
18 ECE 253a Digital Image ProcessingPamela Cosman11/15/11

Example of Arithmetic Coding

We have 3 symbols in the alphabet, with probabilities

p(1) = 0.8 p(2) = 0.02 p(3) = 0.18

The cdf corresponding to this pdf has values:

F (0) = 0 F (1) = 0.8 F (2) = 0.82 F (3) = 1

The input sequence we will code is

X1, X2, X3, X4 . . . = 1, 3, 2, 1 . . .

We initialize the lower and upper endpoints of the interval to be

l(0) = 0 u(0) = 1

After reading input symbolX
n
, we will update the sub-interval endpoints as follows:

l(n) = l(n−1) + [u(n−1)
− l(n−1)]F (X

n
− 1)

u(n) = l(n−1) + [u(n−1)
− l(n−1)]F (X

n
)

We begin with the first symbol:X1 = 1. We apply the endpoint updating equations to obtain:

l(1) = 0 + (1 − 0) × 0 = 0

u(1) = 0 + (1 − 0) × 0.8 = 0.8

This interval straddles 0.5, so there is no output of bits. Sowe proceed to look at the next symbol:
X2 = 3. We find the new sub-interval by applying the endpoint updating equations:

l(2) = 0 + (0.8 − 0)F (2) = 0.8 × 0.82 = 0.656

u(2) = 0 + (0.8 − 0)F (3) = 0.8 × 1 = 0.8

Again, we compare to 0.5, and we see this is entirely in the upper half of the unit interval. So we
output the bit 1. Now we can rescale with the rescaling function E2. Recall that the two possible
re-scaling functions are

E1(x) = 2x

E2(x) = 2(x − 0.5)

1

whereE1 is used for rescaling the lower half, andE2 is used for rescaling the upper half. Rescaling
our little interval withE2:

l(2) = 2 × (0.656 − 0.5) = 0.312

u(2) = 2 × (0.8 − 0.5) = 0.6

This straddles 0.5, so there is no further release of bits at this time. We look at the next input
symbol,X3 = 2.

l(3) = 0.312 + (0.6 − 0.312)F (1) = 0.5424

u(3) = 0.312 + (0.6 − 0.312)F (2) = 0.54816

We got a very low-probability input, so the interval suddenly got very small. So now there’s going
to be a release of many bits. After each release of a bit to the decoder, we rescale. We compare to
the threshold of 0.5, and see we’re in the upper half of the unit interval, so we release the bit 1, and
rescale withE2 to get:

l(3) = 0.0848

u(3) = 0.09632

Now it’s in the lower half interval, so release the bit 0, and rescale withE1 to obtain:

l(3) = 2 × 0.0848 = 0.1696

u(3) = 2 × 0.09632 = 0.19264

Still in the lower half interval, so release another bit 0, and rescale again withE1 to obtain

l(3) = 2 × 0.1696 = 0.3392

u(3) = 2 × 0.192640.38528

Still in the lower half interval, so release another bit 0, and rescale again withE1 to obtain

l(3) = 2 × 0.3392 = 0.6784

u(3) = 2 × 0.38528 = 0.77056

They are now both in the upper half interval, so release the bit 1, and rescale withE2, to obtain

l(3) = 2 × (0.6784 − 0.5) = 0.3568

u(3) = 2 × (0.77056 − 0.5) = 0.54112

Now the interval straddles 0.5, so we can’t output any more bits. We have to look at the next input
symbol. We’ll stop the example here. Note that so far we have output the bits 110001.

2

For comparison, let’s try encoding this with an Elias encoder. We begin with the first symbol:
X1 = 1, and it corresponds to the interval [0, 0.8). There is no output of bits. The next symbol is
X2 = 3, and we get the endpoints with the same endpoint updating equations:

l(2) = 0 + (0.8 − 0)F (2) = 0.8 × 0.82 = 0.656

u(2) = 0 + (0.8 − 0)F (3) = 0.8 × 1 = 0.8

We compare to 0.5, see this is entirely in the upper half of theunit interval, and output the bit 1. So
far, this is exactly like the arithmetic encoder. At this point, the arithmetic encoder would rescale
and again check the threshold of 0.5. The Elias encoder doesn’t rescale. Instead, it checks the
threshold of 0.5 + 1/4 = 0.75 (that is, we’re looking to see if the endpoints agree in the second bit
of their binary expansions). The current interval straddles 0.75, so there is no further release of
bits at this time.

We look at the next input symbol,X3 = 2, and use the endpoint updating equations to get:

l(3) = 0.656 + (0.8 − 0.656)F (1) = 0.7712

u(3) = 0.656 + (0.8 − 0.656)F (2) = 0.77408

We check 0.75, looking to see if the endpoints now agree in thesecond bit of their binary expan-
sions. They do, as they are both above 0.75. So we release the bit 1.

We check the 3rd bit of the binary expansion. Are the endpoints both above or both below 0.75 +
1/8 = 0.875? They are both below, so release the bit 0.

We check the 4th bit of the binary expansion. Are the endpoints both above or both below (0.875-
1/16) = 0.875-0.0625 = 0.8125? They are both below, so release the bit 0.

We check the 5th bit of the binary expansion. And so forth. Youcan continue the example.

The point is this: The arithmetic encoder and the Elias encoder are producing the same set of
output bits (110001...) for the same input sequence (132...). The difference is in theinternal
representation of the intervals, and what threshold is being used for comparison. The arithmetic
encoder is always checking against 0.5. The Elias encoder isgetting finer and finer precision on
the representation, and is checking against a sequence of thresholds, in this case: 0.5, 0.75, 0.875,
0.8125, etc.

3

