
3240 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 12, DECEMBER 2011

Superposition MIMO Coding for the Broadcast of Layered Sources
Seok-Ho Chang, Member, IEEE, Minjoong Rim, Member, IEEE, Pamela C. Cosman, Fellow, IEEE,

and Laurence B. Milstein, Fellow, IEEE

Abstract—We propose superposition multiple-input multiple-
output (MIMO) coding for the transmission of unequally im-
portant sources in a point-to-multipoint system. First, a tradeoff
between Alamouti code and spatial multiplexing (V-BLAST) is
analyzed in terms of the average bit error rate (BER), where the
maximum data rates of both MIMO schemes are set to be equal.
The results show that for a given target bit error rate, Alamouti
code is preferable for a low data rate, and spatial multiplexing
is preferable for a high data rate. For layered sources such as
scalable video, the more important component typically has lower
data rate than does the less important component. Based on
these, we construct a superposition MIMO scheme where two
different MIMO techniques are hierarchically combined such
that important data is Alamouti coded, less important data is
spatially multiplexed, and then two unequally important data
symbols are superposed.

Index Terms—Alamouti code, cross-layer design, hierarchi-
cal modulation, multimedia communications, multiple-input
multiple-output (MIMO) systems, spatial multiplexing, superpo-
sition, wireless video.

I. INTRODUCTION

PROGRESSIVE image and scalable video encoders [1]–[3]
employ a mode of transmission such that, as more bits are

received, the source can be reconstructed with better quality.
These progressive sources have steadily decreasing importance
for bits later in the stream, and hence unequal error protection
(UEP) is a natural way to ensure their reliable transmission
over mobile radio channels.

Theoretical investigation of efficient communication from
a single source to multiple receivers established that optimal
broadcast transmission could be achieved by a superposition
transmission scheme [4]–[6]. Since the theoretical basis for
UEP was initiated by [4], much of the work has shown that one
practical method of achieving UEP is based on a constellation
of nonuniformly spaced signal points [7]–[9], which is called a
hierarchical constellation. In this constellation, more important
bits in a symbol have larger minimum Euclidian distance than
less important bits. As a simple example, Fig. 1 shows a
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hierarchical 16 QAM constellation [10]. The 16 signal points
are divided into four clusters, and each cluster consists of four
signal points. Bits 𝑖1 and 𝑞1 have minimum Euclidian distance
𝑑𝑀 , and bits 𝑖2 and 𝑞2 have minimum Euclidian distance
𝑑𝐿. The distance ratio 𝛼 = 𝑑𝑀/𝑑𝐿 (> 1.0) determines how
much more 𝑖1 and 𝑞1 are protected against errors than are
𝑖2 and 𝑞2. A hierarchical 16 QAM constellation, denoted by
4/16 QAM, can be viewed as a superposition of two QPSK
subconstellations. For low SNR, it operates as only a basic
QPSK subconstellation having larger minimum distance. For
high SNR, hierarchical 16 QAM can operate as both basic and
secondary QPSK subconstellations. Hierarchical modulation
has been intensively studied for digital broadcasting systems
[7]–[9], and the Digital Video Broadcasting (DVB-T) stan-
dard [10], which is now commercially available, incorporated
hierarchical QAM for layered video data transmission.

Multiple-input multiple-output (MIMO) systems have re-
ceived a great deal of attention. Two popular approaches
for MIMO systems are spatial diversity and multiplexing.
Transmit diversity [11]–[13] is an approach where informa-
tion is spread across multiple transmit antennas to maximize
spatial diversity. Spatial multiplexing [14]–[16] is an approach
whereby independent information is transmitted on each an-
tenna, and thus data rate is increased.

We propose superposition MIMO coding for the transmis-
sion of layered sources, such as progressive images or scalable
video, in a point-to-multipoint system. In a transmission such
as broadcasting or multicasting, a single source transmits an
encoded signal to multiple receivers. Each receiver experiences
different channel conditions depending on its location. Even if
channel state information for each receiver were available at
the transmitter, the modulation alphabet size and the MIMO
mode cannot be adapted due to the nature of broadcasting.
We first analyze the tradeoff between the transmit diversity
and spatial multiplexing schemes under the constraint that the
two schemes have the same maximum data rate. We consider
Alamouti coding [11] and V-BLAST [14] as the transmit
diversity and spatial multiplexing schemes, respectively. In
this analysis, the modulation alphabet sizes for both MIMO
schemes are chosen to be different, such that the maximum
data rates are the same. The results show that for a given target
bit error rate (BER), an Alamouti code is preferable to spatial
multiplexing for a low data rate (i.e., small alphabet size), and
vice versa for a high data rate (i.e., large alphabet size). This
is presented in Section II.

In layered sources, important components and less impor-
tant components do not have the same data rate in general.
A typical example is scalable video. The base layer, which
is more important, has a smaller number of bits than does
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the enhancement layer. Therefore, when a layered source is
broadcast hierarchically in MIMO systems, a tradeoff between
transmit diversity and spatial multiplexing schemes should be
considered for each layer. Based on the above, in Section III,
we propose a layered source broadcasting system where two
different MIMO techniques are hierarchically combined. An
Alamouti code is applied for the more important component,
which has lower data rate, in order to maximize the perfor-
mance for the receivers with poor channel qualities. Spatial
multiplexing is applied for the less important component,
having higher data rate, which is decoded only by receivers
having good channel conditions. Superposition of two different
MIMO approaches is embodied in a way that basic subconstel-
lation symbols are encoded with an Alamouti code, secondary
subconstellation streams are spatially multiplexed, and then
the two subconstellations are superposed to construct the final
transmit symbols. Performance evaluations are provided in
Section IV, and we conclude our work in Section V.

II. COMPARISON OF ALAMOUTI CODING AND SPATIAL

MULTIPLEXING HAVING THE SAME MAXIMUM DATA RATE

When the same modulation alphabet size is employed for
both spatial multiplexing and transmit diversity schemes, the
former achieves better peak-signal-to-noise ratio (PSNR)1 per-
formance at high SNR due to a increased data rate, whereas the
latter retains robustness at low SNR. Since we are considering
a broadcast transmission where a single source transmits data
to multiple receivers having various channel qualities, we
cannot optimally switch between two different MIMO modes
(i.e., both modulation and MIMO mode are fixed). For this
case, as a way to compare both MIMO schemes fairly, the
maximum data rates of both are set to be equal.

A. Channel Model

The MIMO system is equipped with 𝑁𝑡 transmit and
𝑁𝑟(≥ 𝑁𝑡) receive antennas. The propagation channel is char-
acterized by an 𝑁𝑟×𝑁𝑡 matrix H whose element ℎ𝑗𝑘 at the 𝑗th
row and 𝑘th column is the channel gain from the 𝑘th transmit
antenna to the 𝑗th receive antenna, and the ℎ𝑗𝑘’s are assumed
to be i.i.d complex Gaussian random variables with zero mean
and unit variance. The received signal y = [𝑦1 ⋅ ⋅ ⋅ 𝑦𝑁𝑟 ]

𝑇 can
be expressed as y = Hs + n, where s = [𝑠1 ⋅ ⋅ ⋅ 𝑠𝑁𝑡 ]

𝑇 is the
transmit symbol, and n = [𝑛1 ⋅ ⋅ ⋅𝑛𝑁𝑟 ]

𝑇 is the noise whose
elements are assumed to be i.i.d. complex Gaussian random
variables with zero mean and variance of 𝜎2

𝑛.

B. Average BER

The average BER of an 𝑀 -ary square QAM constellation
for SISO systems in an AWGN channel is given by [17,
eq. (14)]. Let 𝛾𝑠 denote the signal-to-noise ratio (SNR) per
symbol. We define 𝛾𝑠 ≜ 𝐸

[∣𝑠𝑘∣2]/𝜎2
𝑛 (𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑡),

where 𝑠𝑘 is the 𝑘th component of the transmit symbol vector
s. For the Alamouti scheme, the instantaneous post-processing
SNR per symbol is a chi-square random variable with 2𝑁𝑡𝑁𝑟

degrees of freedom [18]. The same constellation symbol, 𝑠𝑘,

1 PSNR is a common performance index of images or video, and is
inversely proportional to the mean square error of the source.

is transmitted twice during two symbol time periods [11], and
thus for an 𝑀 -ary QAM, the SNR per bit, 𝛾𝑏, is given by
𝛾𝑏 = 2 × 𝛾𝑠/ log2 𝑀 . From the above discussion, it can be
shown that the exact BER of the Alamouti scheme for an
𝑀 -ary square QAM constellation is given by2

𝑃𝑏,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 =
4√

𝑀 log2 𝑀
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(1)

where

𝜇(𝑖) =

√
3(2𝑖+ 1)2 (log2 𝑀) 𝛾𝑏

4(𝑀 − 1) + 3(2𝑖+ 1)2 (log2 𝑀) 𝛾𝑏
.

We next derive the average BER for spatial multiplexing. It has
been shown that for a zero forcing (ZF) receiver, the instan-
taneous post-processing SNR on each independent transmit
stream is a chi-square random variable with 2(𝑁𝑟 − 𝑁𝑡 + 1)
degrees of freedom [19][20], and thus the exact BER expres-
sion is achievable. For spatial multiplexing, the SNR per bit is
given by 𝛾𝑏 = 𝛾𝑠/ log2 𝑀 . It can be shown that the exact BER
of the spatial multiplexing with a ZF receiver for an 𝑀 -ary
square QAM constellation is given by

𝑃𝑏,𝑆𝑀−𝑍𝐹 =

4√
𝑀 log2 𝑀
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where

𝜇(𝑖) =

√
3(2𝑖+ 1)2 (log2 𝑀) 𝛾𝑏

2(𝑀 − 1) + 3(2𝑖+ 1)2 (log2 𝑀) 𝛾𝑏
.

C. High SNR Approximation (Minimum Euclidian Distance
Approximation) of the Average BER

For high SNR, the BER is approximated by the error
function term having the minimum Euclidian distance. If we
discard the terms having non-minimum Euclidian distances,
we have

𝑃𝑏,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 ≈ 4(
√
𝑀 − 1)√

𝑀 log2 𝑀
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2
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(3)

where 𝜇 =
√
3(log2 𝑀)𝛾𝑏/ {4(𝑀 − 1) + 3(log2 𝑀)𝛾𝑏}. Fur-

ther, for high SNR, 𝜇 can be approximated as 𝜇 ≈ 1 −
2 The detailed steps of all the analysis in Section II can be found in [21].
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Fig. 1. Hierarchical 16 QAM constellation.

2(𝑀−1)
3(log2 𝑀)𝛾𝑏

, where we have used
√

𝑥
1+𝑥 ≈ 1− 1

2𝑥 for 𝑥 >> 1.

From this, it can be shown that (3) can be rewritten as

𝑃𝑏,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 ≈ 𝑃 𝑎𝑝𝑝
𝑏,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 =(
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(4)

In the same way, it can be shown that, for high SNR,
𝑃𝑏,𝑆𝑀−𝑍𝐹 can be approximated as

𝑃𝑏,𝑆𝑀−𝑍𝐹 ≈ 𝑃 𝑎𝑝𝑝
𝑏,𝑆𝑀−𝑍𝐹 =
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D. Comparison of High SNR BERs of Alamouti Scheme and
Spatial Multiplexing for the Same Maximum Data Rate

1) Crossover point for SNR: We compare the high SNR
approximate BERs of the Alamouti scheme and the spatial
multiplexing scheme having the same maximum data rate. To
do this, we employ 𝑚-ary QAM for spatial multiplexing, and
𝑚2-ary QAM for the Alamouti scheme. It is assumed that 𝑚
is greater than or equal to 4 (i.e., QPSK). Note that 𝑁𝑟 ≥
𝑁𝑡 = 2. If we let 𝑀 = 𝑚2 in (4), we have

𝑃 𝑎𝑝𝑝
𝑏,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 =(
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(6)

If we let 𝑀 = 𝑚 in (5), we have

𝑃 𝑎𝑝𝑝
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We now find the SNR, 𝛾∗
𝑏 , for which (6) and (7) are the same.

That is,(
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It can be shown that the 𝛾∗
𝑏 satisfying (8) is given by
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(9)

Further, it can be shown that for 𝑚 ≥ 4, 𝛾∗
𝑏 is a strictly

increasing function in 𝑚. That is, as the alphabet size, 𝑚,
increases, 𝛾∗

𝑏 strictly increases, regardless of the number of
receive antennas.

2) Crossover point for BER: It can be shown that if we
substitute 𝛾∗

𝑏 , given by (9), into (6), the corresponding BER,
𝑃 ∗
𝑏 , is given by
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Let

𝑔(𝑚) =
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1√
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We let 𝑔1(𝑚) =
√
𝑚/(𝑚 + 1), and 𝑔2(𝑚) = (𝑚 −

1)/(𝑚 log2 𝑚). Then, for 𝑚 ≥ 4, we have 𝑑𝑔1(𝑚)/𝑑𝑚 < 0.
We also have

𝑑𝑔2(𝑚)

𝑑𝑚
=
log2 𝑚− 𝑚

ln 2 +
1

ln 2

(𝑚 log2 𝑚)
2

< 0 (12)

where the inequality is derived from the following:
i) Let ℎ(𝑚) be the numerator of 𝑑𝑔2(𝑚)/𝑑𝑚.
ii) For 𝑚 ≥ 4, we have 𝑑ℎ(𝑚)/𝑑𝑚 = (1−𝑚)/(𝑚 ln 2) < 0.

Further, ℎ(4) = 2− 3/ ln 2 < 0.
iii) Hence, ℎ(𝑚) < 0 for 𝑚 ≥ 4

From (11) and (12), 𝑔(𝑚) is a strictly decreasing function in
𝑚. From (10) and (11), as the alphabet size, 𝑚, increases,
𝑃 ∗
𝑏 strictly decreases, regardless of the number of receive

antennas.
3) Comparison of the BERs: From (6) and (7), it can be

shown that the ratio of 𝑃 𝑎𝑝𝑝
𝑏,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 to 𝑃 𝑎𝑝𝑝

𝑏,𝑆𝑀−𝑍𝐹 , denoted
by 𝑅(𝛾𝑏), is a strictly decreasing function in 𝛾𝑏. Thus, from
𝑅(𝛾∗

𝑏 ) = 1, we have

𝑃 𝑎𝑝𝑝
𝑏,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 < 𝑃 𝑎𝑝𝑝

𝑏,𝑆𝑀−𝑍𝐹 for 𝛾𝑏 > 𝛾∗
𝑏

𝑃 𝑎𝑝𝑝
𝑏,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 > 𝑃 𝑎𝑝𝑝

𝑏,𝑆𝑀−𝑍𝐹 for 𝛾𝑏 < 𝛾∗
𝑏 (13)

Let 𝑃 ∗
𝑏,1 and 𝛾∗

𝑏,1 denote the crossover point when a modu-
lation alphabet size 𝑚 = 𝐶1 is employed, and 𝑃 ∗

𝑏,2 and 𝛾∗
𝑏,2

denote the crossover point when an alphabet size 𝑚 = 𝐶2 is
used. Suppose that 𝐶1 < 𝐶2. Then, from the results below (9)
and (12), we have

𝛾∗
𝑏,1 < 𝛾∗

𝑏,2 and 𝑃 ∗
𝑏,1 > 𝑃 ∗

𝑏,2. (14)

Based on (13) and (14), the high SNR BERs of the Alamouti
scheme and spatial multiplexing with ZF receiver for the



CHANG et al.: SUPERPOSITION MIMO CODING FOR THE BROADCAST OF LAYERED SOURCES 3243

BER

SNR

Spatial multiplexingAlamouti

BER

SNR

Spatial 
multiplexing

Alamouti

TbP , TbP ,
A B A B

∗
1,bP

∗
2,bP

∗
1,bγ

∗
2,bγ

Alphabet size C1 Alphabet size C2
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𝑏,𝑖, and 𝑃 𝑎𝑝𝑝

𝑏,𝑖,𝐴𝑙𝑎𝑚𝑜𝑢𝑡𝑖 > 𝑃 𝑎𝑝𝑝
𝑏,𝑖,𝑆𝑀−𝑍𝐹 for 𝛾𝑏,𝑖 < 𝛾∗

𝑏,𝑖 (𝑖 = 1, 2).

same maximum data rate are qualitatively depicted in Fig.
2. Suppose that a target bit error rate, 𝑃𝑏,𝑇 , is smaller than
𝑃 ∗
𝑏,1 but greater than 𝑃 ∗

𝑏,2. Then, from Fig. 2, the Alamouti
scheme is preferable for an alphabet size 𝐶1, whereas spatial
multiplexing is preferable for an alphabet size 𝐶2. From here
onwards, for a given 𝑃𝑏,𝑇 , we refer to an alphabet size which
satisfies 𝑃 ∗

𝑏 > 𝑃𝑏,𝑇 as a small alphabet size (i.e., low data
rate), and refer to an alphabet size which satisfies 𝑃 ∗

𝑏 < 𝑃𝑏,𝑇

as a large alphabet size (i.e., high data rate).
Using (1) and (2), we evaluate the exact BERs for 2 × 2

MIMO systems for various maximum data rates (i.e., alphabet
sizes). The results are shown in Fig. 3 (more results can be
found in [21]). The BER performance of spatial multiplexing
with the optimal maximum likelihood (ML) receiver is also
plotted. We note that since the exact BER of the ML receiver
is not analyzable, the curve is obtained from the simulation. It
is observed that as the alphabet size increases, the crossover
point for the BERs of the Alamouti scheme and spatial multi-
plexing with ZF receiver, 𝛾∗

𝑏 and 𝑃 ∗
𝑏 , moves in a way predicted

by the analysis based on the high SNR BER expressions (see
Fig. 2). Further, as the alphabet size increases, the crossover
point for the Alamouti and the spatial multiplexing with an
ML receiver moves in the same way as that for the Alamouti
and spatial multiplexing with a ZF receiver. If we focus on
a BER of 10−4, the Alamouti scheme outperforms spatial
multiplexing with the ML receiver for the data rate of 4 bits
per symbol period (Fig. 3 (a)), whereas the latter outperforms
the former for the data rate of 10 bits per symbol period (Fig.
3 (b)). The two schemes perform roughly the same for the data
rate of 8 bits per symbol period (this can be found in [21]).
We again note that this preference depends on the target bit
error rate of an application. For example, if the 𝑃𝑏,𝑇 is 10−6,
the Alamouti scheme is preferable, even for the data rate of
10 bits per symbol period.

III. SUPERPOSITION OF ALAMOUTI CODE AND

SPATIAL MULTIPLEXING

For layered sources, more important components and less
important components do not necessarily have the same data
rate. From this, we are motivated to apply different MIMO
approaches for each component of layered sources for a
hierarchical broadcast. In particular, we consider the case
where the more important component has lower data rate
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Fig. 3. The exact BERs of the Alamouti scheme and spatial multiplexing for
various alphabet sizes (i.e., for various maximum data rates) in 2× 2 MIMO
systems (SM denotes spatial multiplexing).
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Fig. 4. Superposition MIMO coding: two different MIMO codes are
hierarchically combined such that Alamouti coding is applied for the low-
rate more important data, and spatial multiplexing is applied for the high-rate
less important data.

than does the less important component (a typical example
is scalable video).

The proposed superposition MIMO scheme is depicted in
Fig. 4. We denote the basic subconstellation symbols by
𝑥1[𝑛] (𝑛 = 0, 1, ⋅ ⋅ ⋅ , 2𝐿− 1), and the secondary subconstella-
tion symbols by 𝑥2[𝑛] (𝑛 = 0, 1, ⋅ ⋅ ⋅ , 4𝐿−1). We demultiplex
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𝑥2[𝑛] into two transmit antenna streams such that 𝑥2𝐴[𝑛] =
𝑥2[2𝑛] and 𝑥2𝐵 [𝑛] = 𝑥2[2𝑛 + 1] (𝑛 = 0, 1, ⋅ ⋅ ⋅ , 2𝐿 − 1).
Then, for 𝑛 = 0, 1, ⋅ ⋅ ⋅ , 𝐿 − 1, the final transmit symbols of
the proposed scheme are given by[

𝑆𝐴[2𝑛] 𝑆𝐴[2𝑛+ 1]
𝑆𝐵[2𝑛] 𝑆𝐵[2𝑛+ 1]

]
=[

𝑥1[2𝑛] + 𝑥2𝐴[2𝑛] −𝑥∗
1[2𝑛+ 1] + 𝑥2𝐴[2𝑛+ 1]

𝑥1[2𝑛+ 1] + 𝑥2𝐵 [2𝑛] 𝑥∗
1[2𝑛] + 𝑥2𝐵 [2𝑛+ 1]

]
(15)

where each row corresponds to a transmit antenna and each
column corresponds to a time symbol. In the following, we
present the decoding of the proposed scheme. Note that,
since Alamouti code is applied to the basic subconstellation
in the proposed scheme (see eq. (15)), ML decoding has
to be performed during two symbol time periods for both
the basic and the secondary subconstellations (i.e., for an
entire hierarchical constellation). Since this requires a complex
receiver, we consider successive decoding as follows:

1) Alamouti decoding is performed for the basic subconstel-
lation.

2) The decoded basic subconstellation is subtracted from the
received signal.

3) Spatial demultiplexing (such as ML, MMSE (minimum
mean square error), or ZF decoding) is performed for the
secondary subconstellation.

Note that in step 3, spatial demultiplexing such as ML
decoding can be performed during one symbol time period,
since the basic subconstellation encoded with an Alamouti
code has already been subtracted in step 2. This implies that
even if ML decoding is used in step 3, the complexity of
successive decoding is much less than that of the optimal ML
decoding of an entire hierarchical constellation. From (15), it
is seen that when the basic subconstellation symbols, 𝑥1[2𝑛]
and 𝑥1[2𝑛+1], are Alamouti decoded in step 1, the secondary
subconstellation symbols, 𝑥2𝐴[2𝑛], 𝑥2𝐴[2𝑛+1], 𝑥2𝐵 [2𝑛], and
𝑥2𝐵 [2𝑛 + 1], act as interference. Therefore, the performance
of the successive decoding depends on the distance ratio, 𝛼, of
the hierarchical constellation, since the distance ratio is related
to the energy difference between the basic and secondary
subconstellations (note that the distance ratio is defined as
the ratio of the minimum Euclidian distance of the basic
subconstellation to that of the secondary subconstellation). The
BER performance of the optimal ML decoding and successive
decoding are compared in 2×2MIMO systems for hierarchical
4/16 QAM with distance ratios of 2.0 and 4.0 (these are typical
ratios for a hierarchical QAM constellation [10]). In successive
decoding, ML decoding is performed in step 3. The results
are shown in Fig. 5. For a distance ratio of 𝛼 = 2.0, the
performance of successive decoding is slightly worse than that
of the optimal ML decoding. For a distance ratio of 𝛼 = 4.0,
both decoders perform roughly the same.

IV. PERFORMANCE EVALUATION

We evaluate the PSNR performance of the proposed su-
perposition code. In this evaluation, we consider hierarchical
4/64 QAM which consists of a QPSK basic subconstellation
and a 16 QAM secondary subconstellation. Note that for one
symbol time period and two transmit antennas, the proposed
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Fig. 5. The BER performance of the optimal ML decoding and successive
decoding of the proposed scheme in 2 × 2 MIMO systems. For successive
decoding, ML decoding is performed for spatial demultiplexing of the
secondary subconstellation.

scheme transmits 2 bits for the more important component
(2 bits (QPSK) with an Alamouti code), and 8 bits for the
less important component (4 bits (16 QAM) × 2 (spatial
multiplexing)). For comparison purposes, we also evaluate
the performance of the transmission schemes where different
MIMO approaches are not superposed. The first scheme is
hierarchical 2/32 QAM with spatial multiplexing, and the
second scheme is hierarchical 4/1024 QAM with an Alamouti
code.3 We refer to these as pure spatial multiplexing and pure
Alamouti schemes. Note that the above three schemes have
the same maximum data rate, both for the more important
and the less important components. We use the optimal
ML decoding for the pure spatial multiplexing and the pure
Alamouti scheme. For the proposed scheme, we use successive
decoding, where the secondary subconstellation is decoded
with ML decoding. In our evaluation, error correction coding
is not considered.

We evaluate the performance for 2×2MIMO systems using
the source coder SPIHT [1] as an example, and provide the
results for the standard 8 bits per pixel (bpp) 512×512 Lena
image with a transmission rate of 0.375 bpp. We assume that
the transmitted signal experiences a slow fading channel such
that channel coefficients are nearly constant over an image,
and that channel estimation at the receiver is perfect. The end-
to-end performance is measured by the expected distortion
of the image or video frame. In the following, we describe
the evaluation of the expected distortion, 𝐸[𝐷], in detail. The
system takes the compressed progressive bitstream from the
source encoder, and transforms it into a sequence of packets.
Then, as shown in Fig. 4, the packets are encoded by the
space-time codes. At the receiver, if a received packet is
correctly decoded, the next packet is considered by the source
decoder. Otherwise, the decoding is stopped and the source is
reconstructed from only the correctly decoded packets due to

3 Hierarchical 2/32 QAM consists of a BPSK basic subconstellation and a
16 QAM secondary subconstellation. Hierarchical 4/1024 QAM consists of a
QPSK basic subconstellation and a 256 QAM secondary subconstellation.



CHANG et al.: SUPERPOSITION MIMO CODING FOR THE BROADCAST OF LAYERED SOURCES 3245

the nature of multimedia progressive source code. We assume
that all decoding errors in a packet can be detected by the use
of a cyclic redundancy check (CRC).

Let 𝑃𝑖(𝜂𝑖) denote the probability of a decoding error of
packet 𝑖 (1 ≤ 𝑖 ≤ 𝑁 ), where 𝜂𝑖 is the SNR per symbol and
𝑁 is the number of transmitted packets. Then, the probability
that no decoding errors occur in the first 𝑛 packets, but an
error does occur in the next one, 𝑃𝑐, 𝑛, is given by

𝑃𝑐, 𝑛 = 𝑃𝑛+1(𝜂𝑛+1)
𝑛∏

𝑖=1

(1− 𝑃𝑖(𝜂𝑖)) (16)

for 1 ≤ 𝑛 ≤ 𝑁−1. Note that 𝑃𝑐, 0 = 𝑃1(𝜂1) is the probability
of an error in the first packet, and 𝑃𝑐,𝑁 =

∏𝑁
𝑖=1(1− 𝑃𝑖(𝜂𝑖))

is the probability that all 𝑁 packets are correctly decoded.
Let 𝑑𝑛 denote the distortion of the source using the first 𝑛
packets for the source decoder (0 ≤ 𝑛 ≤ 𝑁 ). The 𝑑𝑛 can
be expressed as 𝑑𝑛 = 𝐷 (

∑𝑛
𝑖=1 𝑟𝑖), where 𝑟𝑖 is the number

of source bits in packet 𝑖, 𝐷(𝑥) denotes the operational rate-
distortion function of the source, and 𝑑0 = 𝐷(0) refers to the
distortion when the decoder reconstructs the source without
any of the received information. Then, the expected distortion
of the source, 𝐸[𝐷], can be expressed as

𝐸[𝐷] =

𝑁∑
𝑛=0

𝑑𝑛𝑃𝑐, 𝑛

= 𝐷(0)𝑃𝑐, 0 +

𝑁∑
𝑛=1

𝐷

(
𝑛∑

𝑖=1

𝑟𝑖

)
𝑃𝑐, 𝑛. (17)

For the uncoded system considered in this paper, the probabil-
ity of a decoding error of packet 𝑖, 𝑃𝑖(𝜂𝑖), can be expressed
as

𝑃𝑖(𝜂𝑖) = 1− {1− 𝑃𝑏,𝑖(𝜂𝑖)}𝑟𝑖 (18)

where 𝑃𝑏,𝑖(𝜂𝑖) is the BER for packet 𝑖. Note that 𝑃𝑏,𝑖(𝜂𝑖)
depends on the modulation parameters, such as alphabet size
and distance ratio of the hierarchical constellation employed
for packet 𝑖. As stated before, it is assumed that the transmitted
signal experiences slow Rayleigh fading, in which channel
coefficients are nearly constant over an image frame. With
this channel model, from (16)–(18), the expected distortion
for the uncoded system can be expressed as

𝐸[𝐷] =

∫ ∞

0

∫ ∞

0

⋅ ⋅ ⋅
∫ ∞

0

{
𝐷(0)

(
1− {1− 𝑃𝑏,1(𝜂1)}𝑟1

)

+

𝑁−1∑
𝑛=1

𝐷

(
𝑛∑

𝑖=1

𝑟𝑖

)[(
1− {1− 𝑃𝑏,𝑛+1(𝜂𝑛+1)}𝑟𝑛+1

)
𝑛∏

𝑖=1

{1− 𝑃𝑏,𝑖(𝜂𝑖)}𝑟𝑖
]
+𝐷

(
𝑁∑
𝑖=1

𝑟𝑖

)
𝑁∏
𝑖=1

{1− 𝑃𝑏,𝑖(𝜂𝑖)}𝑟𝑖
}

𝑓(𝜂1)𝑓(𝜂2) ⋅ ⋅ ⋅ 𝑓(𝜂𝑁 ) 𝑑𝜂1 𝑑𝜂2 ⋅ ⋅ ⋅ 𝑑𝜂𝑁 (19)

where 𝑓(𝜂𝑖) is the probability density function (PDF) of 𝜂𝑖, the
instantaneous post-processing SNR per symbol at the receiver.
Note that 𝑓(𝜂𝑖) depends on the space-time code applied to
packet 𝑖, as well as its decoding algorithm at the receiver.
Note also that the expression in (19) includes powers of
𝑃𝑏,𝑖(𝜂𝑖) in its integral. Thus, the evaluation of (19) requires
the computation for the expectation of the powers of 𝑄(𝑥)
(i.e., 𝐸[𝑄𝑛(𝑥)]) with respect to the random post-processing

SNR that characterizes the space-time code and its decoding
algorithm at the receiver. Further, the PDF, 𝑓(𝜂𝑖), is known
only for some limited cases, such as the Alamouti scheme and
the zero-forcing receiver for spatial multiplexing. For these
reasons, we calculate 𝐸[𝐷] by simulation. Note that 𝐷(0) in
(19) indicates the distortion for the event that there is an error
in the first packet with probability 𝑃𝑐, 0, which is given below
(16). For a still image, 𝐷(0) means reconstructing the entire
image at the mean pixel value, so the image is worthless.
For a video, on the other hand, the decoder will hold over
the previous frame for that frame. For low motion videos,
𝐷(0) might not be large. Note that 𝐸[𝐷] is a function of
the channel SNR and the distance ratio of the hierarchical
constellation. For a performance comparison, for each MIMO
scheme, we find the optimal distance ratio of a hierarchical
constellation which minimizes the expected distortion over a
range of average SNRs using the weighted cost function

arg min
𝛼

∫∞
0

𝜔(𝛾𝑏)𝐸[𝐷]𝑑𝛾𝑏∫∞
0 𝜔(𝛾𝑏)𝑑𝛾𝑏

(20)

where 𝛼 is a distance ratio, and 𝑤(𝛾𝑏) in [0, 1] is the weight
function. For example, 𝑤(𝛾𝑏) is given by

𝜔(𝛾𝑏) =

{
1, for 𝛾𝐴

𝑏 ≤ 𝛾𝑏 ≤ 𝛾𝐵
𝑏

0, otherwise.
(21)

Note that in broadcast systems, the weight function in (21) in-
dicates that average SNRs of multiple receivers are uniformly
distributed in the range of 𝛾𝐴

𝑏 ≤ 𝛾𝑏 ≤ 𝛾𝐵
𝑏 . Eq. (20) indicates

that 𝛼 is chosen such that the sum of the expected distortion
of the receivers distributed in the range of 𝛾𝐴

𝑏 ≤ 𝛾𝑏 ≤ 𝛾𝐵
𝑏

is minimized. To compare the image quality, we use PSNR
defined as

PSNR = 10log
2552

𝐸[𝐷]
(dB) (22)

where 𝐸[𝐷] is given by (19). We present the PSNR per-
formance of each MIMO scheme by evaluating (19)–(22) as
follows: We first compute (20) using both the expected distor-
tion 𝐸[𝐷], given by (19), which is calculated by simulation,
and the weight function, 𝑤(𝛾𝑏), given by (21). Next, with the
distance ratio of 𝛼 obtained in (20), we evaluate the PSNR
using (19) and (22) over a range of average SNRs given by
(21).

The PSNR performance of the proposed superposition code
is compared with those of the two pure MIMO schemes in
Fig. 6 (more results can be found in [21]). For reference,
the performance of the optimal ML decoding of the proposed
scheme is also plotted. On the average, the proposed scheme
has a channel SNR gain of about 2dB, and a PSNR gain of
about 1dB, compared to the other MIMO schemes. This is
because the Alamouti scheme outperforms spatial multiplexing
for the basic subconstellation supporting a low data rate, and
spatial multiplexing outperforms the Alamouti scheme for the
secondary subconstellation supporting a high data rate, as
indicated in Section II.

Lastly, in the following, we compare the performances
of the proposed superposition code and the Golden code
[22]. Note that linear dispersion codes and algebraic codes
[23][24] have been studied to pursue the benefits of both
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Fig. 6. The PSNR performances of the proposed superposition code, pure
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systems. The SNR range of the weight function is 0–38 dB (i.e., 𝛾𝐴

𝑏 = 0 dB
and 𝛾𝐵

𝑏 = 38 dB in (21)).

spatial diversity and multiplexing. Algebraic codes, such as
the Golden code, achieve the optimal diversity-multiplexing
tradeoff [25] in two-input multiple-output (TIMO) systems,
though they, in general, have higher receiver complexity than
either spatial multiplexing or the Alamouti code.

We evaluate the PSNR performance for the optimal ML
decoding of the Golden code. Hierarchical 2/32 QAM is
employed for the Golden code such that it has the same
data rates for both the more important component (2 bits per
symbol period) and the less important component (8 bits per
symbol period) as does the proposed scheme. The result is
shown in Fig. 7. It is seen that the performance of the proposed
scheme is slightly better than or equal to that of the Golden
code for SNRs up to about 27 dB, whereas the Golden code
slightly outperforms the proposed scheme for SNRs greater
than about 27 dB. Note that for each MIMO scheme, using
(20), the distance ratio of the hierarchical constellation is
optimized to minimize the expected distortion over a range
of average SNRs. Unlike the cases for either pure spatial
multiplexing or the pure Alamouti scheme shown in Fig. 6,
from Fig. 7, we cannot clearly see a preference between the
proposed scheme and the Golden code in terms of their PSNR
performances. Thus, for comparison purposes, we consider
slightly increasing the distance ratio of the hierarchical con-
stellation employed by the Golden code scheme; Doing so,
more energy is allotted to the basic subconstellation, which
is decoded by the low SNR receivers, and less energy is
assigned to the secondary subconstellation, decoded only by
high SNR receivers. As a result, the PSNR performance for
low SNR receivers would improve, while the PSNR for high
SNR receivers would degrade. Specifically, we increase the
distance ratio for the Golden code scheme such that it provides
the same performance as the proposed scheme for low SNR
receivers. The resultant PSNR curve is also shown in Fig. 7
(see the dashed curve with cross marks). It is observed that
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the Golden code with the increased distance ratio performs the
same as the proposed scheme for low SNRs (less than about
16 dB), but the latter outperforms the former for high SNRs
(greater than about 16 dB). Thus, the proposed scheme slightly
outperforms the Golden code, and this will be discussed below.

The BER performances of the Golden code, the Alamouti
scheme and spatial multiplexing are evaluated in the same way
as we did in Section II. We first compare the Golden code
with the Alamouti scheme for various data rates, as is shown
in Fig. 8 (a). It is seen that for a high data rate, such as 8 bits
per symbol period, the performance of the Alamouti scheme is
much worse than that of the Golden code. However, as the data
rate decreases, the performance gap between the Golden code
and the Alamouti scheme decreases; for a data rate of 4 bits
per symbol period, the performance of the Alamouti scheme
is slightly worse than that of the Golden code. Further, the
Alamouti scheme outperforms the Golden code for a data rate
of 2 bits per symbol period. Note that for multimedia layered
sources such as scalable video, the base layer, which is more
important than the enhancement layer, consists of a smaller
number of bits, but requires very low error rate. In other
words, the base layer is the low-rate important component
demanding low target error rate. Also note that the proposed
superposition code employs the Alamouti scheme to encode
the base layer. Hence, from Fig. 8 (a), it is expected that
the decoding performance of the base layer for the proposed
scheme would be roughly comparable to that for the Golden
code scheme.

We next compare the Golden code with spatial multiplexing
for various data rates. From Fig. 8 (b), it is seen that for a low
data rate, such as 4 bits-per-symbol period, the performance
of the spatial multiplexing is much worse than that of the
Golden code. However, it is observed that as the data rate
increases, the performance gap between the two schemes
decreases. For a high data rate, such as 8 or 10 bits-per-
symbol period, the performance of spatial multiplexing is
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roughly the same as that of the Golden code at a high bit
error rate. More precisely, both schemes would have nearly
identical performance if the target error rate is greater than
about 10−2 (note that this is the uncoded BER). Recall that the
proposed superposition code employs the spatial multiplexing
to encode the enhancement layer, which is high-rate, but is
the less important component. Hence, from Fig. 8 (b), it is
expected that the decoding performance of the enhancement
layer for the proposed scheme would be comparable to that
of the Golden code scheme.

From the above, it is expected that regarding the broadcast
of multimedia layered sources, the proposed scheme, which
superposes two simple component codes (the Alamouti and
spatial multiplexing), would have performance roughly com-
parable to that of the Golden code. This is because, for the
proposed superposition code, the two component codes work
well in different regimes where each has a strong advantage
in terms of data rates and target error rates.

Along with the performance, we note that the significantly
unequal decoding complexity between the Golden code and
the orthogonal space time codes (i.e., the Alamouti code) for
the base layer also should be considered for the design of a
system. Recently, it was shown that the Golden code can be
optimally ML decoded with complexity proportional to 𝑀2.5

for an 𝑀 -ary QAM constellation [26]. Note that the complex-
ity of the ML decoding of spatial multiplexing is proportional
to 𝑀2. Hence, if the Golden code is to be used, the additional
decoding complexity of 𝒪(𝑀2.5)/𝒪(𝑀2) = 𝒪(√𝑀) for the
enhancement layer should be considered, especially when the
constellation size for the high data-rate enhancement layer, 𝑀 ,
is large.

V. CONCLUSION

We proposed superposition MIMO coding for the broad-
cast of unequally important sources. The tradeoff between
an Alamouti code and spatial multiplexing having the same
maximum data rate was analyzed. The results showed that for
a given target bit error rate, the Alamouti code is preferable for
a low data rate, and spatial multiplexing is preferable for a high
data rate. Based on this, in the proposed scheme, two different
MIMO techniques are hierarchically combined such that the
low-rate important component is Alamouti encoded, the high-
rate less important component is spatially multiplexed, and
then the two differently encoded symbols are superposed. A
successive decoding algorithm was presented. Due to the suf-
ficiently large energy difference between the subconstellations
in the hierarchical broadcast of a layered source, this decoding
was shown to have performance nearly identical to that of
the complex optimal ML decoding. Performance evaluation
showed that the PSNR of the proposed superposition code is
much better than that of the pure spatial multiplexing scheme
or the pure Alamouti scheme, and is roughly comparable to
that of the complex Golden code scheme, in the broadcast of
multimedia layered sources.
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