
HOMEWORK 5
Due Friday March 15 by 4pm

Note: Problems 1-5 are pencil-and-paper problems. Only 6 and 7 require Matlab.

1. Huffman coding 1:

If you are given a set of input symbols and their associated probabilities, and you
apply the Huffman code design algorithm to them, it is possible to obtain more than
one set of codewords for which (a) the expected length of the code is the same, (b) all
codes are the result of applying the Huffman code design algorithm, and (c) the actual
codeword lengths are not the same from one set to another.

Here is an example of symbols and probabilities, and two different Huffman codeword
sets that come from them:

Symbol Probability Codeword Set 1 Codeword Set 2
a1 0.2 01 10
a2 0.4 1 00
a3 0.2 000 11
a4 0.1 0010 010
a5 0.1 0011 011

(a) For both codes, go through the Huffman design procedure and draw the tree to
show that both codeword sets result from a correct application of the Huffman
code design algorithm.

(b) Show that both sets of codewords have the same average length.

(c) Although both sets of codewords have the same average length, another consid-
eration is the ability to recover from errors in the channel. Encode the sequence

a2 a1 a3 a2 a1 a2

using the first code. Suppose the first bit is received in error. Decode the received
sequence of bits. How many characters are received in error before the decoder
gets back on track and correctly decodes a character?

Now do the same thing for the 2nd code.

(d) Repeat the previous part with the error now in the third bit, instead of the first
bit. Is there one code that, at least for the cases tested, does worse on error
propagation?
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2. Huffman Coding 2:

For i.i.d. data, the smallest achievable expected length of a binary code is the first-order
entropy, defined as

H = −
N∑

i=1

P (ai)log2P (ai)

where {a1, . . . , aN} are the source symbols with associated probabilities {P (a1), . . . , P (aN)}.
Find a probability distribution on 6 source symbols such that the expected length of
Huffman coding would achieve the entropy. List the probabilities and show the calcu-
lations of expected length and entropy.

3. Huffman coding 3:

Which of these codes (there may be none, or one, or more than one) cannot be Huffman

codes for any probability assignment?

• {0, 10, 01, 11}

• {00, 01, 10, 110}

• {01, 10}

• {0, 10, 11}

4. Huffman coding 4:

Consider an alphabet with 7 symbols. We will design a full Huffman code for this
alphabet. We will also design a truncated Huffman code for this alphabet, in which
the 4 least probable symbols are grouped together and coded with a single base code
for the group, followed by a 2-bit codeword which specifies the element of the group.

(a) Choose a set of probabilities for the 7 symbols such that full Huffman code and the
truncated Huffman code do not have the same codeword lengths. Show the codewords
and their lengths. Find the expected lengths of both codes.

(b) Choose a set of probabilities for the 7 symbols such that full Huffman code and the
truncated Huffman code have the same codeword lengths. Show the codewords and
their lengths. Find the expected lengths of both codes.

5. JPEG:

An image such as the aerial image of the next problem is JPEG compressed, producing
bit rate R1 and MSE D1. The point (R1,D1) can be plotted in a plot of distortion
versus rate, such as shown below, where the point is labeled J.

For each of the following, mark where you’d expect the (R,D) point to lie in the plane,
relative to J. Label the points A through E. In some cases below, we pre-process
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the image before compression, and in some cases we post-process the image after de-
compression (before display). In all cases, however, the MSE is computed between the
final displayed image and the original aerial image.

(A) The image first undergoes filtering with the 3x3 unweighted spatial averaging
filter, and then it is JPEG compressed.

(B) The image is JPEG compressed. After decompression and prior to display, it
undergoes filtering with the 3x3 unweighted spatial averaging filter.

(C) Rather than using JPEG’s truncated Huffman coder, we substitute a full Huffman
coder that does not do any grouping of symbols.

(D) The image is JPEG compressed using spectral selection progressive mode (pro-
gressing through all 4 scans) rather than baseline sequential JPEG.

(E) The encoder uses “Approximate Adaptive Quantization” as described in the JPEG
handout on the web site, identifying unimportant image blocks & sending the End-of-
Block symbol for them without sending AC coefs.

✲

✻distortion

rate

D1

R1

•J

6. JPEG quality levels:

This is a simple exercise intended just to give you a feel for the quality versus bit
rate performance of JPEG. Read the images aerial4.tif and xray.tif into Matlab using
imread.

Matlab allows you to control the quality level (and therefore the bit rate) of the JPEG
image that you are writing out. Try writing out the image with terrible quality (quality
level = 1) and with excellent quality (quality = 100) and with several values in between.
If your image is anmed aerial, the imwrite command to get quality level 1 would be:

imwrite(aerial,’aer1.jpg’,’jpg’,’quality’,1);

For each image, make a plot of MSE versus bit rate, and a plot of PSNR versus bit
rate. That is, we want a plot that shows the MSE between the JPEG compressed
image and the original image, versus the bit rate of the JPEG compression. To get the
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MSE, read the JPEG image back into Matlab, and compute the MSE between it and
the original image. To get the bit rate, look at the file size of the jpeg file that Matlab
created.

You do not have to generate very many points for your plot. Five points would be
enough. Look at the images with imshow. For the lower bit rate versions, what kinds
of artifacts do you see? What can you say comparatively about the compressibility of
the xray and aerial images?

Depending in which version of Matlab you use, you may need to convert from uint8
format to double to compute things like MSE and PSNR and so forth, but you don’t
want to convert to double for imwrite.

7. Entropy before and after first-order prediction:

(a) Below is a function which computes the first-order entropy of the individual pixel
values in an image. In the first line after the function declaration, explain what probs
and x are. In the next line, explain what we are trying to accomplish with the find
function. In the next line, explain why we divide by sum(probs).

function entr = entropy(im)

[probs,x] = hist(im(:),(0:255));

probs = probs(find(probs));

probs = probs/sum(probs);

entr = -probs * log2(probs)’;

Use this to compute the first-order entropies for the images baboon512.tif and pep-
pers512.tif. Since the entropy is a measure of the minimum number of bits required,
on the average, to losslessly encode the source, what does this result say about how
compressible the two images are? Is this what you would have expected from looking
at the two images?

(b) Suppose one wanted to compress these images using each pixel as a predictor for
the pixel immediately to its right. Form the “residual” image in which each pixel is
used as a prediction for the pixel to its right, and the prediction is subtracted from
the actual value at that location. What is the entropy of this residual image? For
the leftmost pixel in each row, you will need to find some alternative way to form a
prediction for it, as there is no pixel to its left, or you can simply discard it and use
the rest. Is this what you would have expected from looking at the two images?

For each of the images, would it make more sense to use prediction in the vertical
direction or the horizontal direction? Comment on the result.
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