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Abstract. No-reference (NR) video quality assessment (VQA) aims to evaluate
video distortion in line with human visual perception without referring to the
corresponding pristine signal. Many methods try to design models using prior
knowledge of people’s experience. It is challenging due to the underlying
complexity of video content, and the relatively limited understanding of the
intricate mechanisms of the human visual system. Recently, some learning-
based NR-VQA methods were proposed and regarded as data driven methods.
However, in many practical scenarios, the labeled data is quite limited which
significantly restricts the learning ability. In this paper, we first propose a data-
driven model, V-CNN. It adaptively fits spatial and temporal distortion of time-
varying video content. By using a shallow neural network, the spatial part runs
faster than traditional models. The temporal part is more consistent with human
subjective perception by introducing temporal SSIM jitter and hysteresis pool-
ing. We then exploit the complementarity of V-CNN and a knowledge-driven
model, VIIDEO. Compared to state-of-the-art full reference, reduced reference
and no reference VQA methods, the proposed ensemble model shows a better
balance between performance and efficiency with limited training data.
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1 Introduction

With the rapid development and wide application of digital media devices, the number
of video resources is growing at an explosive rate. Video Quality Assessment
(VQA) plays an important role in a broad range of applications, e.g., enhancement,
reconstruction, compression, communication, display, registration, watermarking and
etc., and has drawn increasing attention from researchers in recent years.

Existing VQA methods can be roughly divided into two categories: subjective and
objective. Subjective viewing tests are performed according to standard procedures.
However, since Mean Opinion Scores (MOS) need to be obtained from a large number
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of observers, measuring subjective video quality can be challenging, time-consuming
and expensive. Sometimes, trained experts are required for judging.

Therefore, there has been an increasing demand to build intelligent, objective
quality measurement models to predict perceived video quality. These models aim to
provide similar results to subjective quality assessment, but are based on automatically
measured criteria and metrics. According to the availability of the original video signal
(generally not compressed), these methods are classified as Full Reference (FR),
Reduced Reference (RR) and No-Reference (NR) Methods. FR metrics compute the
quality difference between distorted video and lossless reference video. For RR metrics,
the reference video is partially available and usually is in the form of a set of extracted
features to help evaluate the quality of the distorted video. NR metrics try to assess the
quality of a distorted video without any reference to the original one. Recently, NR-
VQA is becoming more important because NR metrics have broader applications than
FR and RR metrics [1, 2].

Numerous NR-VQA algorithms have been proposed. The majority attempt to
predict the quality of videos that suffer specific types of distortion. Caviedes and Oberti
[3] compute a set of blocking, blurring, and sharpness features, and other papers
measure blocking and packet loss [4], or blockiness, blur and noise [5]. Later work
considered blockiness and blurriness on detected regions of interest [6], or measured
the distortion of compressed videos using Laplacian pyramid features [7]. In [8], the
authors proposed an NR-VQA algorithm that measures spatial distortion between a
video block and its motion compensated block in the previous frame, where temporal
distortion is computed as a function of the mean of the motion vectors.

The application of those distortion specific methods is restricted because practical
distortions are hybrid and complicated. Hence, some distortion non-specific (also called
general purpose) NR-VQA methods were put forward recently. Some try to directly
predict video quality driven by strong prior knowledge, such as [9], designed according
to principles of the human vision system (HVS). The algorithm predicts video quality
by modeling subband filter coefficients. Others design learning-based methods, mostly
following the approach of first obtaining distortion representation features and then
training a regression model. An NR-VQA method was proposed based on natural video
statistics in the discrete cosine transform domain by incorporating temporal motion
information, then a linear regression model was trained to predict video quality [10]. In
[11], the authors proposed a bag-of-words and support vector regression (SVR) model
to obtain each frame score, and then a temporal pooling strategy yields the final score
for a whole video sequence. In [12], a novel model was based on a 1D convolutional
neural network (CNN) and logistic regression. It uses the 3D Shearlet transform to
extract features and then puts the features into the CNN and regression sequentially.

There are disadvantages with both the knowledge-driven and learning-based
methods. On the knowledge-driven side, video distortions are complicated and people’s
prior knowledge is limited. The HVS is complex and only partially understood. So, it is
difficult to design an algorithm consistent with human perception. Learning-based
methods, as a rule, need plenty of data to train a robust model, but existing labeled data
is limited and it is expensive to obtain additional labeled video quality data, which
restricts the learning ability of these methods.
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To tackle these problems, we decide to exploit the complementarity of knowledge-
driven methods and learning-based methods. Prediction results of knowledge-driven
methods could be more stable because of the model simplicity, whereas learning-based
methods could fit the data with better prediction tendency since they use extra data to
train models. In this paper, we involve the algorithm in [9] as a representation of
knowledge-driven methods. We propose a new learning-based method because existing
methods are either too slow or do not learn from the original frames. Our new learning-
based method is based on 2D-CNN that learns spatial features from original frames.
Then a linear regression is trained to predict video quality incorporating a group of
temporal features we devised.

The contributions of the proposed NR-VQA model are summarized as follows:

(1) We exploit the complementarity of knowledge-driven and learning-based methods.
The proposed ensemble model achieves a better tradeoff between performance and
efficiency with limited training data.

(2) We propose V-CNN, a novel end-to-end learning-based NR-VQA model that
adaptively fits distinctive features for universal distortion types.

(3) The proposed V-CNN model is composed of spatial and temporal parts, which
benefit the assessment for time-varying video content. The spatial distortion model
runs faster than traditional models and fits data well with a shallow neural network.
The temporal distortion model is more consistent with human subjective perception
by introducing temporal SSIM jitter and hysteresis pooling.

This paper is organized as follows: The two kinds of algorithms are presented in
Sect. 2. Experimental results are in Sect. 3 and conclusions in Sect. 4.

2 Algorithm

The framework of the proposed ensemble model is illustrated in Fig. 1. The model is
composed of VIIDEO [9], a knowledge-driven method, and our proposed CNN-based
algorithm called V-CNN, for the data-driven side.

2.1 Knowledge-Driven Method: VIIEDO

VIIDEO [9] is a representative knowledge-driven algorithm. It is based on the insight
that the bandpass filter coefficients of frame differences capture temporal statistical
regularities arising from structures such as moving edges. The authors found that such
coefficients are more homogeneous for pristine frame differences than for those with
distortion. They probe these deviations by analyzing the sample distributions of
products of pairs of adjacent coefficients computed along horizontal, vertical and
diagonal spatial orientations. The products of neighboring coefficients were shown to
be well modeled as following a zero mode asymmetric generalized Gaussian distri-
bution. The model predicts the quality from fine and coarse levels of frame differences.
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2.2 Data-Driven Method: V-CNN

In order to adaptively fit the time-varying content of video, the proposed V-CNN
algorithm is divided into spatial and temporal parts.

• Spatial Part

We reference the network structure of [14], which shows great performance in no-
reference image quality assessment (NR-IQA). It has only one convolutional layer (50
kernels of size 7 � 7) because of speed and because a shallow structure would be
stable to fit limited labeled data. Two fully connected layers (FC1 and FC2) both with
1024 nodes are concatenated next. An L1 loss function is used. The input of the
network is a 32 � 32 image patch. Each patch is processed by local contrast nor-
malization to alleviate the saturation problem and make the network robust to illumi-
nation and contrast variation. The CNN is pre-trained on the LIVE dataset for image
quality assessment (IQA) [15, 16].

When CNN training is complete, we need to organize the patch-level features into
video-level features. We select the features of FC1 as the patch-level features. Based on
our experiments and those of other papers [11] we first organize patch-level features
into frame-level features using the MAX-MIN of local responses, which is beneficial
for capturing changes of quality.

Fig. 1. The framework of our ensemble model.
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• Temporal Part

Next, we organize the frame-level features into sequence-level features. Different
from conventional linear fusion methods, we propose a temporal pooling strategy to
account for the subjective effects.

As discussed in [17], there exists a hysteresis effect in subjective video quality
judgment. When a distortion event results in a sharp decrease in video quality, poorer
subjective quality scores remain even after the event passes [17]. Hysteresis pooling,
shown to be effective for temporal changes of video quality, is used to organize the
frame-level features into sequence-level features. With N frames in total, we use Z(tc) to
denote the spatial feature for the tc

th video frame. The pooling feature a(tc) accounts for
the memory effect of the previous T frames. It is a MAX pooling strategy because the
worst quality attracts more attention in people’s memory. The feature b(tc) accounts for
the propagation effect over the following T frames. To account for the fact that subjects
respond strongly to drops in quality, we sort the quality scores in ascending order and
combine them using a Gaussian weighting function.

Linear fusion is used to get the weighted feature of the current frame Qframe and the
final feature of the whole video Qvideo. In the following, wp, w1, w2 are empirically-
determined parameters controlling the weights.

aðtcÞ ¼
ZðtcÞ; tc � 1

max
tc

t¼maxðtc�T ;1Þ
ðZðtÞÞ; tc � 2

(
ð1Þ

bðtcÞ ¼ wp � sort
min tc þ T ;Nð Þ

t¼tc
ðZðtÞÞ ð2Þ

QframeðtcÞ ¼ w1 � aðtcÞþw2 � bðtcÞ ð3Þ

Qvideo ¼ 1
N

XN
tc¼1

ScoreðtcÞ ð4Þ

Table 1. Performance comparison for introducing different modules in V-CNN

Modules SROCC LCC

1s hysteresis pooling 0.587 0.660
2s hysteresis pooling 0.568 0.641
(1s+2s) hysteresis pooling 0.612 0.660
Temp_SSIM 0.260 0.517
1s hysteresis pooling+Temp_SSIM 0.650 0.709
2s hysteresis pooling+Temp_SSIM 0.640 0.697
(1s+2s) hysteresis pooling+Temp_SSIM 0.671 0.713
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Referring to [17], T usually is selected to be two seconds. We believe that the latest
memories are more influential. So we add extra one-second hysteresis pooling onto the
traditional two-second pooling to emphasize the short-term memory effect. Our
experience verified that it further improved the performance, as shown in Table 1.

In order to verify the effectiveness of the learned features, we examine distribution
histograms for different types and levels of distortions as shown in Fig. 2. We see that
the learned features can clearly distinguish the different levels of distortions for uni-
versal distortion types.

We also note that local jitter exists in many kinds of temporal distortions. We can
model jitter by examining statistics for the motion compensated corresponding blocks
across adjacent frames. We divide frames into 16 � 16 blocks. For each block, a
motion vector three-step search algorithm [18] is used to find the reference block. Then
we calculate the jitter according to Eq. (5) below.

We devise a group of temporal features based on the idea that the structural sim-
ilarity index (SSIM) [19] in corresponding blocks across adjacent frames may reflect
the temporal quality of a video. The temporal features can be represented as follows:

JITTERðtÞ ¼ Temp SSIM MAPðtÞ ð5Þ

Mean M ¼ 1
N � 1

XN
t¼2

MeanðJITTERðtÞÞ ð6Þ

Variance M ¼ 1
N � 1

XN
t¼2

ðMeanðJITTERðtÞÞ �Mean MÞ2 ð7Þ

Fig. 2. Example of feature distribution histograms for different types and levels of distortion.
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Mean V ¼ 1
N � 1

XN
t¼2

VarianceðJITTERðtÞÞ ð8Þ

Variance V ¼ 1
N � 1

XN
t¼2

ðVarianceðJITTERðtÞÞ �Mean VÞ2 ð9Þ

where Temp_SSIM_MAP(t) is a matrix whose entries represent the SSIM value of the
corresponding blocks across the tth pair of adjacent frames, N is the total number of
video frames, and Mean() and Variance() calculate the expectation and variance of a
matrix. To predict video quality, a linear support vector regression (SVR) model is
trained using the spatial and temporal features.

2.3 Ensemble of Two Kinds of Methods

Although VIIDEO performs well as a knowledge-driven method, it ignores detail
information and its prediction accuracy is not good enough to be used in practice. But
its prediction results are stable because of its inherent simplicity. Though there are not
enough data for V-CNN as a learning-based method, which leads to unstable prediction
results, it still shows good prediction tendencies. Thus, the two kinds of methods have
complementary advantages and disadvantages when the dataset is limited.

To aggregate their advantages, we propose an ensemble model composed of the
two methods. In our ensemble model, we merge their predicted quality scores:

QSfinal ¼ a� QSV�CNN þð1� aÞ � QSVIIDEO ð10Þ

where QSfinal is the final predicted video quality score, QSV-CNN and QSVIIDEO are the
predicted scores of the proposed V-CNN and VIIDEO respectively, and a = 0.25 is an
empirically-determined parameter controlling the weight of the two algorithms.

3 Experiments

3.1 Dataset and Evaluation Protocol

Most popular NR-VQA methods such as V-BLIINDS and VIIDEO are tested on the
LIVE VQA dataset [20, 21]. For the sake of comparison, we conduct experiments on it
as well. The dataset includes 160 videos, with ten uncompressed high-quality videos as
reference videos. A set of 150 distorted videos are created from these reference videos
(15 distorted videos per reference) using four different distortion types: MPEG-2
compression, H.264 compression, and simulated transmission of H.264 compressed
bit-streams through error-prone IP networks and through error-prone wireless net-
works. The differential mean opinion score (DMOS) in the range from 0 to 100 is used.
A higher DMOS denotes worse quality.

Like most VQA research, we employ the linear correlation coefficient (LCC) and
Spearman’s rank correlation coefficient (SROCC) to evaluate performance. For both, a
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higher value denotes better performance. There are 10 distinct video contents in the
dataset; we used 8 for training and 2 for testing, and there are 45 such combinations.
All experiments are repeated 45 times, and the median LCC and SROCC values are
presented as final results.

Additionally, since the prediction quality score of VIIDEO is in the range of 0 to 1,
and the ground truth score is in the range of 0 to 100, in V-CNN, we first normalize the
ground truth score into the range of 0 to 1 as follows:

QSi ¼ QSi�QSminð Þ= QSmax � QSminð Þ ð11Þ

where QSi denotes the ground truth score of the ith video, and QSmin and QSmax denote
the minimum and maximum scores across all videos.

3.2 Results and Discussion

We first tested on every specific distortion dataset and then on the whole dataset. We
compare our algorithm with four FR-VQA methods, one RR-VQA method and two
NR-VQA methods: PSNR and SSIM [19] are evaluated for image quality and we use
mean pooling across frame scores in our experiment. STMAD [22] and MOVIE [23]
are recent VQA methods with top performance. STRRED [24] is a typical RR-VQA
method, and V-BLIINDS [10] and VIIDEO [9] are popular NR-VQA methods with
state-of-the-art performance.

• Proposed temporal modules in V-CNN

As shown in Table 1, by introducing hysteresis pooling and the temporal SSIM jitter
module, the proposed V-CNN model fits temporal quality features well and is more
consistent with human subjective perception.

Table 2. Median SROCC correlations for different VQA methods on the LIVE database.

Methods Distortion types
Wireless IP H.264 MPEG2 Mix

FR PSNR 0.691 0.600 0.714 0.643 0.677
SSIM [19] 0.691 0.543 0.881 0.786 0.650
MOVIE [23] 0.786 0.771 0.881 0.905 0.807
STMAD [22] 0.810 0.771 0.952 0.929 0.834

RR STRED [24] 0.762 0.771 0.905 0.905 0.826
NR V-BLIINDS [10] 0.691 0.600 0.643 0.667 0.735

VIIDEO [9] 0.548 0.600 0.762 0.571 0.651
V-CNN 0.690 0.600 0.738 0.738 0.671
V-CNN+VIIDEO 0.738 0.657 0.786 0.786 0.751
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• Proposed NR-VQA model versus state-of-the-art VQA models

As shown in Tables 2 and 3, both the SROCC and LCC coefficients of our ensemble
algorithm are the best among NR-VQA methods and are also better than FR methods
PSNR and SSIM on three single distortion subsets and on the whole dataset. Also, the
proposed ensemble model runs much faster but achieves comparable performance with
all state-of-the-art FR and RR methods, as shown in Table 4.

• V-CNN versus knowledge-driven NR-VQA methods

From Tables 2 and 3, we see that V-BLIINDS performs best among all knowledge-
driven NR-VQA methods. It even outperforms the proposed data-driven method
V-CNN. However, the increased running time for V-BLIINDS is large, as shown in
Table 4. That is because the feature extraction of V-BLIINDS references more com-
prehensive prior knowledge, which contributes to final performance but results in
higher runtime.

V-CNN is trained on limited training data, which restricts its learning ability.
However, V-CNN fits the data better than the knowledge-driven model VIIDEO and
costs similar runtime with a shallow neural network. That is to say, V-CNN achieves
comparable results with V-BLIINDS with less runtime.

Table 3. Median LCC correlations for different VQA methods on the LIVE database.

Methods Distortion types
Wireless IP H.264 MPEG2 Mix

FR PSNR 0.798 0.733 0.698 0.696 0.722
SSIM [19] 0.634 0.726 0.851 0.805 0.625
MOVIE [23] 0.920 0.895 0.919 0.955 0.852
STMAD [22] 0.904 0.901 0.947 0.942 0.861

RR STRED [24] 0.806 0.816 0.892 0.904 0.725
NR V-BLIINDS [10] 0.844 0.852 0.956 0.949 0.790

VIIDEO [9] 0.740 0.848 0.886 0.872 0.701
V-CNN 0.808 0.914 0.892 0.871 0.713
V-CNN+VIIDEO 0.874 0.923 0.870 0.876 0.794

Table 4. Average runtime for different NR-VQA methods on the LIVE database.

Methods Runtime (s)

STMAD 667.57
V-BLIINDS [10] 709.14
VIIDEO [9] 160.94
V-CNN 175.63
V-CNN+VIIDEO 336.57
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• Ensemble versus Separate

As shown in Tables 2 and 3, the ensemble of data-driven model V-CNN and
knowledge-driven model VIIDEO improves the performance dramatically compared to
the two algorithms run separately. The ensemble algorithm runs much faster than
V-BLIINDS as shown in Table 4. Therefore, the ensemble method keeps better balance
between performance and efficiency compared to the state-of-the-art.

We have conducted another experiment to verify the complementarity of the two
methods. As shown in Fig. 3(a), the prediction results of VIIDEO are more stable. It
demonstrates the simplicity and universal adaptability. However, V-CNN has better
prediction tendency. Figure 3(b) indicates the ensemble method aggregates their
advantages and gains better performance. These findings support our ensemble moti-
vation. Figure 4 shows the three algorithms’ distributions of absolute residual values
between predicted DMOS and ground truth DMOS. The residual values of the
ensemble method are smaller. It also indicates that the complementarity of the two
methods improves the performance of the ensemble model.

(a) Separate (b) Ensemble

Fig. 3. The regression tendency of separate two models and the ensemble model on LIVE.

Fig. 4. Distribution of absolute residual value between the predicted DMOS and the ground
truth DMOS.
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4 Conclusion

In this paper, we propose V-CNN, a learning-based VQA model, and exploited the
complementarity of V-CNN and the well-known knowledge-driven model VIIDEO.
Experiments show that V-CNN achieves comparable performance and runs fast. The
proposed ensemble of two models further improves the performance when there is
limited labeled training data. It also keeps a better balance between performance and
efficiency compared to state-of-the-art approaches.
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