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Network Coding Capacity With a Constrained Number
of Coding Nodes
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Abstract—We study network coding capacity under a constraint on the
total number of network nodes that can perform coding. That is, only a
certain number of network nodes can produce coded outputs, whereas the
remaining nodes are limited to performing routing. We prove that every
nonnegative, monotonically nondecreasing, eventually constant, rational-
valued function on the nonnegative integers is equal to the capacity as a
function of the number of allowable coding nodes of some directed acyclic
network.

Index Terms—Capacity, flow, information theory, network coding,
throughput.

I. INTRODUCTION

Let denote the positive integers, and let and denote the real and
rational numbers, respectively, with a superscript “+” denoting restric-
tion to positive values. In this correspondence, a network is a directed
acyclic multigraphG = (V;E), some of whose nodes are information
sources or receivers (e.g., see [13]). Associated with the sources are m
generated messages, where the ith source message is assumed to be a
vector of ki arbitrary elements of a fixed finite alphabetA of size at least
two. At any node in the network, each out-edge carries a vector of n al-
phabet symbols which is a function (called an edge function) of the vec-
tors of symbols carried on the in-edges to the node, and of the node’s
message vectors if it is a source. Each network edge is allowed to be used
at most once (thus, at most n symbols can travel across each edge). It
is assumed that every network edge is reachable by some source mes-
sage. Associated with each receiver are demands, which are subsets of
the network messages. Each receiver has decoding functions which map
the receiver’s inputs to vectors of symbols in an attempt to produce the
messages demanded at the receiver. The goal is for each receiver to de-
duce its demanded messages from its in-edges and source messages by
having information propagate from the sources through the network.

A (k1; . . . ; km; n) fractional code is a collection of edge functions,
one for each edge in the network, and decoding functions, one for each
demand of each receiver in the network. A (k1; . . . ; km; n) fractional
solution is a (k1; . . . ; km; n) fractional code which results in every
receiver being able to compute its demands via its decoding functions,
for all possible assignments of length-ki vectors over the alphabet to
the ith source message, for all i. An edge function performs routing
when it copies specified input components to its output components.
A node performs routing when the edge function of each of its out-
edges performs routing. Whenever an edge function for an out-edge of
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a node depends only on the symbols of a single in-edge of that node, we
assume, without loss of generality, that the out-edge carries the same
vector of symbols as the in-edge it depends on.

For each i, the ratio ki=n can be thought of as the rate at which source
i injects data into the network. Thus, different sources can produce
data at different rates. If a network has a (k1; . . . ; km; n) fractional
solution over some alphabet, then we say that (k1=n; . . . ; km=n) is an
achievable rate vector, and we define the achievable rate region1 of the
network as the set

S = fr 2 m : r is an achievable rate vectorg:

Determining the achievable rate region of an arbitrary network appears
to be a formidable task. Consequently, one typically studies certain
scalar quantities called coding capacities, which are related to achiev-
able rates. A routing capacity of a network is a coding capacity under
the constraint that only routing is permitted at network nodes. A coding
gain of a network is the ratio of a coding capacity to a routing ca-
pacity. For directed multicast2 and directed multiple unicast3 networks,
Sanders, Egner, and Tolhuizen [10] and Li and Li [8], respectively,
showed that the coding gain can be arbitrarily large.

An important problem is to determine how many nodes in a network
are required to perform coding in order for the network to achieve its
coding capacity (or to achieve a coding rate arbitrarily close to its ca-
pacity if the capacity is not actually achievable). A network node is said
to be a coding node if at least one of its out-edges has a nonrouting edge
function. A similar problem is to determine the number of coding nodes
needed to assure the network has a solution (i.e., a (k1; . . . ; km; n)
fractional solution with k1 = . . . = km = n = 1). The number of
required coding nodes in both problems can in general range anywhere
from zero up to the total number of nodes in the network.

For the special case of multicast networks, the problem of finding
a minimal set of coding nodes to solve a network has been examined
previously in [2], [6], [7], [11]; the results are summarized as follows.
Langberg, Sprintson, and Bruck [7] determined upper bounds on the
minimum number of coding nodes required for a solution. Their bounds
are given as functions of the number of messages and the number of
receivers. Tavory, Feder, and Ron [11] showed that with two source
messages, the minimum number of coding nodes required for a solu-
tion is independent of the total number of nodes in the network, while
Fragouli and Soljanin [6] showed this minimum to be upper-bounded
by the number of receivers. Bhattad, Ratnakar, Koetter, and Narayanan
[2] gave a method for finding solutions with reduced numbers of coding
nodes, but their method may not find the minimum possible number of
coding nodes. Wu, Jain, and Kung [12] demonstrated that only certain
network edges require coding functions. This fact indirectly influences
the number of coding nodes required, but does not immediately give an
algorithm for finding a minimum node set.

We study here a related (and more general) problem, namely, how
network coding capacities can vary as functions of the number of al-
lowable coding nodes. Our main result, given in Theorem III.2, shows

1Sometimes in the literature the closure �S, with respect to , is taken as the
definition of the achievable rate region.

2A multicast network is a network with a single source and with every receiver
demanding all of the source messages.

3A multiple unicast network is a network where each message is generated
by exactly one source node and is demanded by exactly one receiver node.
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Fig. 1. The network N (p; q), with p � q and p; q 2 . Nodes n ; . . . ; n
are the sources, with node n providing message X , for 1 � i � q.
Nodes n ; . . . ; n are the receivers, with node n demanding message
X , for q + 3 � i � 2q + 2. Every source has one out-edge going to
node n and every receiver has one in-edge coming from node n . Also,
every source n has an out-edge going to receiver n , for all j 6= i. There
are p parallel edges from node n to node n .

that the capacities of networks, as functions of the number of allow-
able coding nodes, can be almost anything. That is, the class of directed
acyclic networks can witness arbitrary amounts of coding gain by using
arbitrarily sized node subsets for coding.

II. CODING CAPACITIES

Various coding capacities can be defined in terms of the achievable
rate region of a network. We study two such quantities, presenting their
definitions and determining their values for an example network given
in Fig. 1. This network is used to establish Theorem III.2. Li and Li [8]
presented a variation of this network and found the routing and coding
capacities for the case when ki = k for all i.

For any (k1; . . . ; km; n) fractional solution, we call the scalar value

1

m

k1

n
+ . . . +

km

n

an achievable average rate of the network. We define the average
coding capacity of a network to be the supremum of all achievable
average rates, namely

Caverage = sup
1

m

m

i=1

ri : (r1; . . . ; rm) 2 S :

Similarly, for any (k1; . . . ; km; n) fractional solution, we call the
scalar quantity

min
k1

n
; . . . ;

km

n

an achievable uniform rate of the network. We define the uniform
coding capacity of a network to be the supremum of all achievable
uniform rates, namely

Cuniform = sup min
1�i�m

ri : (r1; . . . ; rm) 2 S :

Note that if r 2 S and if r0 2 m+ is component-wise less than or
equal to r, then r0 2 S. In particular, if

(r1; . . . ; rm) 2 S

and

ri = min
1�j�m

rj

then

(ri; ri; . . . ; ri) 2 S

which implies

Cuniform = sup fri : (r1; . . . ; rm) 2 S; r1 = � � � = rmg :

In other words, all messages can be restricted to having the same di-
mension

k1 = � � � = km

when considering Cuniform.
Also, note that

Caverage � Cuniform

and that quantities Caverage and Cuniform are attained by points on the
boundary of the closure �S of S. If a network’s edge functions are re-
stricted to purely routing functions, then Caverage and Cuniform will
be referred to as the average routing capacity and uniform routing ca-
pacity, and will be denoted Caverage0 and Cuniform0 , respectively.

Example II.1: In this example, we consider the network in Fig. 1.
Note that for each j = 1; . . . ; q, every path from source node nj to
receiver node nq+2+j contains the edge ej;q+1. Thus, we must have
kj � n for all j, and therefore

k1 + � � �+ kq � qn

so Caverage � 1.
Furthermore, we can obtain a (k1; . . . ; kq; n) fractional coding so-

lution with

k1 = � � � = kq = n = 1

using routing at all nodes except nq+1, which transmits the modjAj
sum of its inputs on one of its out-edges and nothing on its other p� 1
out-edges. This solution implies that

Caverage � 1:

Thus, we have Caverage = 1.
Clearly

Cuniform � Caverage = 1:

The presented (k1; . . . ; kq; n) fractional coding solution uses

k1 = � � � = kq

so

Cuniform � 1:

Thus

Cuniform = 1:
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When only routing is allowed, all of the messages must pass through
the p edges from node nq+1 to nq+2. Thus, we must have

k1 + � � �+ kq � pn

or equivalently
k1 + � � �+ kq

qn
�

p

q
:

This implies
Caverage0 �

p

q
:

A (k1; . . . ; kq; n) fractional routing solution consists of taking

k1 = � � � = kq = p

and n = q and sending each message X(j) along the corresponding
edge ej;q+1, sending all

k1 + � � �+ kq = qp

message components from node nq+1 to nq+2 in an arbitrary fashion,
and then sending each message X(j) from node nq+2 to the corre-
sponding receiver node nq+2+j . Hence

Cuniform0 �
p

q
and therefore

p

q
� Cuniform0 � Caverage0 �

p

q
:

Thus
Cuniform0 = Caverage0 =

p

q
:

Various properties of network routing and coding capacities relating
to their relative values, linearity, alphabet size, achievability, and com-
putability have previously been studied [1], [3]–[5], [9]. However, it is
not presently known whether or not there exist algorithms that can com-
pute the coding capacity (uniform or average) of an arbitrary network. In
fact, computing the exact coding capacity of even relatively simple net-
works can be a seemingly nontrivial task. At present, very few exact
coding capacities have been rigorously derived in the literature.

III. NODE-LIMITED CODING CAPACITIES

For each nonnegative integer i, a (k1; . . . ; km; n) fractional i-node
coding solution for a network is a (k1; . . . ; km; n) fractional coding
solution with at most i coding nodes (i.e., having output edges with
nonrouting edge functions).4 For each i, we denote by Caveragei and
Cuniformi the average and uniform coding capacities, respectively, when
solutions are restricted to those having at most i coding nodes. We make
the convention that, for all i > jV j

Caveragei = CaveragejV j

and

Cuniformi = CuniformjV j :

We call Caveragei and Cuniformi the node-limited average capacity func-
tion and node-limited uniform capacity function, respectively. Clearly,
the minimum number of coding nodes needed to obtain the average or
uniform network capacity is the smallest i such that

Caveragei = Caverage

or
Cuniformi = Cuniform

respectively. Also, the quantities CuniformjV j and CaveragejV j are, respec-
tively, the uniform and average coding capacities.

4Arbitrary decoding is allowed at receiver nodes and receiver nodes only con-
tribute to the total number of coding nodes in a network if they have out-edges
performing coding.

Example III.1: For the network in Fig. 1, since Caverage and Cuniform

are both achieved using only a single coding node (as shown in Ex-
ample II.1), the node-limited capacities are

Caveragei = Cuniformi =
p=q; for i = 0

1; for i � 1.
(1)

A function f : [ f0g ! is said to be eventually constant if
there exists an i such that

f(i+ j) = f(i)

for all j 2 . Thus, the node-limited uniform and average capacity
functions are eventually constant. A network’s node-limited capacity
function is also always nonnegative. For a given number of coding
nodes, if a network’s node-limited capacity is achievable, then it must
be rational, and cannot decrease if more nodes are allowed to perform
coding (since one can choose not to use extra nodes for coding). By ex-
amining the admissible forms of Caveragei and Cuniformi we gain insight
into the possible capacity benefits of performing network coding at a
limited number of nodes.

Theorem III.2, whose proof appears after Lemma III.4, demonstrates
that node-limited capacities of networks can vary more-or-less arbi-
trarily as functions of the number of allowable coding nodes. Thus,
there cannot exist any useful general upper or lower bounds on the
node-limited capacity of an arbitrary network (bounds might exist as
functions of the properties of specific networks, however).

Theorem III.2: Every monotonically nondecreasing, eventually
constant function f : [ f0g ! + is the node-limited average and
uniform capacity function of some directed acyclic network.

Two lemmas are now stated (the proofs are simple and therefore
omitted) and are then used to prove Theorem III.2.

Lemma III.3: Let N be a network with node-limited uniform and
average coding capacities Cuniformi and Caveragei , respectively, and let
p be a positive integer. If every message is replaced at its source node
by p new independent messages and every receiver has each message
demand replaced by a demand for all of the p new corresponding mes-
sages, then the node-limited uniform and average coding capacity func-
tions of the resulting networkN 0 are (1=p)Cuniformi and (1=p)Caveragei ,
respectively.

Lemma III.4: Let N be a network with node-limited uniform and
average coding capacities Cuniformi and Caveragei , respectively, and let q
be a positive integer. If every directed edge is replaced by q new parallel
directed edges in the same orientation, then the node-limited uniform
and average coding capacity functions of the resulting network N 0 are
qCuniformi and qCaveragei , respectively.

Proof of Theorem III.2 : Suppose f : [ f0g ! + is given by

f(i) =
pi=qi; for 0 � i < s

ps=qs; for i � s

where
p0; . . . ; ps; q0; . . . ; qs

are positive integers such that

p0
q0

�
p1
q1

� � � � �
ps
qs

:

Define the positive integers

b = ps � lcmfqi : 0 � i < sg = lcmfpsqi : 0 � i < sg 2

ai =
pi=qi
ps=qs

� b =
piqs
psqi

� b 2
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Fig. 2. The networkN has b source nodes, each emitting one message. Each source node has an out-edge to each subblockN (a ; b); . . . ;N (a ; b). Specif-
ically, in each subblock N (a ; b), the previous source messages are removed, however, each previous source node is connected by an in-edge from the unique
corresponding source node in N . Each subblock N (a ; b) has routing capacity a =b = (p =q )=(p =q ).

and construct a networkN as shown in Fig. 2, which has m = b source
messages and uses the networks

N (a0; b); . . . ;N (as�1; b)

as building blocks (note that ai=b � 1 for all i).
Let Cuniformi and Caveragei denote the uniform and average node-lim-

ited capacity functions of network N . Also, for j = 0; . . . ; s � 1,
let Cuniform

j;i and Caverage
j;i denote the uniform and average node-lim-

ited capacity functions of the subblock N (aj ; b). There are exactly
2s nodes in N that have more than one in-edge and at least one out-
edge, and which are therefore potential coding nodes (i.e., two potential
coding nodes per subblock). However, for each subblock, any coding
performed at the lower potential coding node can be directly incorpo-
rated into the upper potential coding node.

For each i = 0; . . . ; s � 1, in order to obtain a (k1; . . . ; km; n)
fractional i-node coding solution, the quantity

k1 + . . . + km
mn

must be at most

min
j

aj
b

= min
j

pj=qj
ps=qs

where the minimization is taken over all j for which subblockN (aj ; b)
has no coding nodes (as seen from (1)). That is, we must have

k1 + . . . + km
mn

�
pi=qi
ps=qs

:

Therefore, the node-limited average and uniform coding capacities of
N using i coding nodes are at most the respective routing capacities of
subblock N (ai; b) of N , namely

Cuniformi �Cuniform
i;0 =

ai
b

=
pi=qi
ps=qs

Caveragei �Caverage
i;0 =

ai
b

=
pi=qi
ps=qs

:

These upper bounds are achievable by using coding at the one useful
possible coding node in each of the subblocks

N (a0; b); . . . ;N (ai�1; b)

and using routing elsewhere. By taking

d = lcm(ai; . . . ; as�1)

k1 = . . . = km = d

n = bd=ai

we can obtain a (k1; . . . ; km; n) fractional i-node coding solution with
coding nodes in subblocks

N (a0; b); . . . ;N (ai�1; b)

and only routing edge-functions in subblocks

N (ai; b); . . . ;N (as�1; b):

With such a solution, the coding capacity

Cuniform
j;1 = Caverage

j;1 = 1

is achieved in each subblock

N (a0; b); . . . ;N (ai�1; b)

and the (unchanging) routing capacity

Cuniform
i;0 = Caverage

i;0

is achieved in each subblock

N (ai; b); . . . ;N (as�1; b):

Thus, network N has node-limited average and uniform capacity
functions given by

Caveragei = Cuniformi =
(pi=qi)= (ps=qs) ; for 0 � i < s

1; for i � s.

By Lemmas III.3 and III.4, if we replace each message ofN by qs new
independent messages and change the receiver demands accordingly,
and if we replace each directed edge of N by ps parallel edges in the
same orientation, then the resulting network N̂ will have node-limited
average and uniform capacity functions given by

Ĉaveragei = Ĉuniformi =
ps
qs

Cuniformi = f(i):

We note that a simpler network could have been used in the proof of
Theorem III.2 if only the case of Cuniformi were considered. Namely, we
could have used onlymaxO�i<s qips source nodes and then connected
edges from source nodes to subblocks N (piqs; qips) as needed.

One consequence of Theorem III.2 is that large coding gains can be
suddenly obtained after an arbitrary number of nodes has been used
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for coding. For example, for any integer i � 0 and for any real number
t > 0, there exists a network such that

Cuniform0 = Cuniform1 = � � � = Cuniformi

Caverage0 = Caverage1 = � � � = Caveragei

Cuniformi+1 �Cuniformi > t

Caveragei+1 �Caveragei > t:

In Theorem III.2, the existence of networks that achieve prescribed
rational-valued node-limited capacity functions was established. It is
known in general that not all networks necessarily achieve their capac-
ities [5]. It is presently unknown, however, whether a network coding
capacity could be irrational.5 Thus, we are not presently able to ex-
tend Theorem III.2 to real-valued functions. Nevertheless, Theorem
III.2 does immediately imply the following asymptotic achievability
result for real-valued functions.

Corollary III.5: Every monotonically nondecreasing, eventually
constant function f : [ f0g ! + is the limit of the node-limited
uniform and average capacity function of some sequence of directed
acyclic networks.
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The Sizes of Optimal -Ary Codes of Weight Three and
Distance Four: A Complete Solution

Yeow Meng Chee, Son Hoang Dau, Alan C. H. Ling, and San Ling

Abstract—This correspondence introduces two new constructive tech-
niques to complete the determination of the sizes of optimal q-ary codes
of constant weight three and distance four.

Index Terms—Constant-weight codes, large sets with holes, sequences.

I. INTRODUCTION

The determination of Aq(n; d; w), the size of an optimal q-ary code
of length n, distance d, and constant weight w (all terms are defined in
the next section), has been the subject of study [1]–[25] due to several
important applications requiring nonbinary alphabets, such as coding
for bandwidth-efficient channels and design of oligonucleotide se-
quences for DNA computing. Recently, Chee and Ling [1] introduced
an effective technique for constructing optimal constant-weight q-ary
codes, which allowed the determination of A3(n; 4; 3) for all n. For
q > 3, the value of Aq(n; 4; 3) has also been determined, except when
n � q, n � 4 or 5(mod 6) [1, Th. 13]. Define the equation shown at
the bottom of the next page. The upper bound

Aq(n; 4; 3) � min Uq(n);
n

3
(1)

has been established in [1 Th. 12]. In each case where the value of
Aq(n; 4; 3) has been determined, it is found to meet this upper bound
[1, Ths. 13 and 14].

In this correspondence, we determine Aq(n; 4; 3) completely,
showing that it meets the upper bound (1) in all cases. First, we extend
the technique of [1] to work with large sets with holes. This allows the
determination of Aq(n; 4; 3) when n � 4mod6 and q � n, or when
n � 5mod6 and q � n � 1. A novel method based on sequences
is then used to determine Aq(n; 4; 3) for the remaining cases when
n = q.

II. DEFINITIONS AND NOTATIONS

The set of integers f1; . . . ; ng is denoted by [n]. For q a positive
integer, we denote the ring =q by q . The set of all nonzero elements
of q is denoted �

q . The ith coordinate of a vector is denoted by i,
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