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Abstract— In this paper, we focus on predicting the visibility of
packet losses in MPEG-2 compressed video streams. We develop
a generalized linear model (GLM) to predict the probability that
a packet loss will be visible to an average viewer. The GLM
input consists of parameters that can be easily extracted from
the video near the location of the loss, and outputs an estimate
of the probability that that loss is visible. We also show how our
GLM can be used to classify each loss as visible or invisible.
Using this method, we are able to achieve a high classification
accuracy.

I. INTRODUCTION

When sending compressed video across today’s communi-
cation networks, packet losses may occur. Network service
providers would like to (a) provision their network to keep the
packet loss rate below an acceptable level, and (b) monitor the
traffic on their network to assure continued acceptable video
quality. Unfortunately, each packet loss in video has a different
visual impact. For example, one may last for a single frame
while another may last for many; one may occur in the midst
of an active scene while another is in a motionless area. Thus,
the problem of evaluating video quality given packet losses is
challenging.

In this paper, we focus on predicting the visibility of packet
losses in MPEG-2 compressed video streams. Our goal is
to develop a quality monitor that is accurate, real-time, can
operate on every stream in the network, and answers the
question, “How are the losses present in this particular stream
impacting its visual quality?”. Toward this goal, we develop
a generalized linear model (GLM) to predict the probability
that a packet loss will be visible to an average viewer. The
GLM input consists of parameters that can be easily extracted
from the video near the location of the loss, and outputs an
estimate of the probability that that loss is visible. We show
how our GLM can be used to classify each loss as visible or
invisible.

A lot of research has been done on developing objective per-
ceptual metrics for compressed video not affected by network
losses. While these metrics can predict the quality degradation
caused due to compression artifacts, they are not equipped to
handle the degradation caused by network losses.

In earlier efforts to understand the visual impact of packet
losses [3], [4], [5], [6], the goal was to understand the average
quality of typical videos subjected to average packet loss rates
(PLR). Video conferencing is studied in [3] using the average
judgement of consumer observers to examine the relative

importance of bandwidth, latency, and packet loss. The impact
of packet loss on the Mean Opinion Score (MOS) of real-time
streaming media was studied in [4] for Microsoft Windows
Media encoder 9 (beta version) video. A neural network was
trained in [5] to viewer responses on the ITU-R 9-point quality
scale, when a single 10-second sequence was subjected to
different bandwidth, frame-rate, packet loss rate, and I-block
refresh rate.

Hughes et al. [6] use MOS to evaluate the subjective
quality of VBR video subjected to ATM cell loss over a
10-second period. They show that performance is sensitive
not only to the magnitude of the bursts, but also to their
frequency. “Very different” results were obtained for different
sequences. Other challenges identified by these authors [6]
were: (a) many different realizations of both packet loss and
video content are necessary to reduce the variability of viewer
responses; (b) very low PLRs are difficult to explore because
the typical test period (10 seconds) is so short that typical
realizations may have no packet losses; (c) the “forgiveness
effect” causes viewers to rank a long video based on more
recently viewed information. The joint impact of encoding rate
and ATM cell losses on MPEG-2 video quality was studied
in [13]. Here the quality of video is judged based on an
existing perceptual quality metric and not based on subjective
tests. A framework for employing objective perceptual quality
assessment methods, evaluating the quality of audio, video
and multimedia signals, to model network performance is
demonstrated in [15].

In addition, these studies [3], [4], [5], [6] all use MOS to
evaluate quality. However, the MOS quality rating methodol-
ogy has a number of difficulties, as detailed in [7]. First, the
impairment (or quality) scales are generally not interpreted
by subjects as having equal step-size, and labels in different
languages are interpreted differently. Second, subjects tend to
avoid the end-points of the scales. Third, the term “quality”
itself is actually not a single variable, but has many dimen-
sions.

Thus, we designed and conducted a subjective test that does
not use MOS, and explores the impact of each packet loss
individually. Viewers are shown MPEG-2 video with injected
packet losses, and asked to indicate when they see an artifact in
the displayed video. Data is gathered for a total of 1080 packet
losses over 72 minutes of MPEG-2 video. “Ground truth” for
the probability of visibility of packet losses is defined by
the results of our subjective tests. The frequency of visible
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Fig. 1. Illustration of FR, RR and NR methods

packet losses will have a significant influence on the perceived
quality; however, in this study, we don’t explore this issue.

In our previous work [1], we designed a classifier to classify
each packet loss as visible or invisible to an average human
observer. Our classifier was a tree where the path at each node
is based on a binary decision using one factor that affects
visibility. Using this classifier, we were unable to differentiate
packet losses which are at the threshold of visibility from those
far away from the threshold. In this paper, because we would
like to predict the probability that a packet loss will cause a
visible artifact, we are motivated to use a GLM instead of a
decision tree. We also explore the different factors that affect
packet-loss visibility.

Figure 1 illustrates different methods for quality assessment
based on locations for measuring networked video. Full-
Reference (FR) methods are based on measurements of the
exact pixel values at both the encoder and decoder. Reduced-
Reference (RR) methods are based on measurements of certain
key parameters at the encoder and access to the exact pixel
values at the decoder. No-Reference (NR) methods do not have
access to any measurements at the encoder. There are two
types of NR methods: NR-pixel (NR-P) and NR-Bitstream
(NR-B) methods. NR-P methods can measure the decoded
video at the pixel level, while NR-B methods can measure
only the bitstream, not the decoded pixels. FR methods
might give the highest accuracy, but NR-B methods are the
best choice for network-based quality monitoring. They can
be deployed at different points in the network without the
additional complexity of a decoder for every stream. Gastaldo
et al. [14] used a Neural Network approach to design an
objective quality assessment algorithm for MPEG-2 video
streams without decoding. However, the algorithm is based
on compression artifacts and does not consider network losses
like loss of packets.

In [1], our classifier was based on factors that depended on
a complete video bitstream, the location of the loss in the re-
ceived bitstream, and the complete decoded video. As a result,
this classifer must be considered to be a RR quality metric.
In this paper, we explore a range of quality metrics (all using
the GLM structure), which differ in the amount of information
that is available at the time of measurement. Specifically, we
consider an RR, an NR-P, and an NR-B method, all based
on parameters easily extracted from available bitstreams, and
explore the relative quality of each.

This paper is organized as follows. Section II gives an

overview of MPEG-2 packet losses and their impact. Sec-
tion III describes our subjective test. Section IV describes the
logistic regression model, the GLM which suits our purpose.
Section V describes the objective factors that we believe
should be included in our models. Section VI describes our
statistical analysis and its results, while Section VII concludes.

II. EFFECT OF A PACKET LOSS

MPEG-2 is typically packetized in one of two ways. First,
video can be segmented and packetized into small fixed-
size packets (like ATM cells or MPEG-2 Transport Stream
packets), in which case a single packet loss might force the
decoder to discard either a slice or an entire frame. Second, a
variable-sized packet can contain one or more slices. In both
cases, a packet loss corresponds to the loss of one or more
slices. We explore here the case that a packet loss causes the
loss of a single slice, a double slice, or the entire frame.

The initial error caused by a packet loss propagates in space
and time as a result of the video decoding algorithm. The exact
error due to packet loss can be completely described by (a) the
initial error for each macroblock in the lost packet, and (b) the
macroblock type and (c) motion information for subsequently
received macroblocks [11]. The latter two control the temporal
duration and spatial spread of the error.

The initial error induced by a packet loss depends on the
error concealment strategy used by the decoder. A typical
concealment strategy, used here, is zero-motion concealment,
in which an affected macroblock is estimated using the mac-
roblock in the same spatial location from the closest reference
frame. In this case, the initial error is simply the difference
between the current encoded frame and the closest reference
frame for the affected macroblocks.

We expect the visibility of a loss to depend on a complex
interaction of its location, the video encoding parameters, and
the underlying characteristics of the video signal itself. For
example, the texture and motion of the underlying signal may
potentially mask the error. To isolate the impact of the various
parameters, one approach could be to inject different error
amplitudes against an identical signal background, as was
done in [12] for blocky, blurry and noisy artifacts. However,
for packet losses, the error itself is highly dependent on the
underlying signal and so we do not have control over the
amplitude of the error. Therefore, we must take a different
approach.

When choosing the packet losses to inject for our subjective
tests, we have independent control over the location, initial
spatial extent and temporal duration of each loss we inject. The
other factors depend on the signal. Thus, we choose whether
to lose a single slice, double slice or an entire frame. We also
choose the loss to be in a B-frame (which would last a single
frame) or in a reference frame (which will last until the next
I-frame). In choosing the location of the loss, we distribute the
locations vertically within the frame and choose representative
samplings from both still and active regions of the sequence.
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III. SUBJECTIVE TESTS

For the subjective tests, we can conduct either a single-
stimulus test or a double-stimulus test. In a single-stimulus
test, only the video being evaluated (here, video with packet
losses) is shown. The reference or original video is not
shown. In a double-stimulus test, both videos are shown. We
conducted a single-stimulus test because the test mimics the
perceptual response of a viewer who does not have access
to the original video, which is a natural setting for most
applications. The viewer bases his/her judgement on the lossy
video only.

In the test, the viewers’ task is to indicate when they saw
an artifact, where an artifact is defined simply as a glitch
or abnormality. We wanted viewers to be immersed in the
viewing process and not scrutinizing the video for any possible
impairment. Thus we chose DVD-quality MPEG-2 video1

from travel documentaries. Audio was not presented. Zero-
motion error concealment using the closest reference frame
was used whenever there was a packet loss. This presumes a
minimum amount of intelligence on the part of the decoder.
Decoders that use sophisticated error concealment methods
may have fewer visible packet losses. However, since we
would like to predict the visibility of packet losses in the net-
work, without necessarily knowing which decoder the viewer
is using, we assume only this minimal error concealment
strategy.

We chose twelve 6-minute video sequences, for a combined
length of 72 minutes. We grouped the sequences into 4 sets,
each consisting of three sequences. This limited a viewing
session to 18 minutes so as not to tire or bore the viewers. Dur-
ing each session, a viewer evaluated a set of video sequences
with a short break between each sequence. Some viewers
participated in more than one viewing session, although never
on the same day. Each set of video sequences (and hence each
packet loss) was evaluated by 12 viewers.

Viewers were told that the videos they were watching would
have impairments caused by packet losses, and that when
they saw something unexpected in the video like a glitch,
they should respond by pressing the space bar. They were
asked to keep their finger on the space bar so they would
not be distracted by that task. The lighting condition was
typical of an office environment and the viewer was positioned
approximately six picture heights from the screen.

A total of 1080 packet losses were randomly injected in
these videos such that every non-overlapping four-second in-
terval contained one packet loss in the first three seconds. The
one-second guard interval ensured a viewer had sufficient time
to respond to each individual error. We distributed the losses
such that 30% affected an entire frame, 10% affected two
adjacent slices, and 60% affected a single slice. Further, we
chose to have 30% of the losses to be in B-frames (and hence
have a temporal duration of one frame), and the remaining
70% evenly distributed across the available P- and I-frames in
the 3-second interval. Finally, the video we selected was highly

1720 pixels, 480 lines, and 60 fields per second.
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Fig. 2. Histogram of time between adjacent packet losses

varied, with many different motion types and amounts of
spatial texture. Therefore, we believe our injected packet losses
occur across a representative set of diverse signal background
types.

The output of the subjective test was a set of files containing
the times that the viewer pressed the space bar relative to the
start of the video. We processed these to create a matrix with
1080 rows and 12 columns, whose entries indicate whether a
viewer responded to a packet loss or not. If a viewer pressed
the space bar with in two seconds after a packet loss occurred,
he/she is considered to have responded to that packet loss.
Otherwise, he/she is considered not to have responded to the
packet loss. The ground truth for the probabilities of visibility
of a packet loss was defined from these viewers’ responses.
The probabilities were calculated as the number of viewers
who saw the packet loss divided by 12.

Viewers were not told the pattern of injected packet losses.
There is a concern, however, that while viewing the video
they might infer that a packet loss occurs in every 4-second
interval. If a viewer were able to predict this, it might bias their
responses. To analyze this, we examined the time between
adjacent packet losses, and time between adjacent visible
packet losses, where we define visible to be those losses
that over 75% of viewers indicated they saw. Figure 2 shows
that the density of the time between adjacent packet losses is
triangular with a minimum, mean, and maximum of one, four,
and seven seconds, as expected. Also shown in Figure 2 is the
density of time between adjacent visible packet losses, with its
long tail out to 130 seconds not shown. This density has a peak
near four seconds. However, fewer than 5% of all the losses
are visible within 7 seconds of each other. This means that
viewers saw adjacent packet losses less than 5% of the time.
Therefore, we do not believe that viewers were able to infer
that packet losses might occur in every four-second interval
and begin to anticipate an artifact.
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IV. GLM - LOGISTIC REGRESSION

In this paper, we model the probability of visibility using
a Generalized Linear Model (GLM). Logistic Regression is a
type of GLM which models the parameter p of a binomial
distribution. Generalized linear models are an extension of
classical linear models [2]. First we will give a brief overview
of the classical regression problem and then explain the
generalized linear model and logistic regression.

Let y1, y2, ..., yN be a realization of independent random
variables Y1, Y2, ..., YN such that Yi has binomial distribution
with index mi and parameter pi. Let y, Y and p denote the N-
dimensional vectors represented by yi, Yi and pi respectively.
We are trying to model the parameter p as a function of P
factors. Let X represent a N × P matrix, where each row i

contains the P factors influencing the corresponding parameter
pi. An ordinary linear model between p and X can be written
as

p = γ +
P

∑

j=1

xjβj

where xj is the jth column of X and β1, β2, ...., βP are the
coefficients of the factors. Coefficients β and the constant term
γ are usually unknown and need to be estimated from the data.
A simple linear regression model is incapable of estimating
the parameter p of a binomial model because the output of a
linear model typically has the range (−∞,∞) while we know
p ∈ [0, 1].

A generalized linear model can be represented as

g(p) = γ +

P
∑

j=1

xjβj

where g(.) is called the link function, which is typically non-
linear. Classical regression is a special case of GLM where
the link function g(.) is an identity. For logistic regression,
the link function is the logit function, which is the canonical
(therefore default) link function for the binomial distribution.
The purpose of the link function here is to map p ∈ [0, 1] onto
the entire real line (−∞,∞). The logit function is defined as

g(p) = log(
p

1 − p
).

Given N observations, we can fit models using up to N

parameters. The simplest model, also called the Null model,
has only one parameter: the constant γ. At the other extreme,
it is possible to have a model with as many parameters as
there are observations, called the Full Model; however, this is
problematic. The goodness of fit for generalized linear models
can be characterized by the deviance value, which is formed
as the logarithm of a ratio of likelihoods.

If we denote the log-likelihood function for model p (which
is a function of β), and the observations y as l(p;y), then
for the binomial distribution we can write the log-likelihood

function as

l(p;y) =
N

∑

i=1

[yilog(
pi

1 − pi

) + milog(1 − pi) +

log(

(

mi

yi

)

)]

where mi represents the number of trials made for observation
i. The log-likelihood function l(p;y) is maximized for the full
model. Let the full model and the current model be represented
by p̃ and p̂ respectively. Then, we can write p̃i = yi

mi

. Further,
the deviance for the model represented by p̂ is defined as

D(y; p̂) = 2[l(p̃;y) − l(p̂;y)].

From the definition, we can see that the deviance for the Full
model is zero and the deviance for all other models is positive.
So the smaller the deviance, the better the model fit. The
deviance for the null model is also called the null deviance.
The deviance is often used as a goodness-of-fit statistic for
testing the adequacy of a fitted model. Under the assumptions
of independence and p ∈ (0, 1), the deviance can be shown
to be asymptotically distributed as χ2

n−(P+1), where (P+1)
is the total number of parameters fitted for the model [2].
Furthermore, the difference in deviance between two models
is also known to be approximately distributed as χ2

k under
the assumption of independence alone for large values of
N , where k is the difference in the number of parameters
estimated for each model. This is very useful in determining
the significance of different factors.

We use the statistical software R [16] for our model fitting
and analysis. To obtain the model parameters, R uses an
iteratively re-weighted least-squares technique to generate a
maximum-likelihood estimate. After fitting a particular model,
the importance of each factor in the model can be evaluated
by the resultant increase in deviance when we remove that
factor from the model. This increase can be compared with the
appropriate χ2 statistic to compute the p-value for this factor.
If the p-value is less than 0.05, then the factor is significant
at the 95% level. We represent the observed probability of
visibility as p̃ and the predicted probability of visibility as p̂.

V. FACTORS AFFECTING VISIBILITY

In this section, we describe the objective parameters that we
believe will be useful to model the probability of visibility. We
focus primarily on factors that are easily extracted from the
video, as our goal is to develop an NR-B method for evaluating
video quality within a network. In the next section, we will
explore the usefulness of these factors in our models.

These objective factors can be classified into two types:
content-independent factors and content-specific factors.
Content-independent factors depend on the location of the
packet loss in the MPEG-2 bitstream, but do not depend
on the content of the video. Content-independent factors can
therefore be calculated exactly from the lossy bitstream itself.
Content-specific factors depend on the content of the video
at the location of the packet loss. Content-specific factors
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Factor Acronym Description
TMDR Time Duration: Number of frames affected

by the packet loss
SPTXNT Spatial Extent: Number of slices lost
HGT Height: Number of the topmost slice lost
MOTX Average motion in x-direction
MOTY Average motion in y-direction
VARMX Variance of motion in x-direction
VARMY Variance of motion in y-direction
RSENGY Average residual energy per pixel

after motion compensation
IMSE Mean square error per lost pixel

TABLE I
DESCRIPTION OF FACTORS AFFECTING VISIBILITY

can be calculated exactly at the encoder side, by using the
original bitstream without losses. However, these content-
specific factors cannot be exactly obtained from a bitstream in
which packets are already lost.

The content-independent factors we consider are Temporal
Duration (TMDR), Spatial Extent (SPTXNT) and the vertical
position (HGT) of the error induced by the packet loss.
Temporal duration represents the number of frames that are
affected by a packet loss, and varies from 1 to 13 in our
bitstreams. An error in a B-frame will last a single frame, while
an error in a reference frame will last until the next I-frame.
The spatial extent represents the number of slices affected by
the packet loss. In our case, it is either 1, 2 or 30 corresponding
to a single slice, double slice or a frame loss. HGT is the
number of the topmost slice affected by the packet loss, where
the slices are numbered from 0 to 29 from top to bottom. This
factor captures the varying attention viewers have on different
regions in the frame. All the content-independent factors can
be controlled at the time of choosing which losses to introduce.
Since the content-independent factors can be extracted exactly
from the lossy bitstream, they are identical across our RR, NR-
P, and NR-B models.

Content-specific factors include Motion (MOTX and
MOTY), Variance of motion (VARMX and VARMY), Resid-
ual Energy (RSENGY) and Initial Mean Square Error (IMSE).
MOTX and MOTY represent the average motion in x and
y directions respectively for the lost slices. VARMX and
VARMY represent the variance of motion in x and y directions
for the lost slices. RSENGY denotes the average residual
energy per pixel after motion compensation in the lost slices.
IMSE is the mean squared error per pixel between the decoded
videos with and without packet loss evaluated only over the
pixels in lost slices. Table I summarizes the descriptions of all
the factors along with their acronyms.

The content-specific factors described above can be ex-
tracted exactly from the complete bitstream (available at the
encoder) and the decoded pixels. Thus, they can only be
exactly obtained using an RR method. Since the complete
bitstream is not available to our NR-P and NR-B methods,
they must estimate the content-specific factors for the missing
slices. Further, to compute IMSE, decoded pixels are neces-

sary; however, these are unavailable to the NR-B method.
For the RR method, the content-specific factors can be

extracted for all slices, and this information can be made
available to the quality monitor via reliable means. This
information is then combined with the knowledge of which
slices are lost to generate the set of parameters used in our
RR models.

For the NR-P and NR-B methods, the parameters MOTX,
MOTY, VARMX, VARMY and RSENGY are extracted di-
rectly from the bitstream for all received slices. Parameters
for the missing slices are then estimated using one of two
approaches. The first approach estimates the parameter using
co-located slices in the previous frame. The second approach
estimates the factor using spatially neighboring slices in the
same frame. We tried each approach on one video sequence,
to decide which approach performed best. For the MOTX,
MOTY, VARMX, VARMY and RSENGY parameters, the first
approach performed best for both the NR-P and NR-B cases.

For the NR-P case, the IMSE is computed for all received
slices, where IMSE for received slices is defined to be the
IMSE that would have resulted if the slice had been lost.
The second approach above was found to be more effective
for estimating the IMSE of the missing slices. For the NR-
B method, neither of the above two approaches is possible
since the decoded pixels aren’t available. Thus, to estimate
the IMSE for the NR-B case, we use the approach described
in [11]. This approach [11] extracts and estimates additional
parameters (like mean, spatial correlation, spatial variance)
from the received slices to estimate IMSE for the missing
slices.

VI. STATISTICAL ANALYSIS AND RESULTS

In this section, we apply Logistic Regression, a type of
GLM, to the problem of estimating the probability that a
packet loss is visible to an average viewer. We use the
parameters extracted from our RR, NR-P, and NR-B methods
to derive a separate model for each case. We explore a number
of different sets of parameters, to determine the best way
to characterize sequence motion and loss-duration for our
objective.

We use the word “model” to characterize the set of pa-
rameters which comprise the matrix X, introduced in section
IV. We note that for each “model”, we actually consider
three: one for each of the RR, NR-P, and NR-B cases. The
distinction between the three lies in whether the content-
specific parameters are extracted exactly, or estimated as
described in the previous section.

We begin with a model that uses the same factors as those in
[1]. Next, we explore improved characterization of the motion
variables. Finally, we explore improved characterization of the
time-duration variables. Models in each subsection VI-A to
VI-C are numbered using the corresponding subsection num-
ber (A-1, B-2 and C-3); intermediate models in a subsection
have an additional qualifier. The Null Model is called Model 0.
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A. Initial Model

Our initial model, Model 1, uses the factors TMDR, SP-
TXNT, MOTX, MOTY, VARMX, VARMY, RSENGY, IMSE
and HGT for all three methods i.e. RR, NR-P and NR-B. In
this model, we considered SPTXNT as a categorical variable
with three levels to distinguish the three cases of single, double
slice loss and frame loss errors. A categorical variable with
N levels is treated as a vector of N − 1 boolean variables.
(The N -th level is represented by setting all N − 1 boolean
variables to zero.) For SPTXNT, we therefore considered two
boolean variables: SPTXNT-2 and SPTXNT-30. SPTXNT-1 is
considered default and its effect is included in the constant
term.

All these factors formed the columns of X. The null
deviance obtained for our set of observations was 9254.8 with
1079 degrees of freedom for the χ2 distribution. The deviances
obtained with Model 1 for the RR, NR-P and NR-B cases were
5707.5, 6115.5 and 6114.8 respectively with 1069 degrees of
freedom. This model has order 11: SPTXNT uses 2 degrees
of freedom, the remaining 8 factors and the constant γ use 9
degrees of freedom. The MSE between p̃ from the full model
and p̂ from Model 1 is 0.0678 for RR, 0.0742 for NR-P and
0.0749 for NR-B case.

B. Improved Motion Variables

Next, we consider the effect of overall motion and its
direction, rather than the effect of x and y directional motions.
We define MOTM and MOTA to represent the magnitude and
angle of average motion and VARM to represent the variance
in average motion. We calculate MOTM, MOTA and VARM
as follows:

MOTM =
√

MOTX2 + MOTY 2

MOTA = arctan(
MOTY

MOTX
)

V ARM = V ARMX + V ARMY

So our new model, Model 2a, consists of TMDR, SPTXNT,
MOTM, MOTA, VARM, RSENGY, IMSE and HGT. The
deviance values decrease with this model for the RR and NR-
P cases, though the model order (degrees of freedom) is also
reduced from 11 to 10. The deviance values obtained were
5670.6, 6107.6 and 6126 for the RR, NR-P and NR-B cases
respectively, with 1070 degrees of freedom.

More importantly, we observed that the variable MOTA is
not significant at the 95% level with its p-value being 0.1286,
0.2146 and 0.2556 for RR, NR-P and NR-B cases respec-
tively. Thus, MOTA should be removed from the model. This
decreases the model order by one, at the expense of a small
increase in deviance. In the model without MOTA, Model 2b,
the deviance values are trivially larger: 5672.9, 6109.2 and
6127.3 for the RR, NR-P and NR-B cases respectively, with
1071 degrees of freedom.

Our previous research [1] showed that packet losses are
invisible when the overall motion is low. To account for this
effect, we added a Boolean variable HIGHMOT which is set

when MOTM > 0.707. This threshold was set to correspond
to motion that is greater than half a pixel per frame in both x
and y directions. This additional variable serves to allow the
model to use a different constant value for high-motion slices
as opposed to low-motion slices. Including this variable further
reduces the deviance values by more than 350, which is highly
significant. The new deviance values are 5175.4, 5698.2 and
5765.9 for the RR, NR-P and NR-B cases respectively, with
1070 degrees of freedom. We denote the final model of this
subsection as Model 2. The MSE between p̃ from the full
model and p̂ from Model 2 is 0.0615 for RR, 0.0689 for NR-
P and 0.0704 for NR-B case.

C. Improved Time-duration Variables

Our previous research [1] also showed that if TMDR = 1,
which happens if the packet loss is in a B-frame, then the
packet loss is almost always invisible. However, we also
observed that the correlation coefficient between number of
viewers who saw a packet loss and TMDR was 0.051, which
is very low. This shows that instead of TMDR, the particular
instance of TMDR = 1 has a significant effect on visibil-
ity. So instead of TMDR, we introduce a Boolean variable
BFRAME which is set whenever a packet loss occurs in a
B-frame. This modification to the model reduces the deviance
very significantly in all the three cases. The new deviance
values are 4939.1, 5323.2 and 5340.1 for the RR, NR-P and
NR-B cases respectively, with 1070 degrees of freedom. This
is Model 3a.

Fig. 3. FRAMETYPE value for different frames in a GOP

Next, we extend the boolean variable BFRAME to a
categorical variable FRAMETYPE with 6 levels, depending
on the type of frame in which the packet loss occurred.
These 6 levels correspond to a B-frame, four P-frames with
a different distance to the next I-frame, and an I-frame.
We represent these types as B,P1,P2,P3,P4 and I. Figure 3
illustrates how these frames occur in the GOP structure of
our videos. FRAMETYPE captures all the information in
the temporal duration of a packet loss, and is due to the
motion-compensated prediction in the decoder. For example,
a packet loss in a P3 frame will have a temporal duration
of 9. Including FRAMETYPE instead of BFRAME further
reduced the deviance values to 4797.6, 5106.7 and 5115.7
for the RR, NR-P and NR-B cases respectively, with 1066
degrees of freedom. This is our final model, denoted as
Model 3, which uses the factors FRAMETYPE, SPTXNT,
MOTM, HIGHMOT, VARM, RSENGY, IMSE and HGT to
predict the probability of visibility of a packet loss. The MSE
obtained between p̃ and p̂ from Model 3 is 0.0565 for RR,
0.0608 for NR-P, and 0.0611 for the NR-B case.

To verify the applicability of this model to new data, we
perform a 4-fold cross-validation procedure. For this, we use
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the data from three out of the four sets of video as a training
set. The data from the remaining set is used for testing. We
repeat this process four times, each time choosing a different
set for the testing set. Thus we have a predicted probability for
each packet loss obtained when the packet loss was not used
for training. The MSE obtained between p̃ and p̂ during cross-
validation for Model 3 is 0.0627 for RR, 0.065 for NR-P and
0.0647 for NR-B case. This shows that the model continues
to perform well when encountering new data.

The improvement in models from the null model (Model 0)
to the final model (Model 3) can be summarized by the plot
of deviance, shown in figure 4, for all three cases (RR, NR-P
and NR-B). There is a huge drop in deviance from the null
model to the starting model (Model 1), which is expected.
When we improve the treatment of the motion variables and
also reduce the model order (Model 2), we see a decrease in
deviance indicating a better fit. Also, we see a further decrease
in deviance from Model 2 to Model 3 when we treat the time-
duration information using a boolean structure.

The coefficients (γ and βs) for the final model (Model 3)
in the NR-B case are tabulated in Table II. The values of
the coefficients do not necessarily convey the importance of
corresponding factors because these factors differ in their
variances and in the range of values they take.

The significance of different factors in the model can be
understood by the increase in the deviance that results if
each factor is individually removed from the model. Table III
shows the increase in deviance values for each factor, for
the RR, NR-P and NR-B cases. From the table, we see that
FRAMETYPE, SPTXNT, MOTM, HIGHMOT and IMSE are
very significant factors affecting visibility. Since HIGHMOT
depends completely on MOTM, we can attribute its importance
also to MOTM. If we consider it this way, then MOTM
becomes the most significant factor affecting visibility.

D. Classification Problem

Until now, we have considered the problem of predicting the
probability of visibility. So we have considered a regression

factor coefficient
constant γ -4.53

FRAMETYPE-P1 2.116
FRAMETYPE-P2 2.104
FRAMETYPE-P3 2.117
FRAMETYPE-P4 2.188
FRAMETYPE-I 5.326e-01

SPTXNT-2 7.161e-01
SPTXNT-3 1.54

MOTM 4.212e-01
HIGHMOT 1.398

VARM -1.144e-02
RSENGY -6.902e-03

IMSE 9.890e-04
HGT -2.797e-02

TABLE II
COEFFICIENTS FOR MODEL 3 IN NR-B

Factor Deviance increase
RR NR-P NR-B

FRAMETYPE 408.1 627.2 703.8
SPTXNT 532.4 517.4 440.3
MOTM 347.5 276 307

HIGHMOT 514.5 436.7 382.9
VARM 62.9 103 104

RSENGY 44.4 19.7 28
IMSE 439.8 197.9 188.9
HGT 38.7 47.9 56.6

TABLE III
FACTOR SIGNIFICANCE

problem and modeled the probability using GLMs. In this sub-
section, we describe one way to use our model for classifying
packet losses, and we analyze the results.

For this study, we classify a packet loss to be visible, invisi-
ble, or indeterminate, based on its probability of visibility. We
divide the interval [0, 1] into three regions, using the parameter
α:

[0,0.5-α] Invisible region
(0.5-α, 0.5+α) Indeterminate region
[0.5+α, 1] Visible region

The only exception is when α = 0, a probability of 0.5 is
considered to be indeterminate to avoid confusion of whether it
should belong to the Invisible or Visible region. Our classifier
takes as input the extracted parameters, and applies Model 3.
If the resulting probability of visibility does not fall in the
indeterminate region, we decide the packet loss is visible or
invisible appropriately.

To evaluate the accuracy of the model for classification
purposes, we compute the ground truth regarding visibility
using the results of the subjective test. Further, for the evalu-
ation process, we only consider those packet losses where the
ground truth regarding visibility is not indeterminate. Thus,
we only consider those cases where both p̃ and p̂ do not fall
into the indeterminate region. A decision is correct if p̃ and
p̂ both fall into the visible region or the invisible region. A
decision is wrong if p̃ falls in the invisible region and p̂ falls in

7



α Accuracy %
RR NR-P NR-B

0 0.845 0.848 0.849
0.05 0.862 0.859 0.856
0.10 0.89 0.884 0.882
0.15 0.901 0.906 0.907
0.20 0.946 0.96 0.959
0.25 0.96 0.972 0.969
0.30 0.975 0.98 0.978
0.35 0.989 0.994 0.988
0.40 0.995 0.995 0.991
0.45 0.996 0.993 0.993

TABLE IV
CROSS-VALIDATION ACCURACY WITH VARYING α

the visible region or vice-versa. Here, we assign zero cost to
classifying an invisible/visible packet loss as an indeterminate
packet loss, and unit cost for each wrong decision described
above.

We vary α from 0 to 0.45 in steps of 0.05 and calculate
the accuracy of the model for each value of α. Figures 5, 6
and 7 show the variation of cross-validation accuracy with α

for the initial and final models, for the RR, NR-P, and NR-B
methods, respectively. The final model is more accurate than
the initial model in all the three cases.

Figure 8 compares the accuracy of the RR, NR-P and NR-B
methods using the final model for different values of α, and
Figure 9 shows the corresponding number of decisions in each
case. The accuracy achieved by the final model for different
values of α is also listed in Table IV. Clearly, all the three
methods perform similarly. In particular, our NR-B method
performs almost as well as our RR method. Further, fewer
decisions are made as the size of indeterminate region (2α)
increases, but their accuracy increases. If we choose a large
value of α, we will obtain high accuracy but fewer decisions.
On the other hand, a small value of α allows us to make more
decisions, but with lower accuracy.
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Fig. 5. RR: Cross-validation accuracy versus α
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Fig. 6. NR-P: Cross-validation accuracy versus α
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Fig. 7. NR-B: Cross-validation accuracy versus α
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Fig. 8. Comparision of RR, NR-P and NR-B methods
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VII. CONCLUSIONS

We considered the problem of predicting the probability that
a packet loss is visible, using measurements from either the
entire encoded video, the decoded video pixels, or just the
received lossy bitstream. We used a logistic regression model
to fit the data from subjective tests using these measurements.
We examined how to describe pertinent factors such as motion
to best predict visibility. As a result, we use MOTM instead of
MOTX and MOTY and FRAMETYPE instead of TMDR, and
we dropped insignificant factors such as MOTA. Finally, we
used the predicted probabilities to decide whether a packet loss
is visible or not. We achieved a high cross-validation accuracy
of 96.9% in the NR-B case when α = 0.25.

Our model may be useful in scenarios other than measuring
video quality inside the network. For example, it may be useful
in setting thresholds on allowable packet loss rate. Further, it
could be used to prioritize packets within the network based on
their probability of visibility, so as to achieve visually optimal
streaming.
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