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Abstract

This paper investigates the tradeoffs between source coding, channel coding and spreading in CDMA systems,

operating under a fixed total bandwidth constraint. We consider two systems, each consisting of a uniform source with

a uniform quantizer, a channel coder, an interleaver, and a direct sequence spreading module. System A is quadrature

phase-shift keyed (QPSK) modulated and has a linear block channel coder. A minimum mean squared error (MMSE)

receiver is also employed in this system. System B is binary phase-shift keyed (BPSK) modulated. Rate-compatible

punctured convolutional (RCPC) codes and soft decision Viterbi decoding are used for channel coding in system B.

The two systems are analyzed over both an additive white Gaussian noise (AWGN) channel and a flat Rayleigh fading

channel. The performances of the systems are evaluated using the end-to-end mean squared error (MSE). A tight upper

bound for frame error rate is derived for non-terminated convolutional codes for ease of analysis of system B. We show

that, for a given bandwidth, an optimal allocation of that bandwidth can be found using the proposed method.
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I. INTRODUCTION

Source coding, channel coding and spread spectrum are three of the main components in a

CDMA communication system. They compete for the major shared resource – bandwidth. Source

coding frees up bandwidth for both forward error correction (FEC) and spreading. Allocating

more bandwidth to source coding allows more information from the source to be transmitted, but

reduces the bandwidth available for both FEC and spreading. For different compression methods

and rates, the bit stream coming out of the source encoder will be more or less sensitive to different

types of error patterns. FEC and spreading protect the transmitted bits from noise and interference.

Depending on the channel conditions and the characteristics of the source coded bit stream, the

system will perform better with either more FEC or more spreading.

Related studies in the literature are limited to the tradeoff between either source coding and

channel coding, e.g., [1], [2], or channel coding and spreading, e.g., [3], [4]. In each case, research

topics included analyzing a given system to find the optimal bandwidth allocation to each module

as in [1], [3], and joint design of coding algorithms or transmitter/receiver schemes for each cat-

egory [2], [4]. In [5], we studied the bandwidth allocation tradeoff for a direct sequence CDMA

system that incorporated an image coder, a RCPC [6] channel coder, and a RAKE receiver. Due to

the complexity of the system, we obtained most of the results through simulations. In this paper,

we investigate the tradeoffs using a combination of analytical and numerical techniques.

Let ��������� and
� � denote the source code rate (in bits per source symbol), the channel code rate,

and the spreading factor, respectively. If the source produces 	 symbols per second, for a given

bandwidth of 
 chips per second, we have the following constraint:	�� ��� � 
��� � � ��� 
���� ��� � 
��� � � ��� 
�� � (1)

where 
���� 
���	 is a constant that constrains the number of chips available for each source

symbol. We will find the bandwidth allocation �������� ������ �� ��� that optimizes system performance. We

will also address the question of how sensitive is the optimal allocation to changes in the channel

conditions, transmission rate, or bandwidth constraint.

Note that, in reality, 
 � is determined by the spread bandwidth, the pulse shaping, and the source
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symbol rate. For example, consider a wideband CDMA system with a chip rate !#" 
�$&% chips per

second, operating in conjunction with a video conference application of

�$

frames per second, with
('*)
-by- !+!�, -pixel frames. This requires a source symbol rate of


�$ " 
('*) "-!+!�,.�0/2143*,�!�,5" 
�$�6
symbols per second. Therefore, 
7�980: 
 . In our paper, the values of 
7� are generally larger than

those of a practical system. This is because our system uses a simple high rate uniform quantizer,

whereas a practical system would use a more complicated source code that allows the source to be

transmitted at much lower rates.

In multiuser CDMA systems, each user has its own performance requirements and bandwidth

constraints, depending on the applications (e.g., video, voice, image). Without changing the trans-

mission power, our optimization allows individual users to tune their own parameters (or a base

station to tune the parameters for its users), independent of the performance of all other users.

Our optimization setup can be restated as : given a constraint on the chip rate available per source

symbol, find the optimal ����(��� ������ �� �;� that minimizes the end-to-end distortion. This optimization

setup can be easily converted to the following two alternative optimization setups:< Assuming all users are identical, for a given end-to-end distortion requirement, find the optimal�������� ������ �� �=� , that allows the largest number of users in the system.< Assuming the transmitted signal energy is constant, given an end-to-end distortion requirement,

what is the optimal ����(�>� ����;� �� �=� , that enables the mobile to have the largest coverage radius?

Which of these three optimization criteria is the most useful depends upon the specific scenario

being considered. In a system that is transmitting scientific or medical images, the goal would

often be to minimize distortion subject to the bandwidth constraint. This goal might also apply to

any undersubscribed system, for which maximizing capacity is not currently an issue, and mini-

mizing distortion is. On the other hand, if one is concerned with communicating in a dense urban

environment, maximizing the capacity is probably the most useful criterion. Alternatively, if the

environment is rural, maximizing coverage is often the most meaningful criterion. Some examples

of these two alternative optimizations will be given in the results of Section III.

The paper is organized as follows. Section II gives an overview of the systems and our approach

to the bandwidth allocation problem. Sections III and IV analyze two different systems. Repre-
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sentative results of tradeoffs among the three components are also given in these two sections. The

conclusions are given in Section V.

II. SYSTEM OVERVIEW

We consider a multiuser scenario. The system for each user is similar and is shown in Figure

1. The source input vector ? @BADC has closed bounded support. Each component of the vector

is considered to be one source symbol. The output of the source encoder is an E -bit binary index,

and so the source code rate �(� �FEG�*H . The source encoder is a quantizer with distortionIKJ � LNMPORQS T U � VXWZY\[][ ^._a` T [b[ c(d � ^ �=e ^ � (2)

where f�g Tih L M ORQT U � is a partition of A C into disjoint regions, each of which is represented by code

vector
` T @jAkC , [][ � [][ c represents the lRmon power of the usual Euclidean p L norm, and

d � ^ � is the

probability density function of ? .

In our system, we take ? to be a one-dimensional ( HG� 

) uniform source over q $ � 
�r . We also

take lG�s! , so that the end-to-end distortion is the mean squared error. The quantizer we use here

is designed to be optimal for a noiseless channel, and it has partitions and code pointsg T �0qutv�w! O J � �xtzy 
 � �w! O J ��� ` T � ! O J! �{!�tzy 
 ��� (3)

respectively, where tP� $ � ����� � ! J _ 
 , and
` T

is the centroid of g T . In Appendix A, we prove that

even though the analysis is done for a uniform source, the results can be applied to a wide variety

of source distributions. Since �(� �jEG�*H5��E , we will use E and �(� interchangeably.

The E -bit binary representation, t|@}f $ � 
 � 1�1�1 � ! J _ 
 h , of a source symbol is mapped to an E -

bit index ~|�xt � @-f $ � 
 � 1�1�1 � ! J _ 
 h by the index assignment block 1. Its purpose is to rearrange the

indices so that those with small Hamming distances between them represent quantization levels

which are close. This way, the distortion caused by the most probable errors is small, and thus

the total distortion is small. There are many different index assignment schemes possible for

a scalar quantizer, such as the Natural Binary Code (NBC), the Gray Code (GC), and the Two’s�
The index assignment block is actually a part of the source coding. We separated it out for ease of analysis.
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Complement Code (TCC) [7]. We pick a random index assignment [1], where the mapping ~���� � is a

one-to-one mapping from indices
$

through ! J _ 
 to a random permutation of the indices
$

through! J _ 
 . Since the permutation is random, the index assignment can be good or bad. To measure

its distortion, we must average over all possible permutations, i.e., we use the expectation of the

distortion to evaluate its performance. The use of random indexing simplifies analysis, although

the method proposed in this paper will work for any specific index assignment. In practice, a good

index assignment (e.g., a NBC, or a GC) should give a better performance than that of a random

index assignment.

A channel encoder with rate ��� ��EG��� codes the indices and passes them to the interleaver.

The interleaver output is multiplied by the spreading sequence assigned to the given user, with

spreading factor
� � . The output of the spreading is modulated and passed to the channel. Here we

consider DS-CDMA systems, with channel symbol rate

 �(� � , chip rate


 �w� � , and spreading factor� � ��� � �w� � . The system has � active users, with the
$ mon user taken as the reference user.

At the receiver, the received signal is demodulated, despread, and decoded by the channel de-

coder to E -bit indices. These indices are mapped by the inverse index assignment block and

decoded by the quantizer decoder. By comparing the reconstructed source with the original source

symbol, we can calculate the end-to-end distortion. In actual applications, such as image com-

pression and video compression, the end-to-end distortion is generally measured by the mean

squared error (MSE), or equivalently, peak signal-to-noise ratio (PSNR), where PSNR is defined

as

�$��]�*� Q � �{������H L ����g�� � , and ������H is the peak value of the source. In this paper, we will use the

MSE criteria.

From [8], the expected mean squared error of a system with a uniform source, a uniform scalar

quantizer, and a random index assignment, isI ��E � �P� � � ! O�L J
 ! y ���) � 
 yB! O J � 8 ! O�L J
 ! y �P�) � (4)

where �P� is the probability of index error, i.e., at least one bit of the E -bit index is in error, so

the index is incorrect. In earlier work, without proof, [9] gives a similar result for an uncoded

memoryless binary symmetric channel. Equation (4) works for all channel codes and channels.
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The value of ��� depends on the channel code, modulation scheme, channel conditions and re-

ceiver structure. Generally, finding the expression for ��� is no trivial task. In this paper, we will

find a close upper bound for ��� , and thus an upper bound for the distortion
I �xE � ��� � , as a function

of all three parameters �(�>����� , and
� � . We denote this upper bound by

I.� � ����������� � ��� , and find the

optimal bandwidth allocation triplet, ����w�>� ������ �� �=� , for
I5�

. The true optimal bandwidth allocation

for the system could be different than ����w��� ������ �� �=� , but by operating the system based upon the op-

timal allocation of the upper bound, we can guarantee that the system performs no worse than the

best performance of the upper bound. In the rest of the paper, we use the term “optimal allocation”

to refer to the optimal allocation based upon the upper bound.

Since we use non-trivial channel codes, ��� , and thus,
I ��E � ��� � , are decreasing functions of
 � ��� , i.e., if both ��� and

� � are given, the larger

 � ��� (for a given level of complexity) is, the better

the performance of the system. Therefore, we can replace the inequality constraint, Equation (1),

by an equality constraint: ��� � 
��� � � � ��
���1 (5)

Hence, the problem we need to solve is to minimize
Ik� � ���>������� � �;� under constraint (5).

In the next two sections, we introduce two different systems. For each of these two systems,

we first find the upper bound for the end-to-end distortion
Ik� � ���>�����;� � �=� , and then determine the

optimal bandwidth allocation for this upper bound.

III. SYSTEM A

In system A, the bit stream out of the index assignment block is encoded by a linear block�xE � � � code with code rate ��� ��EG��� . At the receiver, the � -bit codeword is decoded with a hard

decision decoder. We consider an asynchronous CDMA system employing QPSK modulation, and

a minimum mean squared error (MMSE) receiver is implemented to suppress the multiple access

interference [10]. Since we are using an MMSE receiver, the spreading sequence for each user is

periodic, with a period equal to the channel symbol duration, � � . We study the performance for

both the AWGN channel and the flat Rayleigh fading channel.
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A. Upper bound on the end-to-end distortion

For ease of analysis, we assume infinite interleaving, i.e., each bit into the decoder experiences

an independent fade. For hard decision decoding, we have��� � �ST U m�� Q�� � tw� �
T � 
 _ � � � O T � (6)

where � is the raw bit error rate, ¡¢� £>¤ M Y4¥L�¦ is the number of correctable errors, and e J T � is the

minimum distance of the block code. From the Gilbert-Varshamov bound, [11, p.463], binary

block codes exist for e J T �K§ �©¨ , where ¨ is related to the code rate ��� through the equation��� � 
 _«ª �{¨ � � 
 y¬¨ �]�+� L ¨­yF� 
 _ ¨ � �b�+� L � 
 _ ¨ ��� (7)¨ � QL , and
ª ��� � is the binary entropy function. In this paper, we assume e J T � �®£¯�G�(¨ ¦ .

For small � , we can use the following approximation:�P� � �ST U m�� Q°� � tw�±�
T � 
 _ � � � O T 8 � �¡�y 
 � � m�� Q � ��²+� � m�� Q�x� _ ¡ _ 
 � ²]��¡�y 
 � ² 1 (8)

From the Stirling approximation for �P² , we have��� � � � � �³´ !w~ ����� _ ¡ _ 
 � ORµ � O m O �³>¶ ����¡�y 
 � ORµ m���·³�¶ � � m�� Q 1 (9)

Substituting the above into (4), and replacing E by � �w� , we have the end-to-end distortionI ��� ������� � �°� 

 ! ¸¹¹º ! O�L ��»x¼ y�½ !~ ��� � � �³¾ ¿�À ÁÂ �w�x� _ ¡ _ 
 � ORµ � O m O �³>¶¾ ¿�À ÁÂ � �w��¡�y 
 � ORµ m�� · ³�¶¾ ¿�À ÁÂ ³ � � m�� QNÃ�ÄÄÅÆ IÇ� �x� ������� � � Æ 

 ! I Q �x� �;����� � ��� (10)

where ¡|��£ ��ÈL ¦ and ¨ is related to ��� through (7). Note that (9) and (10) are actually approximate

upper bounds, due to the fact that the Stirling approximation was used. In the rest of this section,

the term “upper bound” is used to refer to the approximation of the upper bound.
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A.1 Bit error rate (BER) � for MMSE receiver

After down conversion, the received signal is despread by being passed through a chip matched

filter (MF), and then through a linear, adaptive tapped delay line with
� � taps, as shown in [10].

Hard decisions are made in both the in-phase (I) and quadrature (Q) channels of the output of the

adaptive receiver. The multiplexed binary stream is then fed into the block deinterleaver and a hard

decision channel decoder.

Assuming equal probability for the t -th symbol of the reference user, (i.e., with probability

 �+! ,e T � takes the value of


 � ´ ! or
_ 
 � ´ ! ), and using É5��� � to denote the standard Q-function, it is

shown in [12] that the conditional bit error probability is given by� Q � bit error
[ fwÊ TË c m h � fw¨ T� h � ��É5��Ì Í ¤ �+! � and Í ¤ �Î�{¨ T� � L+Ï&Ð�¢ÑA ORQT Ï �! 1 (11)

In [12], ÏXÒ is a vector containing the components of the reference user’s spreading sequence, ¨ T�
is the magnitude of the Rayleigh fading parameter for the t mon symbol of the reference user, with�kq��{¨ T� � L r � 


, and ÑA T is defined by equation (9) in [12], calculated by using the channel state

information of the reference user. We assume the receiver has perfect channel state information for

the reference user.

In deriving (11), we assume, as in [12], a rapidly varying channel in which the adaptive algorithm

is not able to track the fading on any of the interfering users in the system. Also, we assume

that the delays experienced by each user remain constant throughout a decoding interval. These

assumptions result in ÑA T being independent of t . Thus, Í ¤ reduces to the following equation:Í ¤ � Ï Ð �¢ÑA ORQT Ï �! ���x¨ T� � L Æ Í � ���{¨ T� � L 1 (12)

For the AWGN channel, we have ¨Ó� 

(i.e., a constant); thus, the conditional bit error probability

is given by � L � bit error
[ f�Ô�Õ h � ��É5��Ì Í � �*! ��� (13)

where ÔZÕ is the delay of the H mon user relative to the reference signal, assumed to be independent

and identically distributed (i.i.d.) for each H with a uniform distribution in the interval q $ � � �;� , and
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For a flat Rayleigh fading channel, averaging over the fading on the desired user, we can reduce

the conditional bit error probability to a simple closed form given by [11, eq.(14-3-7)]:� L � bit error
[ f�Ô�Õ h � � 
!aÖ 
 _ ½ Í �
 yaÍ ��× 1 (14)

Finally, the bit error rate � can be obtained by sample averaging � L over the f�Ô�Õ h .
B. Optimization

From the previous subsection, calculation of � L involves evaluating an
� � by

� � matrix ÑA which

is determined by the spreading sequences of all the users. To obtain the coded BER, we have to

average the conditional bit error probability � L in (13) or (14) over many possible realizations of the

delays f�Ô�Õ h . Since the spreading factor
� � , over which we intend to optimize, does not appear in a

simple manner in
I Q �x� � �P� � � � (see Equation (10)), we use a procedure which combines numerical

evaluation and analysis to determine the optimal bandwidth allocation under a given bandwidth

constraint.

Given a bandwidth constraint �(� � ��� � � � ���Ó� � �.� 
�� , we calculate the � ’s for a given set

of possible
� � ’s by numerically averaging � L over a large number of sets of randomly generated

delays f�Ô�Õ h for each
� � . Then we substitute the numerical value of � � � �;� into

I Q , and find the

optimal �x��Ø�� � �=����� Ø� � � �;�=� and corresponding optimal distortion
I Q �x�©Ø(� � �;�>��� Ø� � � �;�>� � � � �;�=� under

the bandwidth constraint � � 
 �>� � � . Here we use ��� � Ø to represent the optimal parameters for a

given
� � , and use ���� � to represent the overall optimal parameters for a given bandwidth constraint.

By comparing the optimal
I ØQ ’s, we can find the optimal 3-tuple ���� � ��(�;� �� �=� , and thus ����(�>� ������ �� �=�

among all possible bandwidth allocations of interest.

To find the optimal pair �x�vØ�� � �=���;� Ø� � � �=�;� for a specific value of � � � �=� , and the constraint� � 
��>� � � , note that we always want to use all the bandwidth available. Thus � Ø � � �=� �£�
���� � � ¦ . Substituting � Ø � � �;� and � � � �=� into
I Q , I Q can be simplified to a single variable functionI#ÙRÚ � ����� Æ I Q �x��Ø(� � �=��������� � � � �=�;� , for which we want to find the optimal � Ø� .
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Note that
I#ÙRÚ � ���Û� is not a continuous function, since it is only meaningful when ¡|�Ü£ ��Ý ÈL ¦ is an

integer. However, for the sake of obtaining an analytically tractable solution, we treat this function

as being continuous, with ¡ taking any value between
$

and £ � Þ ¦ . Note also that if Ñ� is a local

optimum, and its corresponding Ñ¡ is not an integer, then we need to consider both £ Ñ¡ ¦ and £ Ñ¡ ¦ y 
 .
For a given ¡ , there are multiple values of �(� corresponding to it; among all these possible �(� ’s, the

largest ��� will give the smallest
IÇÙ\Ú

. This is because for a constant ¡ , the second term of (10) is

constant, and the first term is a decreasing function of �w� . We denote the largest ��� which has error

correction capability ¡ by ��� �àßá�â¡ � . Therefore, the optimal ��(� is either ß°��£ Ñ¡ ¦ � or ß°��£ Ñ¡ ¦ y 
 � for

each locally optimum Ñ¡ .
For small � , which holds for most channels of interest, the continuous version of

IDÙ Ú � ����� can be

shown to be a convex function [13], which indicates there is only one global optimum Ñ�*� . To findÑ��� , we differentiate
IÇÙ Ú

as follows:ã I#Ù\Ú � �����ã ��� ��! O�L ��» ��� _ !�� �bä ! � yå�æ� Q � L � � m�� Q � Ö 
� Q ã � Qã ��� y 
� L ã � Lã ��� y �]ä � � ã ¡ã ����× � $ (15)

where

� Q ã � Qã ��� � � �]ä �x� _ ¡ _ 
 � _ _ �5y«¡�y 
 �+!� _ ¡ _ 
 � ã ¡ã ��� �
� L ã � Lã ��� � � _ �bä ��¡�y 
 � y _ ¡ _ /ç�+!¡vy 
 � ã ¡ã ��� �

and
ã ¡ã ��� � ã ��ÈLã ��� � �! �]�+� L ÈQNO È 1Equation (15) can be solved by any good root-finding algorithm.

C. Results

The possible spreading factors we considered are

 : � / 
 � ) / and


 ! ' . We used Kasami sequences

for
� � � 
 : and Gold sequences for

� � �è/ 
 � ) / � 
 ! ' . For each case, the � were obtained by

averaging the conditional error probability � L in (13) or (14) over 3000 realizations of sets of

delays. We define � � as the energy-per-coded bit, and � � as the energy-per-chip.

We studied many different cases for both AWGN and flat Rayleigh fading channels. In this

section, we give two sets of representative results, both for AWGN channels. For results for flat

Rayleigh channels, please refer to [8].
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Table I gives the results for an AWGN channel with the chip energy-to-noise ratio � � � � Ë �_ ' e�é , and the bandwidth constraint �(� � Q» ¼ � � �°� 
��°� 
 ! '*$ (e.g., for a block length �ê� 
 ! ' , the

largest spreading factor possible is

�$

). Results are shown for three different cases: 3 active users

with no near-far problem,

 : users with no near-far problem, and 3 users with ë(ìë�í � ) e�é . For each

case, the lowest distortion is underlined. For the first case, we can see that a channel code rate

around

 ��, , and a spreading factor of / 
 , give the smallest distortion. The corresponding source

code rate ��� �j�.� ��� �F, $ " $ 1î! ' :ï� 
+

, i.e., the optimal 3-tuple is ����(��� ������ �� �=� �0� 
+
 � $ 1î! ' : � / 
 � .

For the second case, the optimal 3-tuple is � 
�$ � 
 � 
 ! ' � . As the number of users increases, the

interference from other users to the desired user increases, so we need a larger spreading factor

for interference suppression. At the same time, the bandwidth allocated to both source coding

and channel coding is decreased. The last case incorporates a near-far situation where all the

other interfering users have a stronger power. Here the optimal 3-tuple is � 
�$ � $ 1î: � ) / � . Like the

second case, as the interference from other users increases, we need to allocate more bandwidth to

spreading to have better interference suppression.

When the spreading factor increases, not only can the MMSE receiver more effectively elimi-

nate the interference from other users, but also the coded bit energy-to-noise ratio, ð ÚÙXñ � _ ' y
�$��]�*� Q � � � �;��e�é , increases. Note also that for all three channel conditions above, for
� � � 
 ! ' ,

the error rates are different, but both the optimal � Ø� ’s and the total distortions are the same. When� is extremely small, almost all the indices are received reliably without FEC, so � Ø� � 

. Thus, all

the bandwidth available for both source coding and channel coding is allocated to source coding.

Table II shows the results for an AWGN channel with � � � � Ë � _ : e�é , and 
 �ò� 
 3 $ : . The

three cases shown are the same as those in Table I. The optimal allocations are �i! 
 � $ 14/*,+,ç/ � / 
 � ,�i! $ � $ 1 ) /+/+/ � ) / � , and � 
(' � $ 1 ) /+/+/ � ) / � , respectively. Note that when
� � � 
 ! ' , all three cases have

very low channel error rates, so the total distortion is solely due to quantization error. Therefore,

since the number of source bits per source symbol is the same for each case, the final distortions

are the same.

In practice, the source code rate �w� varies depending on the application. For example, speech

coding system can achieve 0.3 to 4 bits per sample, i.e., compressed rates of 2.4 to 32 k bits per
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second for 8 kHz samples. A high quality image coder has a compression ratio of 30 to 10, which

translates to 0.8 to 2.4 bits per pixel for a color image. In medical imaging, where sometimes no

compression is allowable, a grayscale image could have a source code rate of 12 or more bits per

source symbol.

In general image compression applications, a PSNR of around /ç! e�é results in a good com-

pressed image (this corresponds to an MSE of
) 14/ 
 " 
�$ O Þ when normalized to a uniform quan-

tizer with peak value


, as in this paper). In medical image compression, a PSNR of , $ to :+: e�é

or higher is desirable [14] (corresponding to a normalized MSE of

 1 $ " 
�$ O Þ to /21 
�) " 
�$ O�ó ),

depending on the application. In some cases, when a medical image starts out as an analog image,

it is initially compressed by digitizing it, in which case one might use

 ! or more bits per pixel.

Often there is no further compression beyond this and the PSNR is §jô / e�é (a normalized MSE of,X143 ' " 
�$ O�õ ).
As mentioned in the Introduction, our system optimization can be converted to two alternative

optimization problems. Table III shows the maximum number of users with different bandwidth

allocations for a given system end-to-end distortion requirement of
I � /&1 $+$ " 
�$ O�ó . We assume

that the transmission power for all users is the same. From the table, we can see that for
� � � 
 : ,

the system capacity is � � '
users, with the optimal �xEöØ ��� Ø� � for this

� � . Similarly, the system

can achieve a capacity of

 : � !�/ , and ,�: users, for

� � �®/ 
 � ) , , and

 ! ' , respectively. Note the

largest system capacity overall is ,�: users with ����w��� ������ �� ��� � � 
�$ � 
 � 
 ! ' � . Thus, in this case,

where the chip energy-to-noise ratio is low, the best system performance is achieved by using

the largest spreading factor, which leads to a higher signal-to-noise ratio. Table IV shows the

optimal coverage radius for the reference user for a given end-to-end distortion requirement ofI � ô 1 $*$ " 
�$ O�÷ . In the table, we assume ��Õ��*���ï� $ e�é . Coverage radii are normalized to the

radius of the system with the smallest spreading factor (i.e.,
� � � 
 : ). Assuming the transmission

power is constant, the distance in the table is calculated by assuming that the received signal power

is inversely proportional to the fourth order of the distance, i.e., a

 ! e�é drop in � � � � Ë indicates

a doubling of the distance. We can see that the bandwidth allocation ����*��� ������ �� ��� �ø� 
�$ � $ 1ù: � ) / �
results in the largest coverage area. The required MSE values in Tables III and IV are arbitrarily
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picked, but nevertheless are realistic.

IV. SYSTEM B

In this system, the bit stream out of the index assignment block is encoded by a non-terminated

convolutional encoder with code rate �(� . At the receiver, a soft decision Viterbi decoder decodes

the noise-contaminated bit stream to indices. The output of the interleaver is multiplied by a long

pseudo-random sequence assigned to the given user and transmitted using BPSK modulation.

A. Upper bound on the end-to-end distortion

Since we transmit the indices by sequentially passing them through a non-terminated convolu-

tional code, the E -bit index error rate is also the frame error rate of this convolutional encoder. A

frame of size E consists of E consecutive information bits. The error rate of an information frame

of size E is the probability that at least one of the E bits in the frame is decoded incorrectly. In

[15], an upper bound for the frame error probability was given heuristically, but a requirement of

very large EG� ��� was posed. In Appendix B, we derive a tight upper bound for frame error rate for

any coded frame lengths which are larger than the constraint length:�P���F�Pú��xE ��� S ¤ �;�xp J _ 
 � � ¤ y¬û ¤ � � Q � e��°� (16)

where E is the information frame size, p J is the number of branches of the trellis that are in a

frame, � Q � e�� is the pairwise probability of two sequences that have Hamming distance e , and � ¤
and û ¤ are defined in Equation (44). Values of û ¤ for the memory � �0, RCPC codes in [6] are

listed in Table V. For both AWGN and Rayleigh fading channels, we calculate � Q � e�� and then

optimize the end-to-end distortion of the system.
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A.1 AWGN channel

For a direct sequence CDMA system with a large number of users, the pairwise error probability

for the AWGN channel is approximately given by� Q � e�� ��Éýü � � � eþ �x� _ 
 � � � � � � y � Ë �*!zÿ �FÉýü � � � e � �þ �x� _ 
 � � � y � Ë �*! ÿ Æ É � Ì ª e � ��� �
(17)

where
ª Æ � �þ �x� _ 
 � � � y��

Ë �*! � 
þ �x� _ 
 � y��
Ë �+!*� � 1 (18)

Also � � is the energy-per-channel bit,
ÙXñL is the power spectral density of the white Gaussian

noise, þ is a constant which depends on the pulse shape, and equals !+�*/ when we use square-

shaped chips, � is the total number of users,
� � is the spreading factor, and � � � ð ÚÙRÚ is the energy

per chip (which is kept constant). Substituting (17) into (16) and then into (4), we haveI �xE ������� � ����� 

 ! �(! O�L J y 
) S ¤ �;�{p J _ 
 � � ¤ y¬û ¤ � ��É � Ì ª e � � � Æ IÇ� �xE �;����� � ��� 1 (19)

A.2 Flat Rayleigh fading channel

Assume �kq ¨ L r � 

, where ¨ is the fade amplitude and has a Rayleigh density, and assume the

fading seen by the channel decoder is uncorrelated from bit to bit. For a direct sequence CDMA

system, the conditional pairwise error probability, conditioned on the fading parameters, is given

by [11]� L � e [ fw¨ Tih � ��É ¸º � ��� ¤ ORQ� ¨ LTþ �x� _ 
 � � � � � � y��*���+! ÃÅ ��É ¸º � � � � ��� ¤ ORQ� ¨ LTþ �x� _ 
 � � � y	�*�>�*! ÃÅ Æ É ¸º 
��� ª � � ¤ ORQS � ¨ LT ÃÅ 1
Averaging � L � e [ fw¨ Tih � over the distribution of all ¨ T , tK� $ � 1�1�1 ��e _ 


yields the pairwise error

probability [11, 14.4.15]:� Q � e�� � � 
 _�
! � ¤ ¤ ORQS T U � � e _ 
 y«tt � � 
 y 
! �
T � where


 � ½ �Í �
 y �Í � � (20)

and �Í � � QL ª � � �.q ¨ LT r . When �Í ��� 

, (i.e., � 
�$ e�é ), � Q � e�� can be further simplified to� Q � e�� 8 � 
, �Í � � ¤ � � ! e _ 
e � � � 
! ª � � � ¤ � ! e _ 
e � � � 
! ª � ¤ � ! e _ 
e � � � O ¤� Æ�� � e�� � � O ¤� �

(21)
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where
� � e�� � � þ �{� _ 
 � y��*���+!*� �! � ¤ � ! e _ 
e � 1 (22)

Substituting (21) into (16) and then into (4), we haveI �xE �;����� � ����� 

 ! �(! O�L J y 
) S ¤ �;�xp J _ 
 � � ¤ y¬û ¤ � � � � e�� � � O ¤� Æ IÇ� �xE ������� � �=� 1 (23)

B. Optimization

In the equations for the upper bound of the distortion, (19) and (23),
ID� ��E ������� � �;� is not a

simple function of ��� , i.e., for a given set of RCPC codes, the spectrum, � ¤ and û ¤ , cannot be written

as a function of ��� . Thus, we cannot find the optimal bandwidth allocation by taking derivatives

of
IÇ�

with respect to ��� . We will use a similar approach to that for system A to find the optimal

bandwidth allocation triplet ���E � ������ �� �;� . We first fix ��� , and find the optimal allocation ��EöØ � � Ø� �
and the minimum distortion

I Ø� �xE � for this ��� . Then by comparing the minimum
I Ø� ��E � ’s for

different ��� , we find the best triplet. For a given channel code rate �w� , we can use the bandwidth

constraint and substitute
� � ��
�� � ��� ��E into

IÇ� �xE �;����� � ��� , so that the upper bound
I.�

becomes

a function of a single variable E . We denote this new function
Ik� �xE � .

B.1 AWGN channel

Substituting
� � �j
��á� ��� ��E into (19), we haveI5� �xE � � 

 ! �(! O�L J y 
) S ¤ �;�xp J _ 
 � � ¤ yåû ¤ � É � Ì ª e 
�� ��� �wE � 1 (24)

Differentiating
I5� ��E � with respect to E , and setting it equal to zero, results in$ � 
 ! ã IÇ� ��E �ã E �F! O�L J ��� _ ! �]ä ! � yB! S ¤ � ¤ � 
��� É � Ì ª e 
�� ��� ��E �yB! S ¤ �;�xp J _ 
 � � ¤ yåû ¤ � � _ � O�� ¤�� í »x¼�� L J´ !w~ � _ ´ ª e 
�� ���! ´ E��8�! O�L J ��� _ ! �]ä ! � y¬! S ¤ � ¤��� � O�� ¤�� í »{¼ � L J´ !w~ Ì ª e 
�� ��� ��EyB! S ¤ �;�xp J _ 
 � � ¤ yåû ¤ � � � O�� ¤�� í » ¼ � L J´ !(~ � ´ ª e 
�� ���! ´ E � 1 (25)
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The approximation in the last step of (25) is valid when
ª e 
�� ��� ��E � ª e � � is large. It is easy

to show that
IÇ� �xE � is a convex cup, so, solving (25) numerically with any good root-finding

algorithm gives the optimal E Ø for an AWGN channel.

B.2 Flat Rayleigh channel

Substituting
� � �j
��á� ��� ��E into (23) results inIÇ� �xE � � 

 ! �w! O�L J y 
) S ¤ � � e�� �{
�� ���N� O ¤ �ç�;�{p J _ 
 � � ¤ y¬û ¤ � E ¤ 1 (26)

Upon setting the derivative of
I �xE � equal to zero, we obtain$ � 
 ! ã IÇ� ��E �ã E ��! O�L J �{� _ ! �]ä ! � yK! S ¤ � ¤ � � e�� �x
�� ����� O ¤ � � E ¤��� y��;�xp J _ 
 � � ¤ yåû ¤ ��e ��E ¤ ORQ � 1

(27)

As was the case with (25), (27) needs to be solved numerically. Note that for large signal-to-noise

ratios, ð ÚÙ ñ , we can ignore non-minimum distance error events and thus use simpler forms of !#"%$! J
for both cases above.

C. Results

Figure 2 shows the upper bound for the end-to-end distortion,
ID�

, versus the source code rate

and channel code rate for an uncorrelated Rayleigh fading channel, under the bandwidth constraint» Ú»{¼ � � �9� 
�� � ô $+$ . Here ð ¼Ù ñ is
_ ) e�é , and the active number of users in the system is � � 
�$

.

The RCPC codes used are from Table 1 of [6]; their spectra are listed in Table II of this paper. From

Figure 2, we can see that, for each given channel code rate �w� , there is an optimal source code rateE that achieves the smallest
I5�

for this ��� . The global optimum always falls at the smallest �(� ,
i.e., the strongest channel coding. This is true for both AWGN and flat Rayleigh fading channels

when no interference suppression is implemented.

For any fixed ��� , by solving (25) and (27), we also show in the following figures how E Ø and� Ø� vary when the channel conditions change.

Figure 3(a) shows the variation of the optimal E with the chip energy-to-noise ratio, ð ¼Ù ñ , and

Figure 3(b) shows analogous results for the optimal value of
� � . There are two sets of curves on
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each figure, one for bandwidth constraint 
7��� /ç! $ , and the other for 
 �ï� ) , $ . The curves are

parameterized by the number of users � � 
 � : � 
�$ � ! $ . Also, all curves correspond to the use of

the memory , , rate

 �+! code in [6], and an uncorrelated flat Rayleigh fading channel.

For each curve in Figure 3, where the number of users, � , is fixed, we see that as ð ¼Ù ñ increases,E­Ø increases, and
� Ø� decreases. This is because the spreading factor,

� � , has two effects on the

performance of the system: 1) A larger
� � suppresses more interference from other users; 2) a

larger
� � leads to a larger � � � Ù\Ú Ý ð ¼»{¼ , and thus reduces the raw error rate into the channel decoder.

As ð ¼Ù ñ increases, the channel gets better, and we do not need as large an � �
, so we can decrease

� �
and allocate more of the available bandwidth to source coding, i.e., increase E .

Alternatively, for each set of curves which have the same bandwidth constraint, we see that as

the number of users increases, E Ø decreases. This is because we need to allocate more bandwidth

to spreading to suppress the multiuser interference. We can also see that the increase (decrease)

of E­Ø�� � Ø� � is slower for a larger number of users. This is because with more users, the multiuser

interference dominates the thermal noise, while the effects of the change of the ð ¼Ù ñ are comparably

less significant.

Figure 4 illustrates how EöØ and
� Ø� change as the bandwidth constraint 
7� changes. The system

used in this figure is the same as in Figure 3. From this figure, we see that as 
 � increases, EGØ
increases, and E Ø increases faster when there are fewer users in the system. This is because when

there is less interference, as ð ¼Ù ñ increases, the channel condition improves faster than when there

is more interference. Thus we do not need as large a spreading factor
� � , and we can afford to

allocate more bandwidth to the source coding. Similar results for the AWGN channel are presented

in [13].

V. CONCLUSIONS

In this paper, we studied the bandwidth allocation problem for two CDMA systems. System

A employed hard decision block channel coding, and an MMSE receiver for interference sup-

pression. System B employed RCPC channel coding and soft decision Viterbi decoding. Under

a bandwidth constraint, we optimized the system performance by combining analytical and nu-
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merical techniques. In addition, we derived a tight upper bound for the frame error probability of

convolutional codes. We also proved that our optimal allocation results apply to a large category

of source distributions in Appendix A.

For the former system, when there is a large number of active users in the system, or when the

interference from other users is high, we have an interference-limited system. In this case, it is

desirable to allocate less bandwidth to source coding and channel coding, and more bandwidth to

spreading, so that the MMSE receiver can effectively suppress the interference. On the other hand,

when the multiple access interference is small, it is always beneficial to allocate less bandwidth

to spreading so that there is more bandwidth available to the rest of the system. Also, for a given

spreading factor, when the raw BER is small, we should allocate more bandwidth to the source

coding so that we have a good representation of the original source; when the channel BER is

large, we should allocate more bandwidth to the channel coding so that we can get more source

symbols correctly through the channel.

For the latter system, where no interference suppression scheme is employed, our results show

that for both AWGN and flat Rayleigh fading channels, it is always beneficial to use the strongest

channel code possible when the complexity of the system is not a concern. We also showed, for a

given ��� , how the optimal allocation between � � Ø� and
� Ø� � changes when the channel conditions –

number of interfering users, channel noise, or bandwidth constraints – change.

APPENDIX A

In this appendix, we show the main steps of the proof that with a uniform quantizer, the optimal

allocation ÑE , for a non-uniform source, with a uniform source encoder, is within & $ 1ù: bits away

from the optimal �E of the uniform source, if the following conditions hold:

(a) The �E -bit quantizer can be regarded as a high density quantizer for this non-uniform source.

(b) The derivative of index error probability, ! ë(' µ J ¶! J , is monotonically increasing in E .

Detailed proof can be found in [13].

Note that if �E is the optimal source code rate for the upper bound of the uniform system per-

formance, then ÑE refers to the optimal source code rate for the upper bound of the non-uniform
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system performance.

Proof: Assume a continuous source ? has a density function
d � ^ � with support on q $ � 
 � .

For an E -bit uniform quantizer on q $ � 
 � , the code points and partitions are given in (3). Let

the probability of
` T

, l T be defined as l T Æ*),+,- WZY d � ^ ��e ^ . Also, let .X�0/ [ t � be the probability that

the source decoder input is the / th index when the source encoder outputs the t th index. From the

definition of �P����E � , we know .2�xt [ t � � 
 _ �P����E � . Further, since we are using a random index

assignment, .X�0/ [ t � �1.X�{H [ t � , 23/54��t � H�4� t , and so we have .2�6/ [ t � � ë ' µ J ¶L M ORQ � 2 t � / � t74�8/ . Thus, the

end-to-end distortion is given byÑI �xE � � L M ORQS T U � L M ORQS 9 U � .2�6/ [ t � VXWZY � ^._�` 9 � L d � ^ ��e ^� LNMPORQS T U � LNM�ORQS 9 U � .2�6/ [ t � VXWZY � ^._�` T � L d � ^ �=e ^ yB! LNM�ORQS T U � LNMPORQS 9 U � � ` T _�` 9 � .X�0/ [ t � VXW�Y � ^k_}` T � d � ^ ��e ^y L M ORQS T U � L M ORQS 9 U � .2�6/ [ t � � ` T _�` 9 � L � VXW�Y+d � ^ �=e ^� LNMPORQS T U � V WZY � ^k_�` T � L d � ^ ��e ^ y !��P�Z�xE �! J _ 
 LNMPORQS T U � V WZY � ^._a` T � LNMPORQS 9 U � � ` T _a` 9 � d � ^ ��e ^¾ ¿�À ÁÐ ³y �P���xE �! J _ 
 L M ORQS T U � L M ORQS 9 U � � ` T _�` 9 � L ��l T¾ ¿�À ÁÐ · (28)

The first term of (28) is the quantization distortion of a uniform quantizer for a non-uniform source.

When condition (a) is satisfied, i.e., the E -bit quantizer is a high resolution quantizer for the given

source, each region can be regarded as a uniform region, and the overall quantization error is

approximately ! O�L J � 
 ! .
The second term of (28) can be bounded as follows [13]::::: !*�P�Z�xE �! J _ 
 ��� L :::: � �P���xE � ! O J ORQ � 
 y�;2� 
 �;�k� (29)
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where ;&��� � is the little-o notation, i.e., if � ��E � �*;&�{ûw�xE �=� , then
�=<=> J�?A@ �z��E � �*ûw�xE � � $

. The

third term of (28) is given by [13]�P���xE �! J _ 
 � � �F�P�Z�xE � � �kq ^ L _}^ r y 
/ y�;2� 
 � � � (30)

where �kq � r indicates the expected value.

Substituting (29) and (30) into (28), we haveÑI ��E � � 

 ! ! O�L J yå�P���xE � � �kq ^ L _�^ r y 
/ � 1 (31)

Since
_ QÞ � ^ � ^ö_ 
 � � $

, we have
QQxL � �.q ^ L _B^ r y Q� � Q� , and we can write (31) in the

following form: ÑI ��E � � 

 ! ! O�L J y H ) ������E ��� (32)

where Hj� ) �{�.q ^ L _�^ r y Q� � , is a constant, and H�@ýq QL � ! r . Let �I ��E � denote the end-to-end

distortion for the uniform source. Note that �I �xE � is a special case of ÑI �xE �>� where H-� 

. We

have ÑE optimizes ÑI �xE �CB � ã �I �xE �ã E :::EDJ � $B � ! O�L DJ ��� _ ! �]ä ! � y¬!+H ã �P���xE �ã E :::EDJ � $ B � ! O�L DJ � �bä !ï��HK� ã ������E �ã E :::FDJ (33)

For a uniform source, we have ! O�L3GJ � �bä !¢� 
 � ã ������E �ã E ::: GJ 1 (34)

Dividing both sides of (33) by (34), we obtain! O�L;µ DJ OHGJ ¶ ��HK� ! ë ' µ J ¶! J ::IDJ! ë ' µ J ¶! J :: GJ Æ HK�(
01 (35)

When condition (b) is satisfied, i.e., ! ë(' µ J ¶! J is a monotonic increasing function of E , we can

show that ÑE is within
$ 1ù: bit away from �E :

i) If ÑEJ� �E , condition (b) � 
K� 

. From (35),! O�L;µ DJ OAGJ ¶ ��H �(
K��HL� 
! � ÑE _ �EJM $ 1ù:�� ÑEJM �E0y $ 1î:K1
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ii) If ÑEJM �E , condition (b) � 
KM 

. From (35),! O�L;µ DJ ONGJ ¶ ��HK�(
OM�H�M�!�� ÑE _ �EJ� _ $ 1î:¢� ÑEJ� �E _ $ 1î:K1

Therefore, it follows that �E _ $ 1î:PM ÑEJM �E0y $ 1ù: . Q
APPENDIX B: FRAME ERROR RATE FOR CONVOLUTIONAL CODES

We present here the key steps of the derivation (details are in [13]). If we let
� m be the number of

information bits on one trellis branch, and let p J be the number of trellis branches in a frame, thenp J �SR J TVUFW , or p J �SR J TVUFW y 

, depending on whether or not the frame starts at the beginning of a

branch. For convolutional codes, we can assume the all-zero information sequence is transmitted.

We denote the path taken by the decoder for a frame as é T ��X M ORQT � fwû T � û T � Q � 1�1�1 � û T ��X M ORQ h , where

each û T is a branch with starting node t and ending node t y 
 .
Define event ¨ T Æ node t is in the all zero state, event Y T Æ an error event starts at node t , and

event Í T Æ an error event ends at node t . Then �.�VY T � and �5�{¨ T � are given by:�5�ZY T � �F�.�VY T [ ¨ T � �5�{¨ T � yÓ�.�VY T [ �¨ T � �5� �¨ T � ���5�ZY T [ ¨ T � �.�x¨ T � y $ ���.� �¨ T � �F�5�ZY T [ ¨ T � �.�x¨ T �°� (36)�.�x¨ T � ���5�{û T ORQ not on an error path � y¬�5��Í T � � 
 _ �5�{û T ORQ on an error path � yå�.�âÍ T � 1 (37)

In [16], the error event probability, � ð , is defined as the probability that the decoder is off the

correct path at a given branch û T , which is equal to the second term of (37). Reference [16] also

defines the first error probability, � ð\[ Q , as the probability that an error event begins at a given nodet , given that node t is in all zero state, i.e., � ð][ Q Æ �5�ZY T [ ¨ T � .
Note that all error probabilities that we defined so far are independent of the node index t .

Also, since for every error event, there is one starting node and one ending node, �5�ZY T � �Î�5��Í T � .
Substituting all definitions and (37) into (36), we have�.�VY � �F� ð][ Q ��� 
 _ � ð yå�.�âÍ �;� ��� ð][ Q ��� 
 _ � ð y¬�5�ZY �=� 1
Solving the above equation, we obtain�.�VY � � 
 _ � ð
 _ � ð][ Q �(� ð][ Q � (38)
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and comparing (38) to (36), we see that�5�{¨ T � Æ �5� node t in all zero state � � 
 _ � ð
 _ � ð][ Q 1 (39)� ð][ Q can be bounded using the complete path enumerator ([16]): �K� ^ � ` � � � ¤ [ � � ¤ [ � ^ ¤ ` � �
where e is the Hamming weight of the encoder output of a path, ^ is the length of a path, and eR� ^
both go from 1 to y7_ . Then � ð][ Q is upper bounded by � ð][ Q �`� ¤ [ � � ¤ [ � � Q � e��¢� where � Q � e�� is

the pairwise probability of two sequences that have Hamming distance e . Similarly, we can bound� ð as � ð � � ¤ [ � ^�� ¤ [ � � Q � e�� 1
Now for the frame é T ��X M ORQT

, the frame error probability is�Pú��{p J ��� T ��X M ORQS 9 U T �.� an error event starts at node / �y @S 9 U Q �5� an error event with more than / branches starts at node t _ / ��Fp J �(�5�ZY � y @S 9 U Q �.� an error event with more than / branches starts at node t _ / �Æ p J ���5�ZY � yå� L 1 (40)

Using the same techniques, we can upper bound the second term of (40) by� L � @S 9 U Q S¤Fa � U 9 � Q [cbcbcb [ @ � ¤ [ � � Q � e&� �x�5�{¨ T O 9 � tP���5�{¨ � � S ¤ [ � � ORQS 9 U Q � ¤ [ � � Q � e�� ���5�{¨ � � S ¤ [ � � ^ _ 
 � � ¤ [ � � Q � e��(41)

Substituting (41) into (40), we have the union bound of the frame error rate:��ú��xp J �°� p J �(�5�ZY � y¬�5�{¨ � � S ¤ [ � �d^ _ 
 � � ¤ [ � � Q � e&� 1 (42)

After some simplifications, we have�Pú��{p J �°� S ¤ �{p J _ 
 � � Q � e�� � ¤ y S ¤ � Q � e�� û ¤ � S ¤ �=�{p J _ 
 � � ¤ yåû ¤ � � Q � e��°� (43)
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where � ¤ is defined, as in [6], by� ¤ Æ S � � ¤ [ �°� and û ¤ Æ S � ^�� ¤ [ � � ã � � � ¤ [ � ^ ¤ ` �ã ` [ + U3e�U Q 1 (44)

The values of û ¤ for the memory length , RCPC code of [6, Table I] are listed in Table V of this

paper. More listings of û ¤ for other RCPC codes in [6] can be found in [13]. In Figure 5, we

compare the bound of (43) with simulation results for the rate 1/2 code in Table V. From the plot,

we can see that the theoretical upper bound is quite tight.
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Fig. 1. System overview.

� �PÕ��*�P� � � � � � Ø� I ��� ��� Ø� � � � � Ø�
15 84 4.39e-2 0.071429 2.41e-5 6

9
$ e�é 31 40 2.34e-3 0.275 2.45e-8 11

63 20 5.60e-6 0.5 3.47e-8 10

127 10 1.53e-11 1 7.95e-8 10

15 84 8.13e-2 0.02381 9.27e-3 2

15
$ e�é 31 40 8.58e-3 0.175 2.64e-6 7

63 20 3.75e-5 0.5 8.01e-8 10

127 10 1.45e-10 1 7.97e-8 10

15 84 9.00e-2 0.011905 2.33e-3 1

9
) e�é 31 40 4.69e-3 0.275 2.70e-7 11

63 20 9.67e-6 0.5 3.67e-8 10

127 10 2.05e-11 1 7.95e-8 10

TABLE I

OPTIMAL BANDWIDTH ALLOCATIONS FOR 3 CASES. AWGN CHANNEL, j#kmlmnpo%qsrutwv�x , y{z|q~}F��tE� .
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� �PÕ��*�P� � � � � � Ø� I ��� ��� Ø� � � � � Ø�
15 127 0.024 0.1181 1.4e-10 15

9
$ e�é 31 61 3.2e-4 0.3443 3.3e-14 21

63 30 4.0e-8 0.6333 4.2e-13 19

127 15 5.5e-17 1 7.8e-11 15

15 127 0.060 0.0552 5.4e-5 7

15
$ e�é 31 61 2.8e-3 0.2787 1.1e-10 17

63 30 8.7e-7 0.6333 5.7e-11 20

127 15 2.8e-15 1 7.8e-11 15

15 127 0.065 0.0394 1.3e-4 5

9
) e�é 31 61 8.5e-4 0.3443 3.6e-12 21

63 30 6.6e-8 0.6333 6.3e-13 17

127 15 1.0e-16 1 7.8e-11 15

TABLE II

OPTIMAL BANDWIDTH ALLOCATIONS FOR 3 CASES. AWGN CHANNEL, � k l�n o qsr��#v�x , y z q~}I�#��� .

� � � � � Ø� I �x� ��� Ø� � � � � Ø� �æØ
15 84 3.31e-2 0.10714 1.36e-6 9 7

31 40 8.58e-3 0.175 2.64e-6 7 15

63 20 2.79e-4 0.5 2.61e-6 10 23

127 10 1.68e-6 1 2.88e-6 10 45

TABLE III

OPTIMAL SYSTEM CAPACITY, �ukmlmnpo\q~rutwv�x , �3�#lw��zuq��#v�x , y{zuq�}I��tE� , AND �	����� �#�p��}������ .
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� � � � � Ø� I ��� ��� Ø� � � � � Ø� ���Z� � �(� e�é � Radius

15 84 2.32e-2 0.13095 7.68e-8 11 3.8 d

31 40 3.43e-3 0.275 6.94e-8 11 -5.3 1.69d

63 20 3.19e-5 0.5 6.73e-8 10 -5.9 1.75d

127 10 1.20e-18 1 7.83e-8 10 -4.0 1.57d

TABLE IV

OPTIMAL COVERAGE RADIUS, ��q~}F� , � � lE� z q���v�x , y z qs}F��tw� , AND ������� ���p��}I� ��� .
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Fig. 5. Upper bound on frame error rate for rate 1/2, convolutional code in Table V.
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CODE

10011

11101

10111

11011

3

4

5

6

7

8

9

11

10

12

13

14

15

16

17

18

19

20

0

0

0

0

d

5

494

8170

120693

1661611

21741344

88

568

5276

41600

293712

2078020

20

1092

22260

10

148

308

810

4258

11024

104

216

320

1408

3960

8168

10

100

146

196

820

1964

10

96

76

162

526

852

28

32

98

180

274

544

40

120

10

20

140

106

100

274

68

84

92

64

144

472

10

48

104

118

196

96

48

72

128

264

0

184

136

240

624

db

TABLE Vª�«
FOR RCPC CODES WITH MEMORY ¬ , PERIOD � .


