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1 Introduction

In compressing a radiological image, the fundamental question is: will the compressed image still be as diagnostically
useful as the original? In the previous chapter, we presented several clinical studies, experimental protocols, and
statistical analysis techniques. Taken together, these provide a methodology for answering this type of question, and
they also provide the answer to the question in the context of particular images sets, compression algorithms, and
diagnostic tasks. There remain, however, a number of questions which must be addressed in any study of this type.
For example, was the experiment designed well enough? Is the answer different for different radiologists? How does
diagnostic utility relate to other measures of image quality? In this chapter we present various statistical approaches
to these broad questions. We first discuss statistical size and power, and learning effects, both of which speak to the
question of whether the clinical experiment was well designed. Next, we present a comparison of judges, and we
discuss how diagnostic utility can be related to other measures of image quality.

2 Statistical Size and Power

The size of a test is the probability of incorrectly rejecting the null hypothesis if it is true. The power of a test is
the probability of correctly rejecting the null hypothesis if it is false. For a given hypothesis and test statistic, one
constrains the size of the test to be small and attempts to make the power of the test as large as possible.

Given a specificed size, test statistic, null hypothesis, and alternative, statistical power can be estimated using
the common (but sometimes inappropriate) assumption that the data are Gaussian. As data are gathered, however,
improved estimates can be obtained by modern computer intensive statistical methods. For example, the power and
size can be computed for each test statistic described above to test the hypothesis that digital mammography of a
specified bit rate is equal or superior to film screen mammography with the given statistic and alternative hypothesis to
be suggested by the data. In the absence of data, we can only guess the behavior of the collected data to approximate
the power and size. We consider a one-sided test with the “null hypothesis” that, whatever the criterion (management
or detection sensitivity, specificity, or predictive value positive (PVP)), the digitally acquired mammograms or lossy
compressed mammograms of a particular rate are worse than analog. The “alternative” is that they are better. In
accordance with standard practice, we take our tests to have size .05. We here focus on sensitivity and specificty of
management decisions, but the general approach can be extended to other tests and tasks.

Approximate computations of power devolve from the 2 by 2 agreement tables of the form of Table 1. In this table,
the rows correspond to one technology (for example analog) and columns to the other (digital, say). “R” and “W”
correspond to “right” (agreement with gold standard) and “wrong” (disagreement with gold standard). So, for example,
the count

���������	�
is the number of cases where a radiologist was right when reading both the analog and digital images.

The key idea is twofold. In the absence of data, a guess as to power can be computed using standard approximations.
Once preliminary data are obtained, however, more accurate estimates can be obtained by simulation techniques taking
advantage of the estimates inherent in the data. Table 2 shows the possibilities and their corresponding probabilities.
The right hand column and bottom row are sums of what lies, respectively, to the left and above them. Thus, 
 is the
value for one technology and 
���
 is the value for the other; 
���� denotes no difference. It is the null hypothesis.
The four entries in the middle of the table are parameters that define probabilities for a single study. They are meant
to be average values across radiologists, as are the sums that were cited. Our simulations allow for what we know to
be the case: radiologists are very different in how they manage and in how they detect.

Two fundamental parameters are � and � . The first is the chance (on average) that a radiologist is “wrong” for both
technologies; � is the number of radiologists. These key parameters can be estimated from the counts of the 2 by 2

1



II\ I R W
R N(1,1) N(1,2)
W N(2,1) N(2,2)

Table 1: Agreement ����� Table

II\ I Right Wrong
Right � 
 ��
�� � � � � ��
�� 
�� � 


Wrong
� � 
�� � � � � 


 � 
 � � 
�� 
 1

Table 2: Management Outcome Probabilities

agreement table resulting from the pilot experiment, and then improved as additional data are acquired.
In our small pilot study of management, we found sensitivity of about .60 and specificity about .55. The respective

estimated values of 
 varied from more than .02 to about .07; � was about .05. These numbers are all corrupted by
substantial noise. Indeed, the variability associated with our estimation of them is swamped by the evident variability
among radiologists. For a test of size .05, by varying parameters in amounts like what we saw, the power might be
as low as .17 with 18 radiologists, or as high as 1.00 with only 9 radiologists. The power is very sensitive to the
three parameters. No matter how many studies or how many radiologists we would have, one could always vary the
parameters so that we would need more of either or both.

If we think of sensitivity for detection being .85, say, then at least for that quantity 400 studies and 9 radiologists
seem ample. At this time one good recommendation would be to start with 400 studies, 12 radiologists, three at each of
four centers, and find an attained significance level for a test of the null hypothesis that there is no difference between
technologies. And, perhaps at least as important, estimate the parameters of Table 2. At that point possible numbers of
required further radiologists or studies, if any, could be estimated for particular values of size and power that reviewers
might require. The design could be varied so that the pool of studies would include more than 400, but no single
radiologist would read more than 400. In this way we could assess fairly easily the impact of variable prevalence of
adverse findings in the gold standard, though we could get at that issue even in the situation we study here.

Computations of power apply equally well in our formulation to sensitivity and specificity. They are based on a
sample of 400 studies for which prudent medical practice would dictate return to screening for 200, and something
else (six month followup, additional assessment needed, or biopsy) for the other 200. Thus, there are 200 studies that
figure in computation of sensitivity and the same number for specificity. All comparisons are in the context of “clinical
management,” which can be “right” or “wrong.” It is a given that there is an agreed upon gold standard, independent
or separate. For a given radiologist who has judged two technologies – here called I and II and meant to be digital
and analog or analog and lossy compressed digital in application – a particular study leads to an entry in a 2 by 2
agreement table of the form of Table 1.

If the null hypothesis of “no difference in technologies” is true, then whatever be 
 and � , 
 � � . An alternative
hypothesis would specify 

	� � , and without loss (since we are free to call whichever technology we want I or II) we
may take 
�� � under the alternative hypothesis that there is a true difference in technologies. Under the null, given
 ��� , 
 has a binomial distribution with parameters


 ��� and 1/2. Under the alternative, given

 ��� , 
 is binomial with

parameters

 ��� and

��� � 
������ � ��� � ����� 
���� ����� � . The usual McNemar conditional test of the null hypothesis
is based on

� 
 ��� ����� � 
 ��� � having approximately a chi-square distribution with one degree of freedom.
In actual practice we intend to use � radiologists for � ��� � � � � �! , or 18, to assume that their findings are

independent, and to combine their data by adding the respective values of their McNemar statistics. We always intend
that the size = probability of Type I error is .05. Since the sum of independent chi-square random variables is distributed
as chi-square with degrees of freedom the sum of the respective degrees of freedom, it is appropriate to take as the
critical value for our test the number C, where "$# �&%'�( �*) � �,+ �  + The four respective values of C are therefore 16.92,
21.03, 25.00, and 28.87.

Computation of power is tricky because it is unconditional since before the experiment,

 �-� for each radi-

ologist is random. Thus, the power is the probability that a non-central chi-square random variable with � de-
grees of freedom and non-centrality parameter . �0/21 �-+  �3�!�4/51768149�:

(
;=< 1 � 
 ; �>� ; � exceeds ) ��?@/A14681 , where


 ; �B� ;
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Sample 2
A not A

Sample 1 A � � � ���
not A � � � + �� ��� � ��� �

Table 3: ����� table of pairs in the McNemar analysis

has a binomial distribution with parameters
�

and ��� � 
 � � ��� 
 ; and the � random integers are independent;/ 1 � ��� � 
 � 
 � � ��� � � � � 
 � �	�'� 
 � � � � 6 1 . This entails that the non-centrality parameters of the chi-square random
variable that figures in the computation of power is itself random. Note that a non-central chi-square random variable
with � degrees of freedom and non-centrality parameter Q is the distribution of

��� 1 �
	 1�� ����� � � �� ��
�
�
	� � �( ,
where

��1 � + +=+ � ( are independent, identically distributed standard Gaussians. On the basis of previous work and pilot
study, we have chosen to compute the power of our size .05 tests for

�
always 200, 
 from .55 to .85 in increments

of .05; � �,+ ��� � + �  � + � � ; and, as was stated, � � � � � � � �! , and 18. The simulated values of power can be found in [2]
and code for carrying out these computations is in Appendix C of [1]. These form the basis of our earlier estimates for
the necessary number of patients and will be updated as data is acquired.

3 Analysis of Learning Effects

In experiments of this type, the radiologists see an image at many compression levels during the course of the study.
One needs to ascertain whether learning effects are significant. Learning and fatigue are both processes that might
change the score of an image depending on when it was seen. For the CT study, the McNemar test [8] was used to
examine this possibility.

Suppose one has N observations of paired data. The members of the pair are called sample 1 and sample 2. Each
member of the pair can be described as being “A” or “not A.” There are clearly 4 types of pairs: those with both
members of type “A,” those with neither member of type “A,” those where the first member of the pair is of type “A”
but the second is not, and those where the second member is of type “A” but the first is not. The last two types are
referred to as disparate or “untied” pairs. We denote the number of occurrences of each type of these four pairs by� � � � � , and � , as shown in a ����� table, in Table 3.
The proportions of individuals of type “A” in the 2 samples are� ���� and

� �
�� �

and the difference between the two proportions is � ���� 

The null hypothesis that there is no difference between the proportions of type “A” individuals in the two populations
is ��� � ���� � � � � � � � � � � � � � +
Denote � ��� by � . If the null hypothesis holds, given � disparate or “untied” pairs, the number of pairs of type 2 (or
of type 3) would follow a binomial distribution with parameter equal to 1/2. Typically, a large sample test is obtained
by regarding the quantity �

� � ��� �1
��� �

as a standardized normal deviate. However, in this study we make no assumption of normality. This McNemar analysis
is applied to study intrasession learning effects in the CT study as follows: In each session, each image was seen at
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2nd occurrence
Perfect Not Perfect

First Perfect 53 4 57
occurrence Not Perfect 9 5 14

62 9 71

Table 4: Judge 1, pairing for CT lung nodules

exactly 2 levels, and the ordering of the pages ensured that they never appeared with fewer than 3 pages separating
them. For each judge � and each session � and each image � , we pair the judge’s reading for a given compression
level � 1 with the same judge’s reading for compression level � � for the same image and same session, where � 1 was
seen before � � . For each member of the pair, the reading is either perfect (sensitivity = 1 and PVP = 1, type “A”) or
not perfect (type “not A”). For example, Judge 1 in evaluating lung nodules over the course of 3 sessions saw 71 pairs
of images, in which an image seen at one compression level in a given session is paired with the same image seen at a
different level in the same session. Of the 71 pairs, 53 times both images in the pair were judged perfectly, and 5 times
both images were judged incorrectly.

We concern ourselves with the other 13 pairs: 9 times the image seen first was incorrect while the second one was
correct, and 4 times the image seen second was incorrect when the first one was correct. If it did not matter whether an
image was seen first or second, then conditional on the numbers of the other two types, these would have a binomial
distribution with parameters 13 and

�!� � . This example is shown in Table 4. The probability that a fair coin flipped
13 times will produce a heads/tails split at least as great as 9 to 4 is 0.267, thus this result is not significant. These
calculations were carried out for ��� ? ��� � ���

different subsets of the data (lungs vs. mediastinum (2), Judges
1, 2, 3 considered separately or pooled together (4), consensus or personal gold standards (2)), and in no case was a
significant difference found at the 5% significance level (p-values ranged from 0.06 to 1.0). An analysis of variance
using the actual sensitivity and PVP observations (without combining them into “perfect” and “not perfect”) similarly
indicated that page order and session order had no significant effect on the diagnostic result.
Learning Effects for the Mammography Experiment: In the mammography experiment, the radiologists saw each
study at least 5 times during the complete course. These 5 versions were the analog originals, the digitized ver-
sions, and the 3 wavelet compressed versions. Some images would be seen more than 5 times, as there were JPEG
compressed images, and there were also some repeated images, included in order to be able to directly measure intra-
observer variability.

In this work, we looked for whether learning effects were present in the management outcomes using what is known
in statistics as a “runs” test. We illustrate the method with an example. Suppose a study was seen exactly five times.
The management outcomes take on four possible values (RTS, F/U, C/B, BX). Suppose that for a particular study
and radiologist, the observed outcomes were BX three times and C/B two times. If there were no learning, then all
possible “words” of length five with three BX’s and two C/B’s should be equally likely. There are 10 possible words
that have three BX’s and two C/B’s. These words have the outcomes ordered by increasing session number; that is,
in the chronological order in which they were produced. For these 10 words, we can count the number of times that
a management outcome made on one version of a study differs from that made on the immediately previous version
of the study. The number ranges from one (e.g., BX BX BX C/B C/B) to four (BX C/B BX C/B BX). The expected
number of changes in management decision is 2.4, and the variance is 0.84. If the radiologists had learned from
previous films, one would expect that there would be fewer changes of management prescription than would be seen
by chance. This is a conditional runs test, which is to say that we are studying the conditional permutation distribution
of the runs.

We assume that these “sequence data” are independent across studies for the fixed radiologist, since examining
films for one patient probably does not help in evaluating a different patient. So we can pool the studies by summing
over studies the observed values of the number of changes, subtracting the summed (conditional) expected value, and
dividing this by the square root of the sum of the (conditional) variances. The attained significance level (p-value) of
the resultant Z value is the probability that a standard Gaussian is � Z.

Those studies for which the management advice never changes have an observed number of changes 0. Such studies
are not informative with regard to learning, since it is impossible to say whether unwavering management advice is
the result of perfect learning that occurs with the very first version seen, or whether it is the result of the obvious
alternative, that the study in question was clearly and independently the same each time, and the radiologist simply
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interpreted it the same way each time. Such studies, then, do not contribute in any way to the computation of the
statistic. The JPEG versions and the repeated images, which are ignored in this analysis, are believed to make this
analysis and p-values actually conservative. If there were no learning going on, then the additional versions make no
difference. However, if there were learning, then the additional versions (and additional learning) should mean that
there would be even fewer management changes among the 5 versions that figure in this analysis.

The runs test for learning did not find any learning effect at the 5% significance level for the management outcomes
in the mammography experiment. For each of the 3 judges, approximately half of the studies were not included in
the computation of the statistic, since the management decision was unchanging. For the 3 judges, the numbers of
studies retained in the computation were 28, 28, and 27. The Z values obtained were -0.12, -0.86, and -0.22, with
corresponding p-values of 0.452, 0.195, and 0.413.

4 Comparison of judges

In the CT study, comparisons of judges to each other were carried out using the permutation distribution of Hotelling’s
paired � � statistic applied to the consensus gold standard results. � � as we used it is a generalization of (the square
of) a univariate paired � statistic. We illustrate its use by an example. Suppose that Judges 1 and 2 are compared for
their sensitivities on compressed lung images. The vector for comparison is 6-dimensional, one coordinate for each
level of compression. Each image ( � ) and bit rate (



) evaluated by both judges gives rise to a difference � � � � 
 � of the

sensitivities, Judge 1 � Judge 2, and to a sample mean �� � 
 � and sample variance � ��� 
 � . Each image � for which both
judges evaluated at bit rates



and


��
contributes a term

� � � � � 
 � ���� � � � 
 � � � � � � � 
 � � ���� � � � 
 � � �

to the sample covariance � � 
 � 
 � � . Write �	 for the column vector with

 � 
 coordinate �� � 
 � , and



� for the

� � �
matrix

with

 � 
��

coordinate � � 
 � 
�� ). The version of � � we use is

� � ���	 �


��

1
�	 +

It differs from the usual version [7] by a norming constant that implies an F distribution for � � when ��� � � � 
 ��� are
jointly Gaussian and the numbers of

� 
 � 
 � �
pairs are equal. As our data are decidedly nonGaussian, computations of

attained significance are again based on the permutation distribution of � � [7], though only on 999 permutations plus
the unpermuted value and not on the full distribution, which is neither computationally feasible nor necessary.

The permutation distribution is motivated by the fact that, were there no difference between the judges, then in
computing the difference � � � � 
 � , it should not matter whether we compute Judge 1 � Judge 2 or vice versa, or whether
we randomize the choice with a fair coin toss. The latter is exactly what we do, but we constrain the randomization so
that for fixed � , the signs of ��� � � � 
 ��� are all the same. The constraint tends to preserve the covariance structure of the set
of differences, at least when the null hypothesis of no difference is approximately true. (Unconstrained randomization
would render the signs of � � � � 
 � and � � � � 
 � � independent, and this is clearly not consistent with the data.) After
randomizing the signs of all differences, we compute � � again; the process is repeated a total of 999 times. There
results a list of 1000 � � values, the “real” (unpermuted) one and 999 others. Were there no difference between the
judges, the 1000 values would be (conditional on the data) independent and identically distributed. Otherwise, we
expect the “real” value to be larger than at least most of the others. The attained significance level for the test of
the null hypothesis that there is no difference between the judges is (k+1)/1000, where � is the number of randomly
permuted � � values that exceed the “real” one.

Some comparisons we hoped to make with � � were not possible to compute because not only are the � � � � 
 � not
independent, but also



� was singular. We could have extended the domain of applicability of the Hotelling � � approach

to the case when the covariance matrix is not invertible by making an arbitrary choice of a pseudo-inverse. This is
not a customary approach to � � in the usual Gaussian case, and also the inferences we draw are quite clear without
resorting to that technique.

The actual
/

-value for the comparison of Judges 1 and 2 for their sensitivity in finding lung nodules is not significant,
and the same is true for comparisons of Judges 1 and 3 and that of Judges 2 and 3. Two of the three comparisons of
predictive value positive for the lung are not significant; for the other (1 versus 2) it is not possible to compute because

� is singular. The analogous comparisons for the mediastinum give rather different results. Judge 2 seems to differ
from both other judges in sensitivity (both

/
-values about .04). Judge 2 also seems to differ from Judge 3 in predictive
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value positive at the same p-value. Similar results were obtained from a 7-dimensional comparison, in which the
additional coordinate comes from data on the original images. The basic message is that judges seem to differ from
one another in judging the mediastinum but not the lung.

5 Relationships between quality measures

As image quality can be quantified by diagnostic accuracy, subjective ratings, or computable measures such as signal-
to-noise ratio (SNR), one key question concerns the degree to which these different measures agree. Verifications of
medical image quality by perceptual measures require the detailed, time-consuming, and expensive efforts of human
observers, typically highly trained radiologists. Therefore, it is desirable to find computable measures that strongly
correlate with or predict the perceptual measures.

In previous sections we have studied how certain parameters such as percent measurement error and subjective
scores appear to change with bit rate. It is assumed that bit rate has a direct effect on the likely measurement error or
subjective score and therefore the variables are correlated. In this sense, bit rate can also be viewed as a “predictor”. For
instance, a low bit rate of 0.36 bits per pixel (bpp) may “predict” a high percent measurement error or a low subjective
score. If the goal is to produce images which lead to low measurement error, parameters which are good predictors of
measurement error are useful for evaluating images as well as for evaluating the effect of image processing techniques.
A “good” predictor is a combination of an algorithm and predictor variable which estimates the measurement error
within a narrow confidence interval.

Percent measurement error can be predicted from other variables besides bit rate. The graphs below give an indi-
cation of whether subjective scores, SNR, or image distortion are good predictors of measurement error. For instance,
does a high subjective score or high SNR generally lead to low percent measurement error? We plot percent measure-
ment error against each predictor variable of interest in Figures 1, 2, and 3. Subjective scores and SNR are as defined
in previous chapters and MSE distortion is taken to be the average non-normalized squared distortion between the
original and compressed image.
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Figure 1: Percent measurement error vs. subjective score for the MR study

How does one quantify whether or not some variable is a good predictor? In the remainder of this section, we
examine the usefulness of SNR as a predictor of subjective quality for the MR data set. Our work suggests that
cross-validated fits to the data using generalized linear models can be used to examine the usefulness of computable
measures as predictors for human-derived quality measures. In the example studied below, the computable measure
is SNR, and the human-derived measure is subjective ratings, but the method presented is applicable to other types of
prediction problems.

In the classical linear regression model, the “predictor” � is related to the outcome � by

� ������� ��� � (1)

where � is a vector of unknown coefficients, and the error � at least has mean zero and constant variance, or may even
be normally distributed. In the regression problem of using SNR to predict subjective quality scores, the response
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Figure 2: Percent measurement error vs. SNR for the MR study
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Figure 3: Percent measurement error vs. MSE for the MR study
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variable � takes on integer values between 1 and 5, and so the assumption of constant variance is inappropriate because
the variance of � depends on its mean. Furthermore, � takes on values only in a limited range, and the linear model
does not follow that constraint without additional untenable assumptions. We turn to a generalized linear model that
is designed for modeling binary and, more generally, multinomial data [6].

A generalized linear model requires two functions: a link function that specifies how the mean depends on the
linear predictors, and a variance function that describes how the variance of the response variable depends on its
mean. If � 1 � � � � +=+=+ � � are independent Poisson variables, then conditional upon their sum, their joint distribution is
multinomial. Thus the regression can be carried out with the Poisson link and variance functions:

� � � ������� and �	� � � � � ��� (2)

in which case the mean of the response variable is

� ��
 ��
�� + (3)

The results of this approach are shown in Figure 4. The predictors are a quadratic spline in SNR:

� � ��� � ��� � � ��� � � � . ��� � � ��� � ����� ��� � � � 9 � � (4)

where the spline knot ��� ��� was chosen to be 22.0 (the average SNR value of the data set). In Figure 4, the x symbols
denote the raw data pairs (subjective score, SNR) for the judges pooled, and the curve is the regression fit. The o
symbols denote the 95% confidence intervals obtained from the bootstrapped ��)�� method [4, 5]. This method is
outlined below. The null deviance (a measure of goodness of fit) of the data set is 229 on 449 degrees of freedom, and
the residual deviance of the fit is 118 on 446 degrees of freedom, indicating a useful fit. The model parameters were
estimated using the statistical software � , which uses iteratively reweighted least-squares to generate a maximum-
likelihood estimate. The data for all 3 judges were pooled because an analysis of variance (ANOVA) determined that
the effect of judges was not significant at the 5% level. In the ANOVA, judges, images, and bit rates were taken to be
fixed effects.
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Figure 4: Expected subjective score (y-axis) vs. SNR (x-axis) (Permission for reprint, courtesy Society for Information
Display)

Instead of doing a fit directly to the expectation of the response, a second way to approach this problem looks for
the probability

/ ; of obtaining the response � , for each of the five possible responses ( � � � � + +@+ �4 ). The expectation
can then be calculated from the probabilities. We can transform the responses � into binary outcomes:

� ; �
� �

if � � �
� otherwise +

The binary response variables � ; can then each be fitted using the logit link:

��� � ����� �� ��� (5)
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in which case the mean of the response variable is

� � 
 ��
 �� � 
 � 
 � (6)

which guarantees that � is in the interval [0,1]. The logit link together with the binomial variance function � ��� � � �
defines the logistic regression model. For each � ; the predictor � was a quadratic spline in SNR, with the knots located
in each case at the mean value of the SNRs which produced that response (18.2, 20.12, 22.57, 24.61, 25.56). The
probabilities

/ ; are shown in Figure 5 with vertical offsets so they are not superimposed.
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Figure 5: Response probabilities (y-axis) vs. SNR (x-axis) (Permission for reprint, courtesy Society for Information
Display)

As the five probabilities have been determined from separate regressions, they need to be scaled so that they add to
one before calculating

� � � � from them. The logistic gives a value for the � ��� ��� � � � � , that is, for a given value of SNR
= � we obtain

� ��� ���
/ ;

p(not i)



Exponentiating both sides and rearranging terms yields

/ 1 � 
 � �0/ � � /�� � /	� � /�
�� � � when � � � +
For that value of SNR, similar equations can be found for

/ � , / � , / � , and
/ 


. Additionally, we know that
: ; / ; � �

.
This system can be solved and the expectation calculated from these scaled probabilities:� � � � � �

; �
/ ; +

For some of the
/ ; there are slight edge effects from the spline fit. For example,

/21
dips very slightly below zero at

SNR = 24.9, and then becomes slightly positive again for SNRs � 27.2, although there are no further reponses of
1 at those SNRs. Until we have made a further study of these edge effects, they are dealt with simply by setting

/ ;
identically equal to zero beyond the point where it first crosses zero. The expectation is then calculated from these
windowed probabilities. The expectation is almost indistinguishable from the curve of Figure 4, thereby validating the
Poisson model.

Having established the appropriateness of the Poisson model, we use it to compare SNR against segmental SNR in
their ability to predict subjective quality ratings. Segmental SNR, often used in speech quality evaluation, compensates
for the under-emphasis of weak-signal performance in conventional SNR. An image is divided into blocks, the SNR
is calculated for each block on a log scale, thresholded below at 0 and above at 45, and the values are averaged.
By converting component SNR values to dB values prior to averaging, very high SNR values corresponding to well-
coded large-signal segments do not camouflage coder performance with the weak segments, as in conventional SNR.
We examined block sizes of all powers of 2 between ����� and �  � ���  � . Since the images are of size �  � ���  � ,
the segmental SNR for that block size equals the conventional SNR. The usefulness of the computable metric in
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predicting subjective quality was examined as follows: For ��� ��� times, the 30 MR images were put in a different
random order. Each time, a 10-fold cross-validation was performed in which 3 images at a time were left out, and
the other 27 images were used to fit the model. All judges and levels corresponding to those 27 images were used.
The 3 images not involved in determining the parameters of the fit comprise 45 data points (3 images � 3 judges
� 5 compression levels). For these data we compute the mean outcome and the sum of squared deviation from this
overall mean. This value is called � 1 . Then we calculate the fitted values for these data, and take the sum of squared
deviations of observed and fitted, called � � . If the model is good and the test set of 3 images is not unlike the set of
27 images used to fit the model, we expect � � to be smaller than � 1 . The percent reduction in mean squared error
that owes to fitting the model (beyond fitting an overall constant) is a statistic that summarizes the model’s predictive
power: �

� � ��� ��� � � �$� � � � � ��� +
This statistic is a cross-validated analogue of the multiple correlation. The results are presented in Table 5.

Block Size M
256 � 256 42.96
128 � 128 42.29
64 � 64 34.49
32 � 32 46.48
16 � 16 47.72
8 � 8 48.10
4 � 4 46.62
2 � 2 47.21� 1

38.60� �
35.08

Table 5: Comparison of computable quality measures

It appears that segmental SNR at several different block sizes outperforms conventional SNR. The best of these (on
8 � 8 blocks) produced a 48% reduction compared to the 43% reduction for SNR. One could examine the statistical
significance of these differences by sampling from the permutation distribution, and it would be of interest to compare
SNR against perceptually based computable quality measures.

In studies like ours, one frequently wants a measure of the predictive power of the model, as well as measures of
its goodness of fit. One diagnostic as to the appropriateness of the Poisson regression model (how median-biased it is)
is � � (described in Section 13); zero is a “good” value. For us, values for � � for our five confidence intervals ranged
from -0.043 to 0.059, with a median of -0.012. The correlation between observed and fitted values is a statistic that
summarizes the model’s predictive power. But the number computed from the data that gave rise to the model (0.70)
can be overly optimistic. There are many approaches to getting around that optimism, a simple one being 10-fold
cross-validation, as in [3]. To implement 10-fold cross-validation one divides the data set at random into 10 distinct
parts. Nine of them would be used to fit the generalized linear model, and the correlation coefficient between actual
and fitted values would be calculated for the tenth part, that is, the part that did not figure in the fitting. This would be
repeated 10 times in succession, and the resulting ten values of the correlation averaged. Other sample reuse methods
can be used to accomplish the same task.

5.1 BC � confidence intervals

The BC � confidence intervals for fixed values of SNR were obtained by a bootstrapping method in which images
are the sampling units. Suppose that there are � bootstrap samples. We took � = 2000. Each bootstrap sample was
generated by sampling randomly (with replacement) 450 times from our set of 450 (subjective score, SNR) pairs. Huge
computational savings can be realized in that, for the same set of images being sampled, one bootstrap sample can be
used simultaneously for different SNRs. For a fixed SNR,


�
is the fitted expected subjective score based on the model

as computed for the original data, and

���	��

�

is the value computed for the


th bootstrap sample. The 100(1-2 � )% BC �

confidence interval will be of the form
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� 
� �	����� � � 
� � ����� � � �
where


���	��� �
is the 100 � th percentile of the bootstrap distribution of


�
; � 1 and � � are defined by

� 1 � � � � � � ��� � � ��� �� � � � � � � � ��� � �
� �

� � � � � � � � � � � � � 1 
 � �� � � � � � � � � 1 
 � � �
� 


�
is the standard normal cumulative distribution function, and � � � � is the 100 � th percentile (so, for example, � �	� 
 
 � =

1.645). The “bias correction” � � and “acceleration constant” � remain to be defined.

� � � 
 �

is the value of

�

for the

th bootstrap sample, and


�
is the value computed for the original data. Then

� � � � 

1 ��� � 
� �	��

��
 
� �

�
� �

where
� 

1

is the Gaussian quantile function (so, for example,
� 

1
(.95) = 1.645). Suppose that there are � images

in all, and let

� � ; � be the computed value of


�
when the � th image is deleted (so the computation is done on ��� �

images). Let


� ��� � �
�� ��
;

� � ; � +

Then

� �
: �;=< 1 . 
� �	� � � 
� � ; � 9 �

� � : �;=< 1 . 
� ��� � � 
� � ; � 9 � � � � � 

There are two main differences between the ��)�� confidence intervals described here and the Scheffé confidence

intervals described in the previous chapter. The Scheffé method produces a simultaneous confidence interval, that is,
one that provides upper and lower limits for the entire curve at once. The ��)�� method supplies pointwise intervals,
valid for specific points along the x-axis. It is not currently known how to extend the ��)�� method to simultaneous
intervals. The second difference is that the Scheffé intervals are always symmetric about the curve, regardless of
whether there are any constraints on the range of the variables. Sensitivity and PVP, for example, have a maximum
value of 1. The expected value of sensitivity at a particular bit rate may be very close to that upper limit, and when
obtaining a Scheffé confidence interval for that curve, the confidence interval may exceed 1, since it is necessarily
symmetric about the curve. In that case, the upper confidence curve must be thresholded at 1. The ��) � method
has the advantage of providing intervals that are not necessarily symmetric, but respect the fact that the values of the
response variable lie within a small constrained range.

6 Philosophical issues

There are many different perspectives from which these different measures of image quality can be viewed. They vary
in the extent to which they explicitly consider the application for which the images are used. At one extreme are the
computable measures such as SNR, which in no way take account of the medical nature of the images. Subjective
ratings in which a radiologist is asked to rate the medical usefulness of an image begin to address the issue. ROC
analysis, which includes both a (generally) binary diagnostic decision and a subjective confidence ranking associated
with that diagnosis, are serious attempts to capture the medical interest of the images through their diagnostic value.
Studies such as the CT detection task and MR measurement task attempt to reproduce very closely some actual clinical
diagnostic tasks of radiologists, and to ask the fundamental question of whether a diagnosis made on a compressed
image is as good as one made on an original. By this measure, an image has high quality if the number and locations
of lesions one finds there precisely match the number and locations one finds on the original (or what the independent
panel finds on the original). But is that really the fundamental question? A diagnosis is made on a patient’s scan in
order to make a decision about medical care for that patient, so perhaps image quality could be defined in terms of
medical care. That is, an image has high quality if the decision on medical care is unchanged from that determined upon
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the original. So if the original image has 6 nodules and the compressed one has 9, that may still be an extremely high
quality image according to this particular measure, because the decision regarding medical care may be unaltered in the
case of many tumors with a few more or less. One can step back further to look at patient outcome rather than decision
regarding medical care. Suppose hypothetically that one designs a classification scheme to highlight suspected tumors
in an image. And perhaps, unbeknownst to the designers, pre-cancerous cells which have an overlapping intensity
distribution with that of cancerous cells also tend to get highlighted, causing the surgeon to make a wider resection
and have lower recurrence rates. Then the processed image might rate as poorer quality than an original based on
the previous measures (because both diagnosis and medical care decision would be different from those based on
the original image), yet the processed image would rate as top quality according to the measure of improved patient
outcome. No one would seriously propose these as measures of image quality. The decision on medical care and
the patient outcome both depend on far too many factors other than just image quality. And yet, if one considers
the true measure of medical image quality to be simply whether a diagnosis on the processed image is unchanged
from the diagnosis on the original, one denies the possibility that the processing may in fact enhance the image.
This is not a worrisome consideration with image compression, although there is some indication that in fact slightly
vector quantized images are superior to originals because noise is suppressed by a clustering algorithm. However,
this may soon be a difficult issue in evaluating the quality of digitally processed medical images where the processing
is, for example, a highlighting based on pixel classification, or a pseudo-colored superposition of images obtained
from different modalities. There is a need to develop image evaluation protocols for medical images that explicitly
recognize the possibility that the processed image can be better.

In addition to the advantages which the evaluation protocol confers on the originals, physician training also provides
a bias for existing techniques. Radiologists are trained in medical school and residency to interpret certain kinds of
images, and when asked to look at another type of image (e.g., compressed or highlighted) they may not do as well
just because they were not trained on those. Highly compressed images have lower informational content than do
originals, and so even a radiologist carefully trained on those could not do as well as a physician looking at original
images. But with image enhancement techniques or slightly compressed images, perhaps a radiologist trained on those
would do better when reading those than someone trained on originals would do reading originals.

In this series of three chapters, we have presented several different ways of evaluating medical image quality.
Simple computable measures have a role in the design algorithms and in the evaluation of quality simply because
they are quickly and cheaply obtainable, and tractable in analysis. The actual diagnostic quality is determined by
various statistical protocols that enable the evaluation of diagnostic accuracy in the context of specific detection and
measurement tasks. The analysis of subjective quality is of interest mostly for the fact that it shows a different trend
from actual diagnostic quality, which can reassure physicians that diagnostic utility is retained even when a compressed
image is peceptually distinguishable from the original. There is considerable future work to be done both in evaluation
studies of image quality for different types of images and diagnostic tasks, and in searching for computable measures
of image quality that can accurately predict the outcome of such studies, and perhaps be incorporated into algorithms
for designing codes that yield better quality compression.
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