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Abstract

An algorithm is given for placing relays at spatial positions to improve the reliability of commu-

nicated data in a sensor network. The network consists of many power-limited sensors, a small set

of relays, and a receiver. The receiver receives a signal directly from each sensor and also indirectly

from one relay per sensor. The relays rebroadcast the transmissions in order to achieve diversity at the

receiver. Both amplify-and-forward and decode-and-forward relay networks are considered. Channels

are modeled with Rayleigh fading, path loss, and additive white Gaussian noise. Performance analysis

and numerical results are given.

[Submitted to:IEEE Transactions on Wireless Communications, August 4, 2008]

I. INTRODUCTION

Wireless sensor networks typically consist of a large number of small, power-limited sensors

distributed over a planar geographic area. In some scenarios, the sensors collect information

which is transmitted to a single receiver for further analysis. A small number of radio relays

with additional processing and communications capabilities can be strategically placed to help

improve system performance. Two important problems we consider here are to position the relays

and to determine, for each sensor, which relay should rebroadcast its signal.

Previous studies of relay placement have considered various optimization criteria and commu-

nication models. Some have focused on the coverage of the network (e.g., Balam and Gibson [2];
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Chen, Wang, and Liang [4]; Cortés, Martiı́nez, Karataş, and Bullo [7]; Koutsopoulos, Toumpis,

and Tassiulas [13]; Liu and Mohapatra [14]; Mao and Wu [15]; Suomela [22]; Tan, Lozano,

Xi, and Sheng [23]). In [13] communication errors are modeled by a fixed probability of error

without incorporating physical considerations; otherwise, communications are assumed to be

error-free. Such studies often directly use the source coding technique known as the Lloyd

algorithm (e.g., see [9]), which is sub-optimal for relay placement. Two other optimization

criteria are network lifetime and energy usage, with energymodeled as an increasing function

of distance and with error-free communications (e.g., Ergen and Varaiya [8]; Hou, Shi, Sherali,

and Midkiff [11]; Iranli, Maleki, and Pedram [12]; Pan, Cai,Hou, Shi, and Shen [17]). Models

incorporating fading and/or path loss have been used for criteria such as error probability, outage

probability, and throughput, typically with simplifications such as single-sensor or single-relay

networks (e.g., Cho and Yang [5]; So and Liang [21]; Sadek, Han, and Liu [20]). The majority

of the above approaches do not include diversity. Those thatdo often do not focus on optimal

relay location and use restricted networks with only a single source and/or a single relay (e.g.,

Ong and Motani [16]; Chen and Laneman [3]). These previous studies offer valuable insight;

however, the communication and/or network models used are typically simplified.

In this work, we attempt to position the relays and determinewhich relay should rebroadcast

each sensor’s transmissions in order to minimize the average probability of error. We use a more

elaborate communications model which includes path loss, fading, additive white Gaussian noise,

and diversity. We use a network model in which all relays either use amplify-and-forward or

decode-and-forward communications. Each sensor in the network transmits information to the

receiver both directly and through a single-hop relay path.The receiver uses the two received

signals to achieve diversity. Sensors identify themselvesin transmissions and relays know for

which sensors they are responsible. We assume TDMA communications by sensors and relays

so that there is (ideally) no transmission interference.

We present an algorithm that determines relay placement andassigns each sensor to a relay.
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We refer to this algorithm as therelay placement algorithm. The algorithm has some similarity

to the Lloyd algorithm. We describe geometrically, with respect to fixed relay positions, the sets

of locations in the plane in which sensors are (optimally) assigned to the same relay, and give

performance results based on these analyses and using numerical computations.

In Section II, we specify communications models and determine error probabilities. In Sec-

tion III, we present our relay placement algorithm. In Section IV, we give analytic descriptions of

optimal sensor regions (with respect to fixed relay positions). In Section V, we present numerical

results. In Section VI, we summarize our work and provide ideas for future consideration.

II. COMMUNICATIONS MODEL AND PERFORMANCE MEASURE

A. Signal, Channel, and Receiver Models

In a sensor network, we refer to sensors, relays, and the receiver asnodes. We assume that

transmission ofbi ∈ {−1, 1} by nodei uses the binary phase shift keyed (BPSK) signalsi(t),

and we denote the transmission energy per bit byEi. In particular, we assume all sensor nodes

transmit at the same energy per bit, denoted byETx. The communications channel model includes

path loss, additive white Gaussian noise (AWGN), and fading. Let Li,j denote the far field path

loss between two nodesi and j that are separated by a distancedi,j (in meters). We consider

the free-space law model (e.g., see [19, pp. 70 – 73]) for which1

Li,j =
F2

d2
i,j

(1)

where:

F2 = λ2

16π2 (in meters2)

λ = c/f0 is the wavelength of the carrier wave (in meters)

c = 3 · 108 is the speed of light (in meters/second)

f0 is the frequency of the carrier wave (in Hz).

1Much of the material of this paper can be generalized by replacing the path loss exponent2 by any positive, even integer,

andF2 by a corresponding constant.
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The formula in (1) is impractical in the near field, sinceLi,j → ∞ asdi,j → 0. Comaniciu and

Poor [6] addressed this issue by not allowing transmissionsat distances less thanλ. Ong and

Motani [16] allow near field transmissions by proposing a modified model with path loss

Li,j =
F2

(1 + di,j)2
. (2)

We assume additive white Gaussian noisenj(t) at the receiving antenna of nodej. The noise

has one-sided power spectral densityN0 (in W/Hz). Assume the channel fading (excluding path

loss) between nodesi and j is a random variablehi,j with Rayleigh density

phi,j
(h) = (h/σ2)e−h2/(2σ2) (h ≥ 0). (3)

We also consider AWGN channels (which is equivalent to assuming hi,j = 1 for all i, j).

Let the signal received after transmission from nodei to node j be denoted byri,j(t).

Combining the signal and channel models, we haveri,j(t) =
√

Li,j hi,jsi(t) + nj(t). The

received energy per bit without fading isEj = EiLi,j . We assume demodulation at a receiving

node is performed by applying a matched filter to obtain the test statistic. Diversity is achieved

at the receiver by making a decision based on a test statisticthat combines the two received

versions (i.e., direct and relayed) of the transmission from a given sensor. We assume the receiver

uses selection combining, in which only the better of the twoincoming signals (determined by

a measurable quantity such as the received signal-to-noise-ratio (SNR)) is used to detect the

transmitted bit.

B. Path Probability of Error

For each sensor, we determine the probability of error alongthe direct path from the sensor

to the receiver and along single-hop2 relay paths, for both amplify-and-forward and decode-and-

forward protocols. Letx ∈ R
2 denote a transmitter position and letRx denote the receiver. We

consider transmission paths of the forms(x, Rx), (x, i), (i, Rx), and(x, i, Rx), wherei denotes

2Computing the probabilities of error for the more general case of multi-hop relay paths is straightforward.
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a relay index. For each such pathq, let:

SNRq
H = end-to-end SNR, conditioned on the fades (4)

P q
e|H = end-to-end error probability, conditioned on the fades (5)

SNRq = end-to-end SNR (6)

P q
e = end-to-end error probability. (7)

For AWGN channels, we takeSNRq and P q
e to be the SNR and error probability when the

signal is degraded only by path loss and receiver antenna noise. For fading channels, we take

SNRq andP q
e to also be averaged over the fades. Note that the signal-to-noise ratios only apply

to direct paths and paths using amplify-and-forward relays. Finally, denote the Gaussian error

function byQ(x) = 1√
2π

∫∞
x

e−y2/2dy.

1) Direct Path (i.e., unrelayed):For Rayleigh fading, we have (e.g., see [18, pp. 817 – 818])

SNR(x,Rx) =
4σ2ETxLx,Rx

N0
; SNR(x,i) =

4σ2ETxLx,i

N0
; SNR(i,Rx) =

4σ2EiLi,Rx

N0
(8)

P (x,Rx)
e =

1

2

(

1 −
(

1 +
2

SNR(x,Rx)

)−1/2
)

. (9)

For AWGN channels, we have (e.g., see [18, pp. 255 – 256])

SNR(x,Rx) =
2ETxLx,Rx

N0
; SNR(x,i) =

2ETxLx,i

N0
; SNR(i,Rx) =

2EiLi,Rx

N0
(10)

P (x,Rx)
e = Q

(√

SNR(x,Rx)
)

. (11)

Note that analogous formulas to those in (9) and (11) can be given for P
(x,i)
e andP

(i,Rx)
e .

2) Relay Path with Amplify-and-Forward:For amplify-and-forward relays,3 the system is

linear. Denote the gain byG. Conditioning on the fading values, we have (e.g., see [10])

SNR
(x,i,Rx)
H =

h2
x,ih

2
i,RxETx/N0

Bih2
i,Rx + Di

(12)

P
(x,i,Rx)
e|H = Q

(
√

SNR
(x,i,Rx)
h

)

(13)

3By amplify-and-forward relayswe specifically mean that a received signal is multiplied by aconstant gain factor and then

transmitted.
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where Bi =
1

2Lx,i
; Di =

1

2G2Lx,iLi,Rx
. (14)

Then, the end-to-end probability of error, averaged over the fades, is

P (x,i,Rx)
e =

∫ ∞

0

∫ ∞

0

P
(x,i,Rx)
e|H pH (hx,i) pH (hi,Rx) dhx,i dhi,Rx

=

∫ ∞

0

∫ ∞

0

Q

(
√

h2
x,ih

2
i,RxETx/N0

Bih2
i,Rx + Di

)

hx,i

σ2
· exp

{

−
h2

x,i

2σ2

}

hi,Rx

σ2

· exp

{

−
h2

i,Rx

2σ2

}

dhx,i dhi,Rx [from (13), (12), (3)]

=
1

2
− DiN0/ETx

4σ (σ2 + BiN0/ETx)
3/2

∫ ∞

0

√

t

t + 1
· exp

{

−t

(

DiN0/ETx

2σ2 (σ2 + BiN0/ETx)

)}

dt

=
1

2
− Di

√
πN0/ETx

8σ (σ2 + BiN0/ETx)
3/2

· U
(

3

2
, 2,

DiN0/ETx

2σ2 (σ2 + BiN0/ETx)

)

(15)

whereU(a, b, z) denotes the confluent hypergeometric function of the secondkind [1, p. 505]

(also known as Kummer’s function of the second kind), i.e.,

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1 (1 + t)b−a−1 dt.

For AWGN channels, we have

SNR(x,i,Rx) =
ETx/N0

Bi + Di
[from (12)] (16)

P (x,i,Rx)
e = Q

(√

SNR(x,i,Rx)
)

. (17)

3) Relay Path with Decode-and-Forward:For decode-and-forward relays,4 the signal at the

receiver is not a linear function of the transmitted signal (i.e., the system is not linear), as the

relay makes a hard decision based on its incoming data. A decoding error occurs at the receiver

if and only if exactly one decoding error is made along the relay path. Thus, for Rayleigh fading,

we obtain (e.g., see [10])

P (x,i,Rx)
e =

1

4

(

1 −
(

1 +
2

SNR(x,i)

)−1/2
)(

1 +

(

1 +
2

SNR(i,Rx)

)−1/2
)

4By decode-and-forward relayswe specifically mean that a single symbol is demodulated and then remodulated; no additional

decoding is performed (e.g., of channel codes).
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+
1

4

(

1 −
(

1 +
2

SNR(i,Rx)

)−1/2
)(

1 +

(

1 +
2

SNR(x,i)

)−1/2
)

. [from (9)] (18)

For AWGN channels, we have (e.g., see [10])

P (x,i,Rx)
e = P (x,i)

e

(

1 − P (i,Rx)
e

)

+ P (i,Rx)
e

(

1 − P (x,i)
e

)

. (19)

III. PATH SELECTION AND RELAY PLACEMENT ALGORITHM

A. Definitions

We define asensor network with relaysto be a collection of sensors and relays inR
2, together

with a single receiver at the origin, where each sensor transmits to the receiver both directly and

through some predesignated relay for the sensor, and the system performance is evaluated using

the measure given below in (20). Specifically, letx1, . . . ,xM ∈ R
2 be the sensor positions and

let y1, . . . ,yN ∈ R
2 be the relay positions. Typically,N ≪ M . Let p : R

2 → {1, . . . , N} be a

sensor-relay assignment, wherep (x) = i means that if a sensor were located at positionx, then

it would be assigned to relayyi. Let S be a bounded subset ofR
2. Throughout this section and

Section IV we will consider sensor-relay assignments whosedomains are restricted toS (since

the number of sensors is finite). Let thesensor-averaged probability of errorbe given by

1

M

M
∑

s=1

P (xs,p(xs),Rx)
e . (20)

Note that (20) depends on the relay locations through the sensor-relay assignmentp. Finally, let

〈 , 〉 denote the inner product operator.

B. Overview of the Proposed Algorithm

The proposed iterative algorithm attempts to minimize the sensor-averaged probability of error5

over all choices of relay positionsy1, . . . ,yN and sensor-relay assignmentsp. The algorithm

operates in two phases. First, the relay positions are fixed and the best sensor-relay assignment

is determined; second, the sensor-relay assignment is fixedand the best relay positions are

5Here we minimize (20); however, the algorithm can be adaptedto minimize other performance measures.
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determined. An initial placement of the relays is made either randomly or using some heuristic.

The two phases are repeated until the quantity in (20) has converged within some threshold.

C. Phase 1: Optimal Sensor-Relay Assignment

In the first phase, we assume the relay positionsy1, . . . ,yN are fixed and choose an optimal6

sensor-relay assignmentp∗, in the sense of minimizing (20). This choice can be made using an

exhaustive search in which all possible sensor-relay assignments are examined. A sensor-relay

assignment induces a partition ofS into subsets for which all sensors in any such subset are

assigned to the same relay. For each relayyi, let σi be the set of all pointsx ∈ S such that

if a sensor were located at positionx, then the optimally assigned relay that rebroadcasts its

transmissions would beyi, i.e., σi = {x ∈ S : p∗ (x) = i} . We call σi the ith optimal sensor

region (with respect to the fixed relay positions).

D. Phase 2: Optimal Relay Placement

In the second phase, we assume the sensor-relay assignment is fixed and choose optimal7 relay

positions in the sense of minimizing (20). Numerical techniques can be used to determine such

optimal relay positions. For the first three instances of phase 2 in the iterative algorithm, we

used an efficient (but slightly sub-optimal) numerical approach that quantizes a bounded subset

of R
2 into gridpoints. For a given relay, the best gridpoint was selected as the new location

for the relay. For subsequent instances of phase2, the restriction of lying on a gridpoint was

removed and a steepest descent technique was used to refine the relay locations.

IV. GEOMETRIC DESCRIPTIONS OFOPTIMAL SENSORREGIONS

We now geometrically describe each optimal sensor region byconsidering specific relay

protocols and channel models. In particular, we examine amplify-and-forward and decode-

6This choice may not be unique, but we select one such minimizing assignment here. Also, optimality ofp∗ here depends

only on the valuesp∗ (x1) , . . . , p∗ (xM ).
7This choice may not be unique, but we select one such set of positions here.
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and-forward relaying protocols in conjunction with eitherAWGN channels or Rayleigh fading

channels. We define theinternal boundaryof any optimal sensor regionσi to be the portion of

the boundary ofσi that does not lie on the boundary ofS. For amplify-and-forward and AWGN

channels, we show that the internal boundary of each optimalsensor region consists only of

circular arcs. For the other three combinations of relay protocol and channel type, we show that

as the transmission energies of sensors and relays grow, theinternal boundary of each optimal

sensor region converges to finite combinations of circular arcs and/or line segments.

For each pair of relays(yi,yj), let σi,j be the set of all pointsx ∈ S such that if a sensor

were located at positionx, then its average probability of error using relayyi would be smaller

than that using relayyj, i.e.,

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

. (21)

Note thatσi,j = S − σj,i. Then, for the given set of relay positions, we have

σi =
N
⋂

j = 1
j 6=i

σi,j (22)

sincep∗ (x) = argmin
j∈{1,...,N}

P (x,j,Rx)
e . Furthermore, for a suitably chosen constantC > 0, in order

to facilitate analysis, we modify (2) to8

Li,j =
F2

C + d2
i,j

. (23)

1) Amplify-and-Forward with AWGN Channels:

Theorem 4.1:Consider a sensor network with amplify-and-forward relaysand AWGN chan-

nels. Then, the internal boundary of each optimal sensor region consists of circular arcs.

Proof: For any distinct relaysyi andyj, let

Ki =
1

G2F2 + C + ‖yi‖2 ; γi,j =
Ki

Ki − Kj
. (24)

Note that for fixed gainG, Ki 6= Kj since we assumeyi 6= yj . Then, we have

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

8Numerical results confirm that (23) is a close approximationof (2) for our parameters of interest.
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=

{

x ∈ S :
Ki

C + ‖x − yi‖2 >
Kj

C + ‖x − yj‖2

}

[from (17), (16), (14), (23), (24)] (25)

=







x ∈ S : ‖x − (1 − γi,j)yi − γi,jyj‖2

Ki−Kj>0

>
<

Ki−Kj<0
γi,j (γi,j − 1) ‖yi − yj‖2 − C







[from (24)] (26)

where the notation

Ki−Kj>0

>
<

Ki−Kj<0
indicates that “>” should be used ifKi − Kj > 0, and “<” if

Ki −Kj < 0. By (26), the setσi,j is either the interior or the exterior of a circle (dependingon

the sign ofKi − Kj). Applying (22) completes the proof.

Figure 1a shows the optimal sensor regionsσ1, σ2, σ3, andσ4, for N = 4 randomly placed

amplify-and-forward relays with AWGN channels and system parameter valuesG = 65 dB,

f0 = 900 MHz, andC = 1.

2) Decode-and-Forward with AWGN Channels:

Lemma 4.2 (e.g., see [25, pp. 82 – 83], [24, pp. 37 – 39]):For all x > 0,
(

1 − 1

x2

)

(

e−x2/2

√
2πx

)

≤ Q(x) ≤ e−x2/2

√
2πx

.

Lemma 4.3:Let ǫ > 0 and

Lx,y =
Q (

√
x) + Q

(√
y
)

− 2Q (
√

x)Q
(√

y
)

max
(

e−x/2√
2πx

, e−y/2√
2πy

) .

Then,1 − ǫ ≤ Lx,y ≤ 2 for x andy sufficiently large.

Proof: For the lower bound, we have

Lx,y ≥
e−x/2√

2πx
+ e−y/2√

2πy

e−x/2√
2πx

+ e−y/2√
2πy

−
e−x/2

x
√

2πx
+ e−y/2

y
√

2πy

max
(

e−x/2√
2πx

, e−y/2√
2πy

) − 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

[from Lemma 4.2]

≥ 1 − 1

min(x, y)
−
(

e−max(x,y)/2

max(x, y)
√

max(x, y)

)(

√

min(x, y)

e−min(x,y)/2

)

− 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

[for x, y > 1]

≥ 1 − ǫ. [for x, y sufficiently large]
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For the upper bound, we have

Lx,y ≤

(

e−x/2
√

2πx

)

+
(

e−y/2
√

2πy

)

− 2
(

1 − 1
x

)

(

e−x/2
√

2πx

)(

1 − 1
y

)(

e−y/2
√

2πy

)

max
(

e−2/x√
2πx

, e−y/2√
2πy

) [from Lemma 4.2]

≤
e−x/2
√

2πx
+ e−y/2

√
2πy

max
(

e−2/x√
2πx

, e−y/2√
2πy

) [for x, y > 1]

≤ 2.

Theorem 4.4:Consider a sensor network with decode-and-forward relays and AWGN chan-

nels, and, for all relaysi, let Ei/N0 → ∞ andETx/N0 → ∞ such that(Ei/N0)/(ETx/N0) has

a limit. Then, the internal boundary of each optimal sensor region consists asymptotically of

circular arcs and line segments.

Proof: As an approximation toP (x,i,Rx)
e given in (19), define

P̂ (x,i,Rx)
e

=
1√
2π

· max

(

1
√

SNR(x,i)
exp

{

−SNR(x,i)

2

}

,
1

√

SNR(i,Rx)
exp

{

−SNR(i,Rx)

2

}

)

. (27)

For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Let ǫ > 0. Then, using Lemma 4.3, it can be shown that

1 − ǫ ≤ αi ≤ 2. (28)

We will now show thatσi,j, given by (21), is a finite intersection of unions of certain sets

ρ
(k)
i,j for k = 1, . . . , 4, where each such set has circular and/or linear boundaries.

For each pair of relays(yi,yj) with i 6= j, define

ρ
(1)
i,j =

{

x ∈ S : SNR(x,i) − 2 lnαi + ln SNR(x,i) > SNR(x,j) − 2 ln αj + ln SNR(x,j)
}

=

{

x ∈ S :
2F2

C + ‖x − yi‖2 +
N0

ETx
ln

(

αj

αi

)

+
N0

ETx
ln

(

C + ‖x − yj‖2

C + ‖x − yi‖2

)

>
2F2

C + ‖x − yj‖2

}

. [from (10), (23)]
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The setS is bounded, so, using (28), asETx/N0 → ∞, Ei/N0 → ∞, and Ej/N0 → ∞,

ρ
(1)
i,j →

{

x ∈ S : ‖x − yj‖2 > ‖x − yi‖2} which has a linear internal boundary.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(2)
i,j =

{

x ∈ S : SNR(x,i) − 2 lnαi + ln SNR(x,i) > SNR(j,Rx) − 2 lnαj + ln SNR(j,Rx)
}

=

{

x ∈ S :
2F2

C + ‖x − yi‖2

>
2F2

C + ‖yj‖2 · Ej/N0

ETx/N0

+
N0

ETx

ln

(

C + ‖x − yi‖2

C + ‖yj‖2 · Ej/N0

ETx/N0

)

+
N0

ETx
ln

(

αi

αj

)}

. [from (10), (23)] (29)

In the cases that follow, we will show that, asymptotically,ρ
(2)
i,j either contains all of the sensors,

none of the sensors, or the subset of sensors in the interior of a circle.

Case 1: (Ej/N0)/(ETx/N0) → ∞.

The setS is bounded and, by (28),ln(αi/αj) is asymptotically bounded. Therefore, the limit

of the right-hand side of the inequality in (29) is infinity. Thus,ρ(2)
i,j → ∅.

Case 2: (Ej/N0)/(ETx/N0) → Gj for someGj ∈ (0,∞).

Since S is bounded andln(αi/αj) is asymptotically bounded, we haveρ(2)
i,j →

{

x ∈ S : ‖x − yi‖2 <
C+‖yj‖2

Gj
− C

}

which has a circular internal boundary.

Case 3: (Ej/N0)/(ETx/N0) → 0.

SinceS is bounded andln(αi/αj) is asymptotically bounded, the limit of the right-hand side

of the inequality in (29) is0. Thus, sinceF2 > 0, we haveρ(2)
i,j → S.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(3)
i,j =

{

x ∈ S : SNR(i,Rx) − 2 ln αi + ln SNR(i,Rx) > SNR(x,j) − 2 lnαj + ln SNR(x,j)
}

.

Observing the symmetry betweenρ(3)
i,j and ρ

(2)
i,j , we have that asETx/N0 → ∞, Ei/N0 → ∞,

andEj/N0 → ∞, ρ
(3)
i,j becomes either empty, all ofS, or the exterior of a circle.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(4)
i,j =

{

x ∈ S : SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx) > SNR(j,Rx) − 2 lnαj + ln SNR(j,Rx)
}
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=

{

x ∈ S :
2EiF2

N0

(

C + ‖yi‖2) − ln αi + ln

(

2EiF2

N0

(

C + ‖yi‖2)

)

>
2EjF2

N0

(

C + ‖yj‖2) − ln αj + ln

(

2EjF2

N0

(

C + ‖yj‖2)

)}

. [from (10), (23)]

Using (28), asETx/N0 → ∞, Ei/N0 → ∞, andEj/N0 → ∞, we haveρ(4)
i,j → S or ∅.

Then, we have

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}

=
{

x ∈ S : min
(

SNR(x,i) − 2 ln αi + ln SNR(x,i), SNR(i,Rx) − 2 lnαi + lnSNR(i,Rx)
)

> min
(

SNR(x,j) − 2 ln αj + ln SNR(x,j), SNR(j,Rx) − 2 lnαj + ln SNR(j,Rx)
)}

[for ETx/N0, Ei/N0, Ej/N0 sufficiently large] [from (27)]

=
(

ρ
(1)
i,j ∪ ρ

(2)
i,j

)

∩
(

ρ
(3)
i,j ∪ ρ

(4)
i,j

)

. (30)

Thus, combining the asymptotic results forρ
(1)
i,j , ρ

(2)
i,j , ρ

(3)
i,j , andρ

(4)
i,j , asETx/N0 → ∞, Ei/N0 →

∞, andEj/N0 → ∞, the internal boundary ofσi,j consists of circular arcs and line segments.

Applying (22) completes the proof.

Figure 1b shows the asymptotically-optimal sensor regionsσ1, σ2, σ3, and σ4, for N = 4

randomly placed decode-and-forward relays with AWGN channels and system parameter values

C = 1, ERx/N0|d=50 m = 5 dB, andEi/N0 = 2ETx/N0 for all relaysyi.

3) Amplify-and-Forward with Rayleigh Fading Channels:

Lemma 4.5:For 0 < z < 1,
(

1

zΓ
(

3
2

)

)

(

1 −
√

z
)

exp

{

−
√

z (1 −√
z)

2

2 −√
z

}

≤ U

(

3

2
, 2, z

)

≤ 1

zΓ
(

3
2

) .

Proof: For the upper bound, we have

U

(

3

2
, 2, z

)

=
1

Γ
(

3
2

)

∫ ∞

0

√

t

1 + t
· e−ztdt ≤ 1

Γ
(

3
2

)

∫ ∞

0

e−ztdt =
1

zΓ
(

3
2

) .

For the lower bound, we have

U

(

3

2
, 2, z

)

≥ 1

Γ
(

3
2

)

∫ ∞

(1−
√

z)2
√

z(2−
√

z)

√

t

1 + t
· e−ztdt [since0 < z < 1]
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≥ 1

Γ
(

3
2

)

∫ ∞

(1−
√

z)2
√

z(2−
√

z)

(1 −
√

z)e−ztdt [since0 < z < 1]

=
1

zΓ
(

3
2

)

(

1 −
√

z
)

exp

{

−
√

z(1 −√
z)2

2 −√
z

}

.

We define thenearest-neighbor regionof a relayyi to be{x ∈ S : ∀j, ‖x − yi‖ < ‖x − yj‖}

where ties (i.e.,‖x − yi‖ = ‖x − yj‖) are broken arbitrarily. The interiors of these regions are

convex polygons intersected withS.

Theorem 4.6:Consider a sensor network with amplify-and-forward relaysand Rayleigh fading

channels, and letETx/N0 → ∞. Then, each optimal sensor region is asymptotically equal to

the corresponding relay’s nearest-neighbor region.

Proof: As an approximation toP (x,i,Rx)
e given in (15), define

P̂ (x,i,Rx)
e =

1

2
−
(

Di

√
πN0/ETx

8σ (σ2 + BiN0/ETx)
3/2

)

(

2σ2 (σ2 + BiN0/ETx)

Γ(3/2) · DiN0/ETx

)

(31)

=
1

2
− 1

2

(

1 +
1

2σ2Lx,iETx/N0

)−1/2

. [from (14)] (32)

For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Using Lemma 4.5, it can be shown that

lim
ETx/N0→∞

αi = 1. (33)

Let

Zk =
1

2σ2Lx,k
; gk

(

N0

ETx

)

=

√

1 +
ZkN0

ETx
− 1 =

(

Zk

2

)

N0

ETx
+ O

(

(

N0

ETx

)2
)

(34)

where the second equality in the expression forgk is obtained using a Taylor series. Then,

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}

=











x ∈ S :
αi

(√

1 + ZiN0

ETx
− 1
)
√

1 +
ZjN0

ETx

αj

(
√

1 +
ZjN0

ETx
− 1
)√

1 + ZiN0

ETx

< 1











[from (32), (34)]
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=







x ∈ S :
αi

αj

·
1

4σ2Lx,i
+ O

(

N0

ETx

)

1
4σ2Lx,j

+ O
(

N0

ETx

) ·

√

√

√

√

1 + N0/ETx

2σ2Lx,j

1 + N0/ETx

2σ2Lx,i

< 1







. [from (34)] (35)

SinceS is bounded, we have, forETx/N0 → ∞, that

σi,j → {x ∈ S : ‖x − yj‖ > ‖x − yi‖} . [from (35), (33), (23)] (36)

Thus, forETx/N0 → ∞, the internal boundary ofσi,j becomes the line equidistant fromyi and

yj . Applying (22) completes the proof.

Figure 1c shows the asymptotically-optimal sensor regionsσ1, σ2, σ3, and σ4, for N = 4

randomly placed amplify-and-forward relays with Rayleighfading channels.

4) Decode-and-Forward with Rayleigh Fading Channels:

Lemma 4.7:Let

Lx,y =
1 −

(

1 + 2
x

)−1/2
(

1 + 2
y

)−1/2

1
x

+ 1
y

.

Then, lim
x,y→∞

Lx,y = 1.

Proof: We have

1 +
1

2
ǫ − 1

8
ǫ2 ≤ (1 + ǫ)1/2 ≤ 1 +

1

2
ǫ [from a Taylor series]

∴

(

xy

x + y

)

(

x − 1
2

) (

y2 + y − 1
2

)

+ x2
(

y − 1
2

)

(

x2 + x − 1
2

) (

y2 + y − 1
2

) ≤ Lx,y ≤
(

x + y + 1

x + y

)(

x

x + 1

)(

y

y + 1

)

∴

(

x − 1

x + 1

)(

y − 1

y + 1

)(

x + y + 3

x + y

)

≤ Lx,y ≤
(

x + y + 1

x + y

)(

x

x + 1

)(

y

y + 1

)

.

[for x, y sufficiently large]

Now taking the limit asx → ∞ andy → ∞ (in any manner) givesLx,y → 1.

Theorem 4.8:Consider a sensor network with decode-and-forward relays and Rayleigh fading

channels, and, for all relaysi, let Ei/N0 → ∞ andETx/N0 → ∞ such that(Ei/N0)/(ETx/N0)

has a limit. Then, the internal boundary of each optimal sensor region is asymptotically piecewise

linear.

Proof: As an approximation toP (x,i,Rx)
e given in (18), define

P̂ (x,i,Rx)
e =

1/2

SNR(x,i)
+

1/2

SNR(i,Rx)
. (37)
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For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Using Lemma 4.7, it can be shown that

lim
ETx/N0 → ∞,

Ei/N0→∞

αi = 1. (38)

Then, we have

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}

=

{

x ∈ S : 2 〈x, αjyj − αiyi〉

< αj

(

C + ‖yj‖2) · ETx/N0

Ej/N0

− αi

(

C + ‖yi‖2) · ETx/N0

Ei/N0

+ (αj − αi) ‖x‖2 + αj ‖yj‖2 − αi ‖yi‖2} . [from (37), (8), (23)] (39)

Now, for any relayyk, let Gk = lim
ETx/N0 → ∞,

Ek/N0→∞

Ek/N0

ETx/N0
. Using (38), Table I considers the cases of

Gi andGj being zero, infinite, or finite non-zero; for all such possibilities, the internal boundary

of σi,j is linear. Applying (22) completes the proof.

Note that if, for all relaysyi, Ei is a constant andGi = ∞, then each optimal sensor region

is asymptotically equal to the corresponding relay’s nearest-neighbor regions, as was the case

for amplify-and-forward relays and Rayleigh fading channels. In addition, we note that, while

Theorem 4.8 considers the asymptotic case, we have empirically observed that the internal

boundary of each optimal sensor region consists of line segments for a wide range of moderate

parameter values.

Figure 1d shows the asymptotically-optimal sensor regionsσ1, σ2, σ3, and σ4, for N = 4

randomly placed decode-and-forward relays with Rayleigh fading channels and system parameter

valuesC = 1, ERx/N0|d=50 m = 5 dB, andEi/N0 = 2ETx/N0 for all relaysyi.

V. NUMERICAL RESULTS FOR THERELAY PLACEMENT ALGORITHM

The relay placement algorithm was implemented for both amplify-and-forward and decode-

and-forward relays. The sensors were placed uniformly in a square of sidelength100 m. For
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decode-and-forward and all relaysyi, the energyEi was set to a constant which equalized the

total output power of all relays for both amplify-and-forward and decode-and-forward. Specific

numerical values for system variables weref0 = 900 MHz, σ =
√

2/2, M = 10000, andC = 1.

In order to use the relay placement algorithm to produce goodrelay locations and sensor-relay

assignments, we ran the algorithm10 times. Each such run was initiated with a different random

set of relay locations (uniformly distributed on the squareS) and used the sensor-averaged

probability of error given in (20). For each of the10 runs completed,1000 simulations were

performed with Rayleigh fading and diversity (selection combining) at the receiver. Different

realizations of the fade values for the sensor network channels were chosen for each of the1000

simulations. Of the10 runs, the relay locations and sensor-relay assignments of the run with the

lowest average probability of error over the1000 simulations was chosen.

Figure 2 gives the algorithm output for2, 3, 4, and 12 decode-and-forward relays with

ERx/N0|d=50 m = 10 dB, Ei = 100ETx, and using the exact error probability expressions.

Relays are denoted by squares and the receiver is denoted by acircle at the origin. Boundaries

between the optimal sensor regions are shown. For2, 3, and 4 relays a symmetry is present,

with each relay being responsible for approximately the same number of sensors. A symmetry

is also present for12 relays; here, however, eight relays are responsible for approximately the

same number of sensors, and the remaining four relays are located near the corners ofS to assist

in transmissions experiencing the largest path loss due to distance. Since the relays transmit at

higher energies than the sensors, the probability of detection error is reduced by reducing path

loss before a relay rebroadcasts a sensor’s signal, rather than after the relay rebroadcasts the signal

(even at the expense of possibly greater path loss from the relay to the receiver). Thus, some

sensors actually transmit “away” from the receiver to theirassociated relay. The asymptotically-

optimal sensor regions closely matched those for the exact error probability expressions, which

is expected due to the large value selected forEi. In addition, the results for amplify-and-

forward relays were quite similar, with the relays lying closer to the corners ofS for the2 and3
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relay cases, and the corner regions displaying slightly curved boundaries for12 relays. With the

exception of this curvature, the asymptotic regions closely matched those from the exact error

probability expressions. This similarity between decode-and-forward and amplify-and-forward

relays is expected due to the large value selected forEi.

Figures 3 and 4 give the algorithm output for12 decode-and-forward and amplify-and-for-

ward relays, respectively, withERx/N0|d=50 m = 5 dB, Ei = 1.26ETx, and using the exact

error probability expressions. For decode-and-forward relays, the results are similar to those

in Figure 3; however the relays are located much closer to thereceiver due to their decreased

transmission energy, and the corner regions ofS exhibit slightly curved boundaries. For amplify-

and-forward relays, the relays are located much closer to the corners since, with lower gain, the

relays are less effective and thus primarily assist those sensors with the largest path loss.

The maximum, average, and median of the sensor probabilities of error for all of the above

figures are given in Table II. The sensor error probability islowest for sensors that are closest

to the relays, and increases with distance.

VI. CONCLUSIONS

This paper presented an algorithm for amplify-and-forwardand decode-and-forward relay

placement and sensor assignment in wireless sensor networks that attempts to minimize the

average probability of error. Communications were modeledusing path loss, fading, AWGN,

and diversity combining. We determined the geometric shapes of regions for which sensors

would be optimally assigned to the same relay (for a given setof relay locations), in some

instances for the asymptotic case of the ratios of the transmission energies to the noise power

spectral density growing without bound. Numerical resultsshowing the algorithm output were

presented. The asymptotic regions were seen to closely match the regions obtained using exact

expressions.

A number of extensions to the relay placement algorithm could be incorporated to enhance the

system model. Some such enhancements are multi-hop relay paths, more sophisticated diversity
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combining, power constraints, sensor priorities, and sensor information correlation.
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(a) (b)

(c) (d)

Fig. 1. Sensor regionsσ1, σ2, σ3, and σ4 for 4 randomly placed relays. Each relayi ∈ {1, 2, 3, 4} is denoted by a filled

square labeledi, while the receiver is denoted by a filled circle labeledRx. Sensors are distributed as a square grid over±100

meters in each dimension. The sensor regions are either optimal or asymptotically-optimal as described in (a) Theorem 4.1

(amplify-and-forward relays and AWGN channels), (b) Theorem 4.4 (decode-and-forward relays and AWGN channels with high

ETx/N0 andEi/N0), (c) Theorem 4.6 (amplify-and-forward relays and Rayleigh fading channels with highETx/N0), and (d)

Theorem 4.8 (decode-and-forward relays and Rayleigh fading channels) with highETx/N0 andEi/N0).
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TABLE I

ASYMPTOTIC PROPERTIES OFσi,j FOR DECODE-AND-FORWARD RELAYS AND RAYLEIGH FADING CHANNELS.

Gj Gi σi,j

non-zero non-zero linear internal boundary

non-zero 0 ∅

0 non-zero S

0 0 linear internal boundary or∅ or S

(a) (b)

(c) (d)

Fig. 2. Optimal sensor regions output by the algorithm for decode-and-forward relays and fading channels withEi = 100ETx,

and ERx/N0|d=50 m = 10 dB. Relays are denoted by squares and the receiver is locatedat (0, 0). Sensors are distributed as a

square grid over±100 meters in each dimension. The number of relays is (a)N = 2, (b) N = 3, (c) N = 4, and (d)N = 12.
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Fig. 3. Optimal sensor regionsσ1, . . . , σ12 output by the algorithm for decode-and-forward relays and fading channels with

N = 12, Ei = 1.26ETx, and ERx/N0|d=50 m = 5 dB.

Fig. 4. Optimal sensor regionsσ1, . . . , σ12 output by the algorithm for amplify-and-forward relays andfading channels with

N = 12, G = 56 dB, and ERx/N0|d=50 m = 5 dB.
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TABLE II

SENSOR PROBABILITY OF ERROR VALUES.

Figure Max. Pe Avg. Pe MedianPe

2a 7.3 · 10−2 1.8 · 10−2 1.2 · 10−2

2b 6.9 · 10−2 1.2 · 10−2 7.2 · 10−3

2c 3.3 · 10−2 7.0 · 10−3 5.1 · 10−3

2d 1.4 · 10−2 2.8 · 10−3 2.3 · 10−3

3 2.0 · 10−1 6.2 · 10−2 5.6 · 10−2

4 1.7 · 10−1 9.9 · 10−2 1.1 · 10−1
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