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ABSTRACT

We consider rate allocation for multiple video users sharing a con-
stant bitrate channel. Previously, overall quality of multiple users
was improved by exploiting relative complexity. Users withhigh
complexity video benefit at the expense of video quality reduction
for other users with simpler videos. The quality of all userscan be
improved by collectively allocating the bitrate which requires shar-
ing video information with a central controller. In this paper, we
present an informationally decentralized rate allocationfor multiple
users where a user only needs to inform its demand to an allocator
based on its video complexity and bitrate price. Simulationresults
show that all users improve their quality by our pricing-based de-
centralized rate allocation method compared to their allocation when
acting individually and the results are comparable to the centralized
rate allocation.

Index Terms— Rate allocation, H.264/AVC, rate-distortion op-
timization, video compression, decentralized allocation

1. INTRODUCTION
The growth in simultaneous video transmission over communication
channels by multiple users has stimulated the efforts to better allo-
cate shared resources such as bitrate among users. Instead of equally
dividing available bitrate among videos, a number of joint rate allo-
cation algorithms were proposed to improve the overall video qual-
ity [1–4]. The overall quality improvement comes at the expense
of lowering the quality of some of the videos. The improvement
is achieved by reallocating bits in every time period (or slot) from
videos whose quality suffers least from reducing their allocated rate
to those videos benefitting most from an increase in allocated rate.

In [5], we proposed a joint rate allocation scheme that improves
the quality of all videos simultaneously by reallocating bits for each
video from those Time-Slots (TS) when a reduction in bitratehurts
little to other TS when increased bitrate increases qualitythe most.
This is possible if there are many videos, some of whose quality can
be improved by reducing their allocation in one TS for an increased
allocation in some other (later) TS, and other videos in the same TS
whose quality could be improved by the reverse exchange.

Implementation of these schemes requires communication of
specific information about individual videos at every TS, namely,
the rate that quality increases as it receives more bits. This com-
plicated information must be communicated accurately. Forsome
applications, this may be problematic. Various decentralized algo-
rithms were proposed [6, 7] for joint bitrate allocation formultiple
video streams. The auction mechanism was used in [6] to allocate
rate in a cross-layer optimization. A distributed rate allocation was
proposed in [7] to minimize the total Mean Squared Error (MSE) of
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all the videos but it suffers from high price fluctuation and not all
videos are promised to improve their video quality simultaneously.

In this paper, we propose a scheme which requires simpler in-
formation to be exchanged, and is less clearly susceptible to mis-
representation. This scheme is modeled on price guided procedures
discussed in the economics literature [8] that are characterized as
decentralized, as various video transmitters (hereafter Users) only
communicate their bitrate demands in response to the bitrate price
announced by a bitrate allocator (hereafter the Allocator)in a TS.
By contrast, in a centralized procedure, the Users communicate all
their private information and the Allocator decides on an allocation.
In our decentralized allocation, the Allocator adjusts theUser’s de-
mand to equalize the aggregate allocation to the available supply and
announces the price for the next TS. Ideally, in each TS several iter-
ations of price and demand messages would be exchanged between
the Allocator and the Users. We, however, consider a real-time pro-
cess with only one iteration of the price-demand communication.
The budget of each User is reduced by the cost of its allocation com-
puted at the current price and the process repeats. For our initial
exploration of this scheme, we endow each User with an equal over-
all budget (all videos are of the same length) which is reduced in
each TS by the cost of the allocated bitrate to the video that TS. If
the budget of a video is exhausted, the video does not receiveany
more bits. We refer to the budget as the amount of money the User
possesses at any TS.

With this price guided allocation scheme, instead of using bits
at a constant rate, Users will increase their demand in TS during
which their videos are more complex (e.g., high motion) and reduce
their demand in TS of low complexity. Permitting the amount of bi-
trate used in each TS to vary increases the efficiency of each User’s
total bitrate use by giving more of the resource when it is most valu-
able (in terms of lowering MSE) and less when it is less valuable.
The use of a price to guide Users’ choices of demand reflects the
relative scarcity of available bitrate in each TS. When all Users re-
quest more bits than the average, scarcity is greater and theprice is
higher, thus moderating the demands. Our simulation results show
that each User benefits from this price-based decentralizedrate al-
location mechanism compared to equal bitrate allocation toall the
Users. The performance of this algorithm is comparable to the cen-
tralized bitrate allocation introduced in [5] where all Users send their
Rate-Distortion (RD) curve to the Allocator.

If each video is sent by an independent, self-interested User,
such User would, in general, have an incentive to misrepresent in-
formation to obtain a larger share of the available bits thanit would
receive if honest information had been reported. In our method, such
misrepresentation is checked, as inflating its demand will both re-
duce the money available for future purchases and increase the price
faced next TS. There may be situations where it could benefit aUser
to ask for less in the current TS to lower the next price, but atthe
lower price all Users will have greater demand than otherwise, thus



reducing the chance of obtaining more resource at the lower price. A
standard result in the economics literature [9] shows that any advan-
tage a User may receive from misrepresenting its demand becomes
vanishingly small as the number of Users competing for the same re-
sources increases. For this paper, we assume the number of users is
sufficiently large to ignore any incentive to misrepresent the demand.

The rest of the paper is organized as follows: Sec. 2 describes
the general pricing-based decentralized rate allocation process for
individual Users. Sec. 3 discusses various multiplexing methods for
multiple video streams using this rate allocation process.Simulation
results and conclusions are given in Sec. 4.

2. PRICING-BASED DECENTRALIZED ALLOCATION
SupposeN Users send videos through a constant bitrate channel of
R bits per TS. We assume one TS includes one Group Of Pictures
(GOP), however, it can be smaller or larger. The utility of User n

at TSt, denoted byUn,t(xn,t), is its MSE, given by the RD curve.
A User’s goal is to minimize its overall MSE, given its resources,
across all TS. At timet, let Mn,t be the available money for Usern

andpt be the bitrate price. We haveT TS of video for each User.
At t = 1, we start withp1 = 1. Users are initially allocated money
based on the average rate:

Mn,1 =
T.R

N
.p1, ∀ n = 1 to N (1)

The utility optimization problem for Usern is given by

max
{xn,t}

T
X

t=1

−Un,t(xn,t) subject to

T
X

t=1

pt.xn,t ≤ Mn,1 (2)

The constraint in Eq. 2 requires the money spent over all TS tobe
less than or equal to the total allocated money. Solving Eq. 2under
this constraint gives the optimal decision for each User in all TS.
However, for the real-time problem we assume future prices as well
as the RD function for future TS are unknown. To address this,we
consider a sequential process. In each TS, a User will reoptimize its
decision for the current and all future TS using expected values for
future prices and RD functions. Assuming future TS are identical in
expectation (the future environment is perceived as stationary), then
each TS’s decision problem is just an optimization problem with two
decisions only - the allocation (or demand)xn,t for the current TS
andx̄n,t, the common allocation (demand) for each of the remaining
(T − t) TS. Given the price at TSt and an expected pricēp for the
future expected RD function, the new optimization problem becomes

max
xn,t

−Un,t(xn,t) − (T − t).Ūn,t(x̄n,t)

s.t. pt.xn,t + (T − t).p̄t.x̄n,t ≤ Mn,t (3)

Usern at TSt, thus, makes a demand ofx∗
n,t bits, wherex∗

n,t is
the solution of Eq. 3. This information is sent to the Allocator who
normalizes the individual demands proportional to excess demand
(the difference between total demand and total supply):
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and sends back the normalized allocation (x̂n,t) to the Users who
encode their videos using the allocated bitrate. The Users recalculate
their total available money for the next TS by

Mn,t+1 = Mn,t − pt.x̂n,t ∀ n = 1 to N (5)

The price for the next TS is adjusted by the Allocator based on
the excess demand by all the Users

pt+1 = pt + αp.(

PN

n=1
x∗

n,t − R

R
), p1 = 1 (6)

where the price adjustment parameter,αp, is a design choice to reg-
ulate the price variation.

If aggregate demands are similar from one TS to the next (e.g.if
aggregate demand in the current TS is a good predictor of aggregate
demand in the next TS, as would be the case if the video streamsfol-
lowed a Markov process), then the price rule that sets the next TS’s
price by adjusting the current price proportionately to current excess
demand can be expected to be an efficient rule. In fact, many video
streams are characterized by scenes of varying amount of motion
with abrupt breaks at scene changes. Within a scene, a Markovian
assumption is probably reasonable. Thus, if most of the time, most
videos are within a scene, then the aggregate demand each TS will
be a reasonably good predictor of demand next TS and a price ad-
justment rule based on excess demand will provide the appropriate
signal about the relative scarcity of bitrate available next TS.

The bitrate price for the next TS and the available money are
known to each User. Based on these two parameters and their RD
function, each User again calculates its bitrate demand forthe next
TS. This process is performed for all TS sequentially.

3. MULTIPLEXING METHODS
In this section, we discuss the RD function of a video stream and
consider various averaging methods for the future RD functions. We
approximate the RD curve using

Un,t(xn,t) = an,t +
bn,t

xn,t + dn,t

(7)

wherean,t, bn,t, anddn,t are curve fitting coefficients for Usern at
TS t and are determined numerically. Using Eq. 7 and Eq. 3, we get
the User’s per TS decision problem:

max
xn,t

−(an,t +
bn,t

xn,t + dn,t

) − (T − t).(ān,t +
b̄n,t

x̄n,t + d̄n,t

)

s.t. pt.xn,t + (T − t).p̄t.x̄n,t ≤ Mn,t ∀ n = 1 to N (8)

whereān,t +
b̄n,t

x̄n,t+d̄n,t
is the predicted estimated average RD func-

tion for Usern for each future TSt + 1 to T .
We solve Eq. 8 using a Lagrange multiplier approach, and the

bitrate demand for Usern in TS t is given by

x
∗
n,t =

s

bn,t

pt

.
Mn,t + pt.dn,t + (T − t).p̄.d̄
p

pt.bn,t + (T − t).
p

p̄t .̄bn,t

− dn,t (9)

We consider several alternatives to predict the future average RD
function. They depend on the information the User has at the time it
makes the forecast. In all cases, the User will use Eq. 9 to calculate
the bitrate demand for the current TS with respect to the forecasted
average RD function for the future. InALL PRICE, we assume the
User knows the average RD function for a video over all TS (1 to
T ), and we use this average as the forecast at every time step. In
REM PRICE, we assume the User knows the average RD function
for the remaining TS. Since the User knows the average of the past,
the average of remaining TS can be calculated given the average
over all TS. Both ALLPRICE and REMPRICE require identical



advance knowledge. InPRE PRICE, we use the average of previ-
ous TS as the estimate of future TS. This method would be expected
to work well for long videos and may not work for short videos if
the previous TS are very different from the future TS.

For archival video, we consider a method calledFUL NORM
in which Users have exact knowledge of the RD function for allthe
TS in a video (but not the future prices). Assuming a constantprice
in all TS, we find the bitrate demanded by each User in all the TSsi-
multaneously using Eq. 9. In FULNORM, the total bitrate demand
from all the Users is normalized by the total available bitrate. This is
an approximate model sincept is unknown fort > 1 so we assume
constant price.

In this paper, we compare these four multiplexing methods using
the pricing-based decentralized rate allocation to the constant rate al-
location,EQL TS, where each TS in a video receives an equal num-
ber of bits. Note, for a TS of GOP length, the rate control algorithms
used with most current video standards strive to achieve equal rate
allocation for all GOPs, similar to EQLTS.

4. RESULTS
We used H.264/AVC reference software JM 11.0 [10] baseline pro-
file for our simulations. The test videos were taken from a 72 minute
travel documentary containing varying types of scenes and motion.
Each test video is 250 seconds long at 30 frames per second anda
resolution of 176×120 pixels. The GOP size is 15 frames (I-P-P-P)
and is encoded using H.264 rate control [11]. The decentralized rate
allocation method for multiple video streams can be used forany
GOP size or structure, frame rate, video length or resolution.
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Fig. 1. Actual and average MSE variations with TS for g11 video at
50 kbits per TS

Fig. 1 shows actual MSE variation with TS for the g11 video
at 50 kbits per TS along with three averaging methods discussed
previously. The average of all TS (ALL Avg) is constant for all
TS. The average of remaining TS (REM Avg) starts with the ALL
Avg curve but deviates as time progresses. The average of past TS
(PRE Avg) starts from the actual MSE at the first TS but eventually
converges to the ALL Avg in the last TS. The important observation
from this plot is the low variation of all the averages compared to
the actual MSE variation at each TS. We see that the variationof
PRE Avg is similar to ALL Avg and REM Avg. Therefore, without
advance knowledge of RD functions of future TS, PRE Avg proves
to be useful as a forecast of the future in Eq. 9.

Fig. 2 shows video quality versus average operating rate for
the pricing-based decentralized rate allocation for four multiplexed
videos. We calculate MSE per frame and average across all frames of
a video, then convert to PSNR to represent the quality. The curves
in each plot show the various multiplexing methods described in
Section 3. All methods outperform EQLTS. PREPRICE, using
only past RD functions to forecast the future ones, improvesthe
video quality from 0.5-0.7 dB for the g11 video to 0.8-1.0 dB for the
g8 video compared to EQLTS. ALL PRICE improves the quality
by 0.7-1.1 dB for g11 to 0.9-1.1 dB for g8 compared to EQLTS.
REM PRICE performs better than EQLTS by 0.7-1.2 db for g11
to 1.0-1.3 dB for g9. When the exact RD function for all the TS
in a video is used in FULNORM, its performance is marginally
better than REMPRICE for some of the videos. In general, the
pricing-based decentralized rate allocation method for multiple
video streams improves the video quality for all the videos simulta-
neously. Even the knowledge of the RD function of the past TS can
be used to estimate the RD function for the future TS to improve
the video quality of the entire stream. The performance of such
methods depends on the accuracy of the estimated RD functionfor
future frames in a video.

In general, price fluctuation decreases with an increase in the
number of multiplexed streams. This is shown in Fig. 3 for REMTS.
The price fluctuates between 0.12 and 2.24 for 2 multiplexed videos
and the fluctuation decreases to 0.57-1.53 for 10 multiplexed video
streams. The price fluctuation increases ifαp is large. For our simu-
lations,αp was not optimized; it might be possible to improve mul-
tiplexing performance by tuning this parameter for particular video
types. If many independent video streams are being multiplexed, we
might expect a law of large numbers result to hold, suggesting that
the aggregate demand would not fluctuate much from one TS to the
next. If the available bitrate supply is constant over time,then the
price would be (relatively) constant as well. But if supply were to
vary from one TS to the next (as, for example, in a cognitive radio
application), then the excess demand would fluctuate, even if de-
mand did not, and the price adjustment rule would be appropriate if,
for example, the supply followed a Markov process.

In conclusion, we demonstrate various methods of decentralized
rate allocation among multiple video streams. A video User sepa-
rately calculates its current bitrate demand based on current price,
available money, and video complexity. This demand is sent to the
Allocator who normalizes the total demand and sends the price for
the next TS based on the total demand. The computational burden
that appears in centralized allocation algorithms [5] is shifted to indi-
vidual Users and yet we achieve similar video quality improvement.
The quality of all video Users is improved simultaneously using our
pricing-based decentralized rate allocation.
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