
#9 ECE 253a Digital Image Processing 10/26/11

Sampling in 2 dimensions

Sampling refers to making the image discrete in its spatial coordinates. To discuss this, we
need to introduce notation and define some functions:

The 2-D discrete delta function is defined by:

δ(n1, n2) =

{

1 (n1, n2) = (0, 0)
0 else

The 1-D continuous delta function can be defined by:

δ(x) = 0 for x 6= 0

and
lim
ǫ→0

∫ ǫ

−ǫ
δ(x)dx = 1

and the 2-D continuous delta function can be defined in terms of this 1-D function by:

δ(x, y) = δ(x)δ(y)

in which case it is separable by definition.

The bed-of-nails function, also called an impulsive sheet, is

comb(x, y; ∆x, ∆y) =
∞
∑

j=−∞

∞
∑

k=−∞

δ(x − j∆x, y − k∆y) = S(x, y)

This is composed of an infinite array of Dirac delta functions arranged in a grid of spacing
(∆x, ∆y).

The 2-D Fourier Transform pair that we will use in this handout is:

F (u, v) =
∫

∞

−∞

∫

∞

−∞

f(x, y)e−i2π(ux+vy)dxdy

f(x, y) =
∫

∞

−∞

∫

∞

−∞

F (u, v)e+i2π(ux+vy)dudv

where x and y are the spatial coordinates of the original image, and u and v are the spatial
frequency coordinates of the Fourier transform of the image. The extension to 3-D is obvious.
This can all be written in vector notation:
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F (s) =
∫

∞

−∞

f(x)e−i2πsT xdx

f(x) =
∫

∞

−∞

F (s)e+i2πs
T
xds

where s = (s1, s2, . . . , sN) and the units of the coordinate si are the inverse of the units of
the corresponding spatial coordinate xi.

Important property: if a function is separable, then its Fourier transform is separable. Using
↔ to denote a F.T. pair, we have

if f(x) =
∏

i fi(xi)
and f(x) ↔ F (s)

then F (s) =
∏

i Fi(si),
where fi(xi) ↔ Fi(si)

Let fI(x, y) denote a continuous, infinite extent ideal image field representing the luminance,
photographic density, or some desired parameter of a physical image. In a perfect sampling
system, spatial samples of the ideal image would be obtained by multiplying by the spatial
sampling function S(x, y):

fp(x, y) = fI(x, y)S(x, y) = fI(x, y)
∞
∑

j=−∞

∞
∑

k=−∞

δ(x − j∆x, y − k∆y)

fp(x, y) =
∞
∑

j=−∞

∞
∑

k=−∞

fI(j∆x, k∆y) × δ(x − j∆x, y − k∆y)

where it is observed that fI(x, y) may be brought inside the summation and evaluated only
at the sample points (j∆x, k∆y).

By the convolution theorem, the FT of the sampled image can be expressed as the convolution
of the FTs of the ideal image and the sampling function:

Fp(u, v) = FI(u, v) ∗ FS(u, v)

The 2D FT of the sampling function is another infinite array of delta functions in the spatial
frequency domain:

FS(u, v) =
1

∆x∆y

∞
∑

j=−∞

∞
∑

k=−∞

δ(u − jfxs, v − kfys)

where

fxs =
1

∆x
and fys =

1

∆y

represent the Fourier domain sampling frequencies.
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If we assume that the spectrum of the ideal image is bandlimited to some bounds:

FI(u, v) = 0 for | u |> fxc or | v |> fyc

Then performing the convolution yields:

FP (u, v) =
1

∆x∆y

∫

∞

−∞

∫

∞

−∞

FI(u − α, v − β) ×
∞
∑

j=−∞

∞
∑

k=−∞

δ(α − jfxs, β − kfys)dαdβ

Upon changing the order of summation and integration and invoking the sifting property of
the delta function, the sampled image spectrum becomes

FP (u, v) =
1

∆x∆y

∞
∑

j=−∞

∞
∑

k=−∞

FI(u − jfxs, v − kfys)

So the spectrum of the sampled image consists of the spectrum of the ideal image infinitely
repeated over the frequency plane in a grid of resolution (1/∆x, 1/∆y).

The effect of rectangular sampling in multiple dimensions

is replication of the spectrum along all of the coordinate axes.

If ∆x and ∆y are chosen too large with respect to the spatial frequency limits of FI , then
the individual spectra will overlap.
The image can be reconstructed exactly from its samples if

∆x ≤ 1

2fxc

⇒ fxc ≤
1

2∆x
=

fxs

2

∆y ≤ 1

2fyc

⇒ fyc ≤
1

2∆y
=

fys

2

Cutoff frequency ≤ 1

2
sampling frequency

In physical terms the sampling period must be equal to or smaller than one-half the period
of the finest spatial detail in the image. This is equivalent to the 1D sampling theorem
constraint for time-varying signals. They must be sampled at a rate of at least twice the
highest temporal frequency component.
If equality holds, then the sampling is at the Nyquist rate. If ∆x and ∆y are smaller
than required, the image is called oversampled. If they are larger than required, the image
is undersampled.
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A Change of Variables Theorem

To discuss arbitrary sampling geometries, we need to establish the properties of the Fourier
transform to transformations in the input coordinates of the form x′ = Mx−b where x′,x,b
are vectors and M is a matrix. By definition,

f(Mx − b) ↔
∫

∞

−∞

f(Mx − b)e−i2πx
T
sdx

We will change variables:

x′ = Mx − b and x = M−1(x′ + b) and dx =
1

|detM |dx
′

We know that we can safely restrict ourselves to the cases where M is invertible because if
the N-dimensional signal contains information in all directions, we will want to sample in all
directions, so M must be of full rank. We obtain:

f(Mx − b) ↔ 1

|detM |
∫

∞

−∞

f(x′)e−i2π(x′T +bT )(M−1)T sdx′ (1)

=
e−i2πbT (M−1)T s

|detM |
∫

∞

−∞

f(x′)e−i2πx′T (M−1)T sdx′ (2)

=
e−i2πb

T (M−1)T
s

|detM | F ((M−1)T s) (3)

This is a compact notation containing many different special cases. As a check of correctness,
let M = I, the identity matrix, and let b = 0.

Aside #1: The formula above relies on a theorem for changing variables in a double integral.
For a single integral, the theorem is:

∫ x

c
f [g(t)]g′(t)dt =

∫ g(x)

g(c)
f(u)du

In two dimensions, if we have an invertible mapping from S to T given by

x = X(u, v) and y = Y (u, v)

then the theorem states
∫

S

∫

f(x, y)dxdy =
∫

T

∫

f [X(u, v), Y (u, v)]|J(u, v)|dudv

The factor J(u, v) plays the role of the g′(t) which appears in the 1-D formula. J(u, v) is
called the Jacobian determinant of the mapping. It is equal to

J(u, v) =

∣

∣

∣

∣

∣

∣

∂X
∂u

∂Y
∂u

∂X
∂v

∂Y
∂v

∣

∣

∣

∣

∣

∣
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The shift theorem: Taking M = I and b arbitrary, we get a multidimensional shift
theorem:

f(x − b) ↔ e−i2πb
T
sF (s)

Two-dimensional scaling: Let

M =

(

λ1 0
0 λ2

)

.

Then

(M−1)T =

(

1
λ1

0

0 1
λ2

)

,

and

f(λ1x, λ2y) = f(Mx) ↔ 1

|λ1λ2|
F ((M−1)T s) =

1

|λ1λ2|
F (

1

λ1
u,

1

λ2
v).

Rotation:

Let MMT = I where detM = 1. The matrix M represents a rotation. Using the change of
variable theorem together with the fact that (M−1)T = (MT )T = M leads to

f(Mx) ↔ F (Ms)

This means that rotating an image just rotates its Fourier Transform by the same amount.

Delta Function Scaling: Applying our change of variable expression to the delta function
leads to

δ(Mx − b) ↔ e−i2πbT (M−1)T s

|detM |
Applying it to the function δ(x − M−1b) leads to

δ(x − M−1b) ↔ e−i2πb
T (M−1)T

s

Dividing both sides of this equation by |detM |, we note that the right hand side of this
equation matches the right hand side of the previous one. By the uniqueness of the FT, we
can conclude that the delta function scales as

δ(Mx − b) =
δ(x − M−1b)

|detM |
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Sampling on an arbitrary lattice:

Definition: A lattice Λn in Rn is composed of all integral combinations of a set of linearly
independent vectors which span the space.
In 2-D, let A be a 2× 2 non-singular matrix called the generator matrix of the lattice. Then
the lattice L is composed of

L = {t ∈ R2/t = Am for m ∈ Z2}

Thus, the sampling function that would be used for sampling on an arbitrary 2-d lattice
could be denoted by:

∑

m∈Z2

δ(t − Am)

We define, in one dimension, a train-of-impulses function which we will call the Shah function:

∐∐

(x) =
∑

n

δ(x − n) where n ∈ Z

In N dimensions, this is the same as the bed-of-nails or comb function which we defined
earlier, except where we take unit spacing in the N dimensions:

∐∐

(x) =
∑

n

δ(x − n) where n ∈ ZN

Now, we can use the scaling of the delta function on this to obtain:

∐∐

(Mx) =
∑

n

δ(Mx − n) =
∑

n

δ(x − M−1n)

|detM | (4)

The change of variables theorem, applied to the function
∐∐

(Mx) with b = 0 yields the FT
relationship:

f(x)
∐∐

(Mx) ↔ F (s)

|detM | ∗
∐∐

((M−1)T s). (5)

Now, we can multiply both sides of this equation by |detM |, and use Eqn 4 to substitute for
∐∐

(Mx), and similarly substitute for
∐∐

((M−1)T s) to obtain

f(x)
∑

n

δ(x − M−1n) ↔ F (s)

|detM−1| ∗
∑

m

δ(s− MT m) (6)

where we have used the fact that detM = detMT . To put this equation in a pretty form,
we’ll denote A = M−1 and B = MT . Note that convolution with the Shah function results
in replication of the spectrum. This leads to

f(x)
∑

n

δ(x − An) ↔ 1

|detA|
∑

m

F (s− Bm) (7)
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This is a sampling theorem valid for arbitrary sampling lattices. The columns of the matrix
A form vectors which describe the sampling lattice. Integer combinations of these vectors
describe all of the sampling locations in the function (spatial) domain. In the Fourier domain,
the columns of the matrix B describe all of the replication locations of the spectrum.
If the sampling rates are high enough for a bandlimited function, the original function may
be recovered. Application of an appropriate lowpass filter will provide for the recovered
signal

F (s)

|detA|
|detA| is the area of the parallelopiped formed by the column vectors of A.

Aside #2: Proof of the fact that |detA| is the area of the parallelopiped formed by the
column vectors of A. Let

A =

(

a1 a2

b1 b2

)

Let θ1 denote the angle that the first vector (a1, b1) makes with the x-axis. Similarly, let θ2

denote the angle that (a2, b2) makes with the x-axis. Call the angle between the two vectors
θ3. We use x1, x2 to denote the lengths of vectors 1 and 2. If we drop a perpendicular from
the tip of vector 1 to vector 2, and call that perpendicular distance x4, then we have the
following relationships:

sin θ1 =
b1

√

a2
1 + b2

1

sin θ2 =
b2

√

a2
2 + b2

2

cos θ1 =
a1

√

a2
1 + b2

1

cos θ2 =
a2

√

a2
2 + b2

2

We can solve for x4 by substituting the 4 expressions above into:

sin θ3 =
x4

√

a2
1 + b2

1

= sin(θ2 − θ1) = sin θ2 cos θ1 − sin θ1 cos θ2.

We use that value of x4 in the equation

Area = x4x2

together with the fact that

x2
2 = a2

2 + b2
2

to obtain

Area = a1b2 − b1a2 = detA

For a given matrix A, the sampling density may be determined as the inverse of the area,
since there is a one-to-one correspondence between lattice cells and lattice points.
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Example: 2-D rectangular vs. hexagonal sampling

Consider a signal with a circularly symmetric spectrum as shown below (left). Then a rect-
angular sampling pattern which does not cause aliasing would put the spectral replications
as shown below (right).
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The generator matrix for the replication lattice is therefore:

Br =

(

2 0
0 2

)

and so the generator matrix for the sampling matrix in the spatial domain is

Ar = (B−1
r )T =

(

0.5 0
0 0.5

)

and we have detAr = 1/4. For the same spectrum, we could achieve no aliasing with a
hexagonal lattice. The generator matrix for this is

Bh =

(

2 1

0
√

3

)

The sampling in the spatial domain occurs at lattice points given by the generator matrix

Ah = (B−1
h )T =

1

2
√

3

( √
3 0

−1 2

)

≈
(

0.5 0
−0.3 0.6

)

This is a hexagonal lattice too, and it is less dense than the lattice for rectangular spatial
sampling. How much less dense can be determined by the ratio of the determinants

sampling density of hex grid

sampling density of rect grid
=

1
detAh

1
detAr

=
2
√

3

4
= 0.866

So hexagonal sampling is more efficient than rectangular sampling for circularly symmetric
spectra. Further gains can be had for packing in 3 dimensions.
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