndata - 1; i++)
*chi2 += SR (y [i] - (*a) - (*b) * x [i]);
*q = 1.0;
sigdat = sqrt ((*chi2) / (ndata - 2));
*siga *= sigdat;
*sigb *= sigdat;
}
el se
for (i =0; i <= ndata - 1; i++)
*chi2z += SQR ((y [i] - (*a) - (*b) * x [i]) / sig [i]);
/1 *q = gamy (0.5 * (ndata - 2), 0.5 * (*chi2));
}
}/* ORIt o*/
/* _______________________________________________________________________ */

void FindEntropy (GidType Gid, float q, double & Entropy)
/* This procedure finds the Renyi generalized entropy of the grid. */

{

DWORD x, V; /* Loop counters for the grid */
doubl e Sum /* Running sumof all the p*q val ues */
Sum = 0. 0;
if (fabs (g - 1.0) >= 0.03) /* 1f qg<>1*/
{
for (y =0; y < Gid. Height; y++) /* For each grid square */
for (x = 0; x < Gid.Wdth; x++)
if (fabs (Gid. Array [x][y]) >= 0.0000001) /* 1f p<>0 */
Sum = Sum + pow (Gid.Array [x][y]. Q); [* Do sum */
Entropy = 1.0/ (1.0 - ) * logl0 (Sum; /* Find entropy */
}
el se [* 1f qg=1*%*/
for (y =0; vy < Gid. Height; y++) /* For each grid square */

for (x = 0; x < Gid. Wdth; x++)
if (fabs (Gid.Array [x][y]) >= 0.00000001) /* If p <> 0 */
Sum= Sum + Gid. Array [x][y] *
logl0o (Gid.Array [x][vy]);
Entropy = -1 * Sum /* Find entropy */

}
} /* FindEntropy */
/* _______________________________________________________________________ */

void FreeGid (GidType & Gid)
/* This procedure frees the nenory allocated to the grid array. */
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{

DWORD | ndex; /* Tenmporary | oop counter */

for (Index = 0; Index < Gid.Wdth; [ndex++) /* For all colums */
free ((void *) Gid.Array [Ilndex]); /* Free row nmenory */

free ((void *) Gid. Array); /* Free columms list */

Gid. Height = 0; /* Reset height and width */

Gid Wdth = 0;

Gid.Array = NULL

} /* FreeGid */
/* _______________________________________________________________________ */

void FindDg (float g, double & Dg, int Frame, GidType GidList [20])
/* This procedure finds the Dq value for the grid for the current q value. */

doubl e *y; [* List of entropy val ues */
doubl e *x; /* List of logl0 (1 / r) values */
float r; /* Current r value */
int | ndex; /* Loop index */
doubl e Entropy; /* Current entropy val ue */
/1 FILE *QutFil el; /* Qutput file for 10gl0 (1 / r) values */
/1 FILE *Qut Fi | e2; /* Qutput file for entropy val ues */
double a; /* y-intercept of line fit to entropy vs 10gl0 (1 / r) graph */
doubl e siga; /* Standard deviation of the y-intercept - unused */
doubl e si gb; /* Standard deviation of the slope (Dq) - unused */
doubl e chi 2; /[* For fitting - unused */
doubl e GoodFit; /* For fitting - unused */
X = (double *) malloc (20 * sizeof (double)); /* Get space for lists */
y = (double *) nmalloc (20 * sizeof (double));
if (x == NULL || == NULL)
{
printf ("Can't allocate nmenory in FindDg");
exit (0);
| ndex = O; /* Initialize index counter */
if (fabs (g + 20.0) <= 0.00003) /* Initialize files only for q = -20 */
{
/1 InitFile ("x", Frane, QutFilel, "w')
/1 InitFile ("y", Frame, QutFile2, "w')
for (r =2;, r <256.03; r =1 * 2) /* For a range of r values */
{
Fi ndEntropy (GridList [Index], g, Entropy); /* Find entropy */

X [Index] =10g10 (1 / r);
y [I ndex] = Entropy;

if (fabs (g + 20.0) <= 0.00003) [* 1f g =-20 */
{ /* Wite */
/1 fprintf (QutFilel, "%4f ", logl0 (1 / r)); /* loglO(1 / r) */
/1 fprintf (QutFile2, "%4f ", Entropy); /* & entropy to files */
}
| ndex++;
}
if (fabs (g + 20.0) <= 0.00003) [* 1f g =-20 */
{
/1 fclose (QutFilel);
/1 fclose (QutFile2);
}

Fit (x, y, Index, NULL, 0, & a, & Dgq, & siga, & sigh, & chi2, & GoodFit);
/* Fit the entropy vs. 10gl10 (r) plot to aline with Dg as the slope */
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free ((void *) x);
free ((void *) vy);
} /* FindDg */

| F L e e e e e e e e e e e e e e e e eeiiaaas * [

voi d Fi ndRenyi Spectrum (int Frane, char *DirNane)
/* This procedure finds the Renyi spectrum for the bnmp. */

{

float q; /* NMonent order */
doubl e Dq; /* Renyi dinension value */
FILE *QutFil eQ [* Qutput file for q values */
FILE *CQut Fi | eDq; /* Qutput file for Dg values */
FILE *Qut Fi | eF; /* CQutput file for frame nunmbers */
GidType GidList [20]; /* List of grids for all r values */
float r; /* Current r value */
int | ndex; /* Array index for GidList */
| ndex = O;

for (r =2;, r <256.03; r =1 * 2) /* For a range of r values */

{

Get GridProbs (GridList [Index], r, Frame, DirNane);
| ndex++;

}

InitFile ("Dg", Frame, QutFileDq, "a");
/1 InitFile ("q", Frame, QutFileQ "w');
/1 InitFile ("F", Frane, QutFileF, "w');
0.2) /* For a range of q val ues */

for (g =-20.0; q <20.03; g=q +
FindDg (q, Dg, Frame, GidList); /* Find Dg */
/1 printf ("(%2f, %2f) ", gq, Dqg);

fflush (stdout);

fprintf (QutFileDg, "% 4f ", Dq);
/1 fprintf (QtFileQ "%4f ", q); /* Wite gto afile */
/1 fprintf (QutFileF, "%l ", Frane); /* Wite Frane to a file */

fclose (QutFileDq);
/1 fclose (QutFileQ;
/1 fclose (QutFil eF);

| ndex = O;

for (r =2; r <256.03; r =1 * 2) /* For a range of r values */
FreeGid (GidList [Index]); /* Free grid menory */
| ndex++;

}
} /* FindRenyi Spectrum */
/* _______________________________________________________________________ */
voi d GetDirNane (char *DirNane)
/* This procedure reads in the directory nane where the images are
| ocated. */

char Pref [10]; /* Temporary string for first part of file name */

printf ("Please enter the directory nane and path: ");
gets (DirNane);

printf ("Please enter the preface of the file nane: ");
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gets (Pref);
strcat (DirNane, Pref);
} /* GetDirName */

/* */

void main (void)

{

/* var */
int Frane; /* Current frame nunber */
i nt LowFr ane; /* Low frame nunber to be witten */
i nt Hi ghFrane; /* High frame nunber to be witten */
char DirName [256] = ""; /* Directory nane entered by user */

/* main program */

Get Di r Nanme (Di r Nane) ;

printf ("Please enter the |ower frane nunber: ");
scanf ("%l", & LowFrane);

printf ("Please enter the upper frane nunber: ");
scanf ("%l", & Hi ghFranme);

for (Frane = LowFrane; Frane <= Hi ghFranme; Frame++)

printf ("\nFrane %l \n", Frane);
Fi ndRenyi Spectrum (Frane, DirNane);

} /* main */
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A.14 PlotVidDg.m

1: 296;

-20: 0. 2: 20;
oad Dq.txt;

Da;

I ndex3 = 1;
for Index = 1:296,
for Index2 = 1:201,
z1(1 ndex2, 1 ndex) = z(Ilndex3);
I ndex3 = | ndex3 + 1;
end;
end;

X
y
I

z

mesh (x, y, z1);

view (52.5, 25);

x|l abel (' Frane');

ylabel ('q");

zl abel ('Dqg');

title (' Renyi Spectrum);
%rint -dpsc PlotDg.ps;
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A.15 PlotPercDg.m

1: 299;

-20: 0. 2: 20;
oad Dq.txt;

Da;

I ndex3 = 1;
for Index = 1:299,
for Index2 = 1:201,
z1(1 ndex2, 1 ndex) = z(Ilndex3);
I ndex3 = | ndex3 + 1;
end;
end;

X
y
I

z

mesh (x, y, z1);

view (52.5, 25);

x|l abel (' Frane');

ylabel ('q");

zl abel ('Dqg');

title (' Renyi Spectrum);
print -dpsc Pl otDq. ps;

- A59 -



