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Abstract— We study network coding capacity under a con-
straint on the total number of network nodes that can perform
coding. That is, only a certain number of network nodes can
produce coded outputs, whereas the remaining nodes are limited
to performing routing. We prove that every non-negative,
monotonically non-decreasing, eventually constant, rational-
valued function on the non-negative integers is equal to the
capacity as a function of the number of allowable coding nodes
of some directed acyclic network.

I. I NTRODUCTION

Let N denote the positive integers, and letR andQ denote
the real and rational numbers, respectively, with a superscript
“+” denoting restriction to positive values. In this paper, a
network is a directed acyclic multigraphG = (V, E), some
of whose nodes are information sources or receivers (e.g. see
[11]). Associated with the sources arem generatedmessages,
where theith source message is assumed to be a vector of
ki arbitrary elements of a fixed finite alphabet,A, of size at
least2. At any node in the network, each out-edge carries
a vector ofn alphabet symbols which is a function (called
an edge function) of the vectors of symbols carried on the
in-edges to the node, and of the node’s message vectors if
it is a source. Associated with each receiver aredemands,
which are subsets of the network messages. Each receiver
has decoding functions which map its inputs to vectors of
symbols in an attempt to produce the messages demanded
at the receiver. The goal is for each receiver to deduce its
demanded messages from its in-edges and source messages.

A (k1, . . . , km, n) fractional code is a collection of edge
functions, one for each edge in the network, and decoding
functions, one for each demand of each node in the network.
A (k1, . . . , km, n) fractional solution is a (k1, . . . , km, n)
fractional code which results in every receiver being able
to compute its demands via its decoding functions, for all
possible assignments of length-ki vectors over the alphabet
to the ith source message, for alli.

For eachi, the ratioki/n can be thought of as the rate
at which sourcei injects data into the network. If a network
has a(k1, . . . , km, n) fractional solution over some alphabet,
then we say that(k1/n, . . . , km/n) is an achievable rate
vector, and we define theachievable rate region of the
network as the set1

S = {r ∈ Qm : r is an achievable rate vector}.
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1Alternatively, sometimes the closurēS, with respect toRm, is taken as
the definition of the achievable rate region.

We define theuniform coding capacity of a network to be

Cuniform = sup

{

min
1≤i≤m

ri : (r1, . . . , rm) ∈ S

}

.

We define theaverage coding capacity of a network to be

Caverage = sup

{

1

m

m
∑

i=1

ri : (r1, . . . , rm) ∈ S

}

.

Routing nodes have edge functions that simply copy
specified input components to output components.2 If a
network’s edge functions are restricted to routing functions,
thenCaverage andCuniform will be referred to as theaverage
routing capacity anduniform routing capacity, respectively.

Ahlswede, Cai, Li, and Yeung [1] exhibited a network
whose average and uniform coding capacities are equal and
are larger than its routing capacity. Li, Yeung, and Cai
[7] showed in the special case of a multicast network, the
average and uniform coding capacities are both equal to
the linear coding capacity. It was shown in [3], that for
all networks, the uniform coding capacity is independent of
the alphabet size (only slight modification of the proof is
required for the average coding capacity case). Clearly the
average and uniform routing capacities are also independent
of the alphabet size. It is also known that the coding capacity
might not be achievable [4].

In terms of the coding gain of a network, Sanders, Egner,
and Tolhuizen [8] showed that for directed networks, the
throughput achievable with network coding can be arbitrarily
larger than that achievable with only routing. An important
problem is to determine how many nodes in a network
are required to perform coding in order for the network
to achieve its coding capacity (or to achieve a coding rate
arbitrarily close to its capacity if the capacity is not actually
achievable). A network node is said to be acoding node if
at least one of its out-edges has a non-routing edge function.
A similar problem is to determine the number of coding
nodes needed to assure the network has a solution (i.e. a
(k1, . . . , km, n) fractional solution withk1 = · · · = km =
n = 1). The number of required coding nodes in both
problems can in general range anywhere from zero up to
the total number of nodes in the network.

For the special case of multicast networks, the problem of
finding a minimal set of coding nodes to solve a network has
been examined previously in [2], [5], [6], [9], the results of
which are summarized as follows. Langberg, Sprintson, and

2If an edge function for an out-edge of a node depends only on the
symbols of a single in-edge of that node, then, without loss of generality,
we assume that the out-edge simply carries the same vector ofsymbols (i.e.
routes the vector) as the in-edge it depends on.



Bruck [6] determined upper bounds on the minimum number
of coding nodes required for a solution. Their bounds are
given as functions of the number of messages and the number
of receivers. Tavory, Feder, and Ron [9] showed that with
2 source messages, the minimum number of coding nodes
required for a solution is independent of the total number
of nodes in the network, while Fragouli and Soljanin [5]
showed this minimum to be upper bounded by the number
of receivers. Bhattad, Ratnakar, Koetter, and Narayanan [2]
gave a method for finding solutions with reduced numbers of
coding nodes, but their method may not find the minimum
possible number of coding nodes. Wu, Jain, and Kung
[10] demonstrated that only certain network edges require
coding functions. This fact indirectly influences the number
of coding nodes required, but does not immediately give an
algorithm for finding a minimum node set.

We study here a related (and more general) problem,
namely how network coding capacities can vary as functions
of the number of allowable coding nodes. Our main result,
given in Theorem 2.2, shows that the capacities of networks,
as functions of the number of allowable coding nodes, can
be almost anything. That is, the class of directed acyclic
networks can witness arbitrary amounts of capacity gain by
using arbitrarily sized node subsets for coding.

II. NODE-L IMITED CODING CAPACITY

For each non-negative integeri, a (k1, . . . , km, n)
fractional i-node coding solution for a network is a
(k1, . . . , km, n) fractional coding solution with at mosti
coding nodes (i.e. have output edges using non-routing edge
functions).3 For eachi, denote byCaverage

i andCuniform
i the

average and uniform coding capacities, respectively, when
solutions are restricted to those having at mosti coding nodes
(we make the convention for alli > |V |, that Caverage

i =

Caverage

|V | andCuniform
i = Cuniform

|V | ). We call Caverage
i and

Cuniform
i the node-limited average capacity function and

node-limited uniform capacity function, respectively.
For a given number of coding nodes, if a network’s node-

limited capacity is achievable, then it must be rational, and
cannot decrease if more nodes are allowed to perform coding
(since one can always choose not to use extra nodes for
coding). By examining the admissible forms ofCaverage

i and
Cuniform

i we gain insight into the possible capacity benefits
of performing network coding at a limited number of nodes.

Theorem 2.2 demonstrates that the node-limited capacities
of networks can vary more-or-less arbitrarily as functionsof
the number of allowable coding nodes.

Lemma 2.1: For any positive integersp and q ≥ p, the
networkN (p, q) shown in Fig. 1 has node-limited average
and uniform capacity functions given by

Caverage
i = Cuniform

i =

{

p/q for i = 0
1 for i ≥ 1.

3Arbitrary decoding is allowed at receiver nodes and receiver nodes only
count towards the total count of coding nodes in a network if they have
out-edges performing coding.
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Fig. 1. The networkN (p, q). Nodesn1, . . . , nq are the sources, with
nodeni providing messageX(i), for 1 ≤ i ≤ q. Nodesnq+3, . . . , n2q+2

are the receivers, with nodeni demanding messageX(i−q−2), for q+3 ≤
i ≤ 2q + 2. Every source has one out-edge going to nodenq+1 and every
receiver has one in-edge coming from nodenq+2. Also, every sourceni has
an out-edge going to receivernq+2+j , for all j 6= i. There arep parallel
edges from nodenq+1 to nodenq+2.

Theorem 2.2: Every monotonically non-decreasing, even-
tually constant functionf : N ∪ {0} → Q+ is the node-
limited average and uniform capacity function of some
directed acyclic network.

Proof:
Supposef : N ∪ {0} → Q+ is given by

f(i) =

{

pi/qi for 0 ≤ i < s
ps/qs for i ≥ s

where p0, . . . , ps, q0, . . . , qs are positive integers such that
p0/q0 ≤ p1/q1 ≤ · · · ≤ ps/qs. Define the positive integers

b = lcm(psqi : 0 ≤ i < s)

ai =
pi/qi

ps/qs

· b

and construct networkN as in Fig. 2, which hasm=b
messages withN (a0, b), . . . ,N (as−1, b) as building blocks.

Let Cuniform
i and Caverage

i denote the uniform and av-
erage node-limited capacity functions of networkN . Also,
for j = 0, . . . , s− 1, let Cuniform

j,i andCaverage
j,i denote the

uniform and average node-limited capacity functions of the
sub-blockN (aj , b). There are exactlys nodes inN that have
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Fig. 2. The network N has b source nodes, each emitting
one message. Each source node has an out-edge to each sub-block
N (a0, b), . . . ,N (as−1, b). Specifically, in each sub-blockN (ai, b), the
previous source messages are removed, however each previous source node
is connected by an in-edge from the unique corresponding source node inN .
Each sub-blockN (ai, b) has routing capacityai/b = (pi/qi)/(ps/qs).

more than one in-edge, and which are therefore potential
coding nodes (i.e. one potential coding node per block).

For each i = 0, . . . , s − 1, in order to obtain a
(k1, . . . , km, n) fractional i-node coding solution, the quan-
tity (k1 + · · · + km)/(mn) must be at most

min
j

pj/qj

ps/qs

where the minimization is taken over allj for which sub-
block N (aj , b) has no coding nodes (as per Lemma 2.1).
That is, we must have

k1 + · · · + km

mn
≤

pi/qi

ps/qs

.

Thus, the node-limited average and uniform coding capac-
ities of N using i coding nodes are at most the respective
routing capacities of sub-blockN (ai, b) of N , i.e.

Cuniform
i ≤ Cuniform

i,0 = ai/b = (pi/qi)/(ps/qs)

Caverage
i ≤ Caverage

i,0 = ai/b = (pi/qi)/(ps/qs).

These upper bounds are achievable by using coding only
at the one possible coding node in each of the sub-blocks
N (a0, b), . . . ,N (ai−1, b). By taking

k1 = · · · = km = lcm(ai, . . . , as−1)

n = b · lcm(ai, . . . , as−1)/ai

we can obtain a (k1, . . . , km, n) fractional i-node
coding solution with coding nodes in sub-blocks
N (a0, b), . . . ,N (ai−1, b) and only routing edge-functions
in sub-blocks N (ai, b), . . . ,N (as−1, b). With such a
solution, the coding capacityCuniform

j,1 = Caverage
j,1 = 1 is

achieved in each sub-blockN (a0, b), . . . ,N (ai−1, b), and
the (unchanging) routing capacityCuniform

i,0 = Caverage
i,0 is

achieved in each sub-blockN (ai, b), . . . ,N (as−1, b).
Thus, networkN has node-limited capacity functions

Caverage
i = Cuniform

i =

{

(pi/qi)/(ps/qs) for 0 ≤ i < s
1 for i ≥ s.

If we replace each message ofN by qs new independent
messages and change the receiver demands accordingly, and

if we replace each directed edge ofN by ps parallel edges
in the same orientation, then the resulting networkN̂ will
have node-limited average and uniform capacity functions

Ĉaverage
i = Ĉuniform

i = (ps/qs)C
uniform
i = f(i).

One consequence of Theorem 2.2 is that large coding gains
can be suddenly obtained after an arbitrary number of nodes
has been used for coding.

In Theorem 2.2 the existence of networks that achieve
prescribed rational-valued node-limited capacity functions
was established. It is known in general that not all networks
necessarily achieve their capacities [4]. It is presently un-
known, however, whether a network coding capacity could
be irrational. Thus, we are not presently able to extend
Theorem 2.2 to real-valued functions. Nevertheless, Theo-
rem 2.2 does immediately imply the following asymptotic
achievability result for real-value functions.

Corollary 2.3: Every monotonically non-decreasing,
eventually constant functionf : N ∪ {0} → R+ is the limit
of the node-limited uniform (or average) capacity functions
of some sequence of directed acyclic networks.
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