#1 Syllabus + definitions ECE 253a Digital Image Processing Pamela Cosman 9/23/11

Instructor: Pamela Cosman Temporary office due to construction: EBU-1, Room 4604 phone: 858-822-0157 e-mail: pcosman@ucsd.edu Office hours: Mon and Wed 11-12, and by appointment

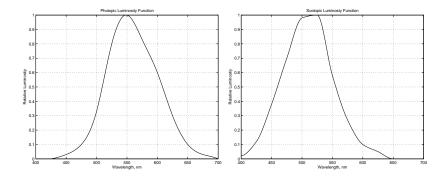
TA: Eric Freiling e-mail: efreilin@ucsd.edu

Course Requirements and Grading

6 Homeworks/Lab Exercises30%2 Subjective experiments5%Midterm20%Final Exam45%The midterm and final will be in class, open book and open notes

Text: Digital Image Processing by Gonzalez and Woods. 3rd edition, Prentice Hall, 2008

Prerequisites: Familiarity with Matlab (or willingness to learn!) Basic knowledge of linear algebra, linear systems, Fourier Transforms. Read Chapter 1 in the textbook for a general overview of image processing.


Course Content:

Торіс	# lectures	Pages
Human visual perception	1.5	35–46, 52–65
Processing of binary images	3.5	68–70, 627–664
Contrast enhancement	2	105–144
Noise removal, edge sharpening	2	144–172, 311–329
Color coordinate systems, color image enhancement	4	394–442
Quantization, 2D sampling, interpolation	4	65–68
Lossless coding	3	525-566
Transform and predictive coding, JPEG	5	566-614
Motion compensation, MPEG	3	589–596

Radiometric and Photometric Quantities and Units

from Digital Pictures by Netravali and Haskell, and Digital Image Processing by Pratt

Radiometry	is concerned with physical intensity measurements of electromag- netic energy.
Photometry	seeks to quantitatively describe the perceptual brightness of visible electromagnetic energy.
Radiant energy, Q,	is the energy propagating in the form of electromagnetic radiation and is measured in joules .
Radiant flux, Φ	is the radiant power or time rate of flow of radiant energy, and is measured in Watts = Joules / sec .
Radiant exitance, M,	is the density of radiant flux, measured in Watts / meter ² .
Irradiance, E	is a restricted case of exitance and denotes density of radiant flux incident on a surface.
Radiant intensity, I	is the radiant flux per unit solid angle in a given direction. It is measured in Watts / steradian .
Radiance, L	is the radiant flux per unit of projected area and per unit solid angle either leaving a point in a given direction, or arriving at a given point in a given direction. Its unit is Watts / steradian-m ² .
Relative luminous efficiency	$y(\lambda)$ specifies the spectral sensitivity of the human visual system to optical radiation as a function of wavelength for a typical person ("standard observer"). $y(\lambda)$ is dimensionless.

Luminous flux is a measure of the capacity of radiant flux to create a sensation of light. This is evaluated by multiplying by $y(\lambda)$ and integrating over the visible spectrum:

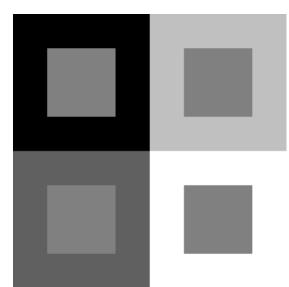
$$\Phi_v = \int_{380}^{780} \Phi(\lambda) y(\lambda) d\lambda$$

 Φ_v can be measured in watts, or in lumens by using the scaling constant $k_m = 680$ lumens / Watt.

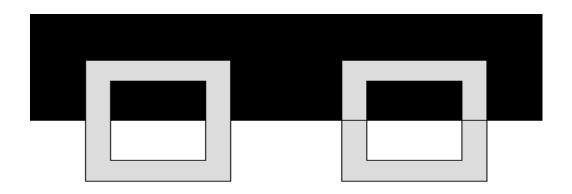
Luminous intensity, I_v is visible radiant intensity, and is given by

$$I_v = k_m \int_{380}^{780} I(\lambda) y(\lambda) d\lambda$$
 in candelas

Luminance, L_v (visible radiance) is the luminous intensity per unit projected area, and is given by


$$L_v = k_m \int_{380}^{780} L(\lambda) y(\lambda) d\lambda$$
 in candelas / m²

Luminance is directional and determines the ability of a luminous object to produce an effect at a given point in space.


- *Luminous energy*, Q_v or the quantity of light, is measured in **lumen-seconds**, also called **talbots**.
- Illumination, $E(\lambda)$ is the density of luminous flux incident upon a surface. It is measured in **lux** = lumens / m² or in foot candles = lumens / ft².
- *Luminous exitance* is the density of luminous flux emitted from a surface with no regard to direction. A common unit for it is the **lambert** = lumens / cm^2 .
- *Brightness* is a psychological term, referring to perceived luminance. It is a subjective descriptor.

Many of the terms above can be used for self-luminous sources, or for light reflected from an object, or for light transmitted through some translucent object. $r(\lambda)$ and $t(\lambda)$ are used to denote the wavelength dependent *reflectivity* and *transmissivity*.

Simultaneous contrast

The Benussi ring

Mach bands

