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Spoofing and jamming optimization over Rayleigh
fading channels of a cognitive radio adversary

Madushanka Soysa, Student Member, IEEE, Pamela C. Cosman, Fellow, IEEE,
and Laurence B. Milstein, Fellow, IEEE

Abstract—We examine the performance of a cognitive radio
system in a hostile environment where an intelligent adversary
tries to disrupt communications by minimizing the system
throughput. We investigate the optimal strategy for spoofing
and jamming a cognitive radio network with a Gaussian noise
signal over a Rayleigh fading channel. We analyze a cluster-
based network of secondary users (SUs). The adversary may
attack during the sensing interval to limit access for SUs by
transmitting a spoofing signal. By jamming the network during
the transmission interval, the adversary may reduce the rate
of successful transmission. We present how the adversary can
optimally allocate power across subcarriers during sensing and
transmission intervals with knowledge of the system, using
a simple optimization approach specific to this problem. We
determine a worst-case optimal energy allocation for spoofing and
jamming, which gives a lower bound to the overall information
throughput of SUs under attack.

Index Terms - Cognitive radio, intelligent adversary, partial-
band spoofing, partial-band jamming

I. INTRODUCTION

Although the demand for wireless spectrum has been grow-
ing rapidly, a large portion of the assigned spectrum is used
only sporadically. The limited available spectrum and the
inefficiency in spectrum usage necessitate a new commu-
nication paradigm to exploit the existing wireless spectrum
opportunistically. Cognitive radio (CR) [1], which allows
dynamic spectrum access, has been widely investigated as
a solution. In CR systems, the users are defined as primary
users (PUs) if they have priority of access over the spectrum,
and secondary users (SUs) otherwise. Any time an unlicensed
SU senses a licensed band is unused by the PU, it can
dynamically access the band. Thus, spectrum sensing is a
key concept for CR but it is also a vulnerable aspect. An
adversary intending to disrupt the communication in a CR
network has two ways to attack. The first way is to exploit
the inherent vulnerability of spectrum sensing, by transmitting
a spoofing signal emulating a PU during the sensing interval
[2]. Here the SU might mistakenly conclude that the channel
is occupied by a PU and not available for transmission. In this
way, an intelligent attacker reduces the bandwidth available for
the SU. Such exploitations and their impact are discussed in
[3]–[10]. Further, the adversary can disrupt communications
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using jamming techniques during the data transmission phase
[11]. Jamming in a cognitive radio network dynamically, using
stochastic game models, was studied in [12], [13].

In this work, we analyze the impact of an intelligent
adversary on a tactical, spread spectrum, CR system. In [3],
the presence of such an intelligent adversary disrupting the
sensing by spoofing with a noise signal in an additive white
Gaussian noise (AWGN) channel was discussed. This work
was extended in [4], to obtain spoofing performance bounds
under Rayleigh fading, when the adversary is aware of instan-
taneous channel state information (CSI). In [5], the design of
an adversary with optimal power allocation for spoofing and
jamming under an AWGN channel was investigated. In this
work, we extend the analysis to a Rayleigh fading channel,
and include forward error correction (FEC) coding, which
reduces the effectiveness of jamming. Assuming knowledge
of the SU system at the adversary, we determine a worst-
case optimal energy allocation for spoofing and jamming.
We further propose an optimization method specific to this
problem, to find the optimal power allocation over subcarriers
to minimize throughput. This enables us to perform the
optimization when a closed form expression for the objective
function is not available. In [12] and [13], jamming attacks
are analyzed as a dynamic game, where the users and the
adversary use the probability of successful jamming as a
predetermined parameter. In the jamming section of this work,
we analyze the probability of successful jamming by the
adversary, and optimize the adversary power allocation to
maximize the average probability of successful jamming.

In Section II, we present the system model, and derive the
performance metrics as functions of spoofing or jamming pow-
ers under fast and slow Rayleigh fading. Sections III and IV
discuss the spoofing and jamming optimization, respectively,
where we prove that the performance metric functions derived
in Section II have the required properties that enable the
optimization method in Appendix A to be used, in almost all
cases. In Section V, we discuss the optimal energy allocation
between spoofing and jamming. Section VI contains system
simulation results and Section VII presents the conclusions.

II. SYSTEM MODEL

We investigate the impact of an adversary on a cluster based
SU network, as shown in Figure 1. We denote the cluster head
serving the SUs by CHS , and A is the adversary. We consider
the downlinks from the cluster head to the users of a multi-
carrier direct sequence code division multiple access (MC-
DS-CDMA) system with NT bands (or subcarriers). The NT
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Fig. 1: The system network model

bands are shared among PUs and SUs. Allowed bands are ones
unoccupied by PUs. The CHS periodically performs spectrum
sensing, and uses a subset of allowed bands to transmit data
to the SUs. Busy bands are bands that the SU network cannot
use due to PU activity. An allowed band may appear busy
due to background noise and spoofing. This is called a false
detection. We ignore the effects of missed detections in this
analysis, as the adversary cannot do anything to increase the
probability of missed detections. The cluster head uses power
control to maintain constant average link signal-to-noise ratio
(SNR) for all SUs. We denote the length of the sensing interval
by T0 and the length of the data transmission interval by T1.

Let B = {1, 2, . . . , NT } be the set of bands, and Bsu ⊆ B
be the subset of bands used by the SU network for communi-
cation in one transmission interval. The throughput (Γ) of the
SU network during the data transmission interval is given by

Γ =
∑

i∈Bsu

Ωi∑
u=1

LP (1− p(i,u)e ) log2 Mi,u (1)

where Ωi is the number of SUs in the i-th band, LP is the
packet length in symbols, p(i,u)e is the probability of packet
error of the u-th user in the i-th band, and log2 Mi,u is
the number of bits per symbol in the alphabet used by the
u-th user in the i-th band. The SUs use a single 4-QAM
alphabet for fast fading, and may use either a single alphabet
or adaptive modulation at slow fading. The adversary uses
a Gaussian noise signal to attack by spoofing or jamming.
Spoofing reduces |Bsu|, and jamming increases p

(i,u)
e in (1),

thus reducing Γ.
In Subsection II-A, we discuss the portion of the system

involved in sensing, and derive expressions for the probability
of false detection. The transmission and receiver structures of
SUs, i.e. the portion of the system involved in the transmission
interval, is presented in Subsection II-B, with the derivations
of the expressions for the packet error rate. The assumptions
regarding the knowledge available for the adversary are de-
tailed in Subsection II-C.

A. Sensing subsystem

The CHS uses an energy detector for sensing (Fig. 2). Let
W be the bandwidth of one subcarrier. The energy detector
output, Y (t), when there is no PU signal present is given by
Y (t) =

∫ t

t−T0
(
√
αJ(t1)ns(t1) + n0(t1))

2dt1, where αJ(t) is
the gain of the channel from adversary to CHS , ns(t) is the
spoofing signal, and n0(t) is the noise after passing through
the bandpass filter. The signal ns(t) is Gaussian with double
sided PSD ηs

2 in the band, n0(t) is Gaussian with PSD N0

2

Pre-filter
∫ t

t−T0

dt1(·)2Input Y (t)

Fig. 2: Energy detector block diagram

in the band, and αJ(t) is exponentially distributed with mean
ᾱJ . The integrand can be expressed as√

αJ(t)ns(t) + n0(t) = (
√
αJ(t)ns,i(t) + n0,i(t)) cosωct

− (
√

αJ(t)ns,q(t) + n0,q(t)) sinωct

where ωc is the subcarrier frequency, ns,i(t), ns,q(t) are
Gaussian with PSD ηs in the frequency range (−W

2 , W
2 ), and

n0,i(t), n0,q(t) are Gaussian with PSD N0 in the frequency
range (−W

2 , W
2 ).

From [14], we have

Y (t) =
1

2W

T0W∑
k=1

(a2i,k + a2q,k) (2)

where ai,k=
√
αJ

(
t−T0+

k
W

)
ns,i

(
t−T0+

k
W

)
+n0,i

(
t−T0+

k
W

)
and aq,k=

√
αJ

(
t−T0+

k
W

)
ns,q

(
t−T0+

k
W

)
+n0,q

(
t−T0+

k
W

)
.

1) Fast fading: Under fast fading, we assume the channel
coherence time is much smaller than the sensing duration T0,
and the channel varies significantly during the sensing interval
so that the channel samples in time are mutually independent.
We have E[a2i,k] = ᾱJηsW +N0W , E[a4i,k] = 6ᾱ2

Jη
2
sW

2 +
6ᾱJηsN0W

2+3N2
0W

2 and Var(a2i,k) = E[a4i,k]−E[a2i,k]
2 =

5ᾱ2
Jη

2
sW

2+4ᾱJηsN0W
2+2N2

0W
2. Following the same ap-

proach, we can show E[a2i,k+a2q,k] = 2(ᾱJηsW +N0W ) and
Var(a2i,k + a2q,k) = 2(5ᾱ2

Jη
2
sW

2 + 4ᾱJηsN0W
2 + 2N2

0W
2).

Since Var(a2i,k+a2q,k) is finite, we can use the Lindeberg-Lévy
CLT to approximate Y (t) in (2). Therefore, for large T0W ,
Y (t)∼N (T0W (ᾱJηs+N0),T0W (5ᾱ2

Jη
2
s+4ᾱJηsN0+2N

2
0 )/2).

A band is detected as occupied by PUs if the energy detector
output is greater than the threshold K

√
T0W . Let pfd,f (PS,i)

be the probability of false detection under fast fading, as a
function of the spoofing power in that band PS,i. Then,

pfd,f (PS,i) = Pr(Y (t) > K
√

T0W )

=Q

(
K
√
T0W − T0W (ᾱJ(PS,i/W ) +N0)√

T0W (5ᾱ2
J(PS,i/W )2 + 4ᾱJ(PS,i/W )N0 + 2N2

0 )/2

)
(3)

2) Slow fading: Under slow fading, we assume the channel
coherence time is larger than the sensing duration T0. There-
fore, the channel gain remains constant during the sensing
interval and we denote it by αJ . When conditioned on
αJ , ai,k =

√
αJns,i

(
t− T0 +

k
W

)
+ n0,i

(
t− T0 +

k
W

)
∼

N (0, αJηsW + η0W ), and similarly, aq,k ∼ N (0, αJηsW +
η0W ). Therefore, E[a2i,k+a2q,k|αJ ] = 2(αJηsW +η0W ) and
Var(a2i,k + a2q,k|αJ) = 4(αJηsW + η0W ). Using these results
in (2), for large T0W , we conclude, when conditioned on αJ ,
Y (t) ∼ N (T0W (αJηs + η0), T0W (αJηs + η0)

2).
The average probability of false detection under slow fading

(pfd,s), when the spoofing signal PSD is ηS,i, is given by

Pr(Y (t) > K
√
T0W |ηS,i)

=

∫ ∞

0

Pr(Y (t) > K
√
T0W |αJ = y, ηS,i)fαJ

(y)dy (4)
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where fαJ
(y) is the probability density function of the channel

gain αJ . Since the channel has Rayleigh fading, fαJ (y) =
1
ᾱJ

e
− y

ᾱJ . Substituting this in (4) yields

Pr(Y (t) > K
√

T0W |ηS,i)

=
1

ᾱJ

∫ ∞

0

Q

(
K

ηS,iy + η0
−
√
T0W

)
e
− y

ᾱJ dy (5)

Note that PS,i = ηS,iW . Hence, the probability of false
detection in a band, as a function of the spoofing power
allocated for that band under slow fading, is given by

pfd,s(PS,i) = Pr

(
Y (t) > K

√
T0W |PS,i

W

)
(6)

B. Transceiver subsystem

The transmitter model is adapted from [5]. A block diagram
of the transmitter for a single user is given in Figure 3. Low
density parity check (LDPC) codes are used for FEC. The
output bit sequence of the FEC block of the u-th user is
denoted by d

(u)
m . This binary sequence is mapped to a symbol

sequence s
(u)
k from an alphabet ai, based on the predicted

instantaneous CSI. Note that s
(l)
k is generally complex

valued, and normalized to have unit average energy, i.e.
E[|sk|2] = 1. The {c(u)n } are the chips of a pseudo-random
spreading sequence, and there are Nc chips per symbol.
The sequence s

(u)
k c

(u)
n modulates an impulse train. After

passing through both the chip-wave shaping filter g(t) and
modulator, the transmitted signal takes the form x(t) =

ℜ
{∑Ωu

u=1

√
2E

(u)
c
∑∞

n=−∞ s
(u)
k c

(u)
n g(t− nTc)e

jωct+ϕu

}
,

where E
(u)
c is the energy per chip, Tc is the chip duration,

Ωu is the number of users sharing the band, ϕu is the carrier
phase of the u-th user, k = ⌊n/Nc⌋ and g(t) is a root raised
cosine chip-wave shaping filter, such that

G(ω)G∗(ω)

=


Tc, if |ω| ≤ 1−β

2Tc

Tc

2

(
1+cos

(
πTc

β

(
|ω|− 1−β

2Tc

)))
, if 1−β

2Tc
< |ω|≤ 1+β

2Tc

0, elsewhere

(7)

where G(ω) is the Fourier transform of g(t) and β is the roll-
off factor.

√
α
(u)

S
(t)ejφ

(u)

S
(t)x(t)

√
α
(u)

J
(t)

nJ(t)

nw(t)

y(t)

Fig. 4: Channel response and jamming

G
∗(ω)

Chip wave shaping filter

G
∗(ω)

π

2

√

2 cos(ωct+ φu + φ
(u)

S,k
)

cn

1
√

Nc

∑Nc−1

n=0

1
√

Nc

∑Nc−1

n=0

r
(u)

k,i

r
(u)

k,q

y
(u)(t)

FEC DecoderSoft decision

demodulator
r
(u)

k
= r

(u)

k,i
+ jr

(u)

k,q

Fig. 5: u-th user receiver block diagram

Figure 4 shows the channel fading and jamming experienced
by the l-th user in one subcarrier. The transmitted signal x(t)
is attenuated by Rayleigh fading, and corrupted by AWGN
and jamming. The jamming signal undergoes Rayleigh fading,
independent of the source-user channel.

The received signal of the u-th user (y(u)(t)) is given by

y(u)(t) = ℜ

{√
2E

(u)
c α

(u)
S (t)ejϕ

(u)
S (t)

Ωu∑
u=1

∞∑
n=−∞

s
(u)
k c(u)n

× g(t− nTc)e
jωct+ϕu + nw(t) +

√
α
(u)
J (t)nJ(t)

}
where α

(u)
S (t) and ϕ

(u)
S (t) are the power gain and phase

components of the response of the channel from the source to
the u-th user. The power gain of the jammer to user channel
is α

(u)
J (t). We assume the channel gains α

(u)
S (t) and α

(u)
J (t)

are mutually independent. The background noise nw(t) is

AWGN with a double-sided PSD N0

2 and
√
α
(u)
J (t)nJ(t)

is the received jamming signal. The receiver block diagram
is given in Figure 5. We assume the gains and phases of
fading channels remain constant during a symbol detection.
We denote the gain and phase components of the response
of the channel from the source to the u-th user during k-th
symbol detection by α

(u)
S,k and ϕ

(u)
S,k, respectively. The gain of

the jammer to user channel is denoted by α
(u)
J,k. The complex

output samples are given by

r
(u)
k , r

(u)
k,i + r

(u)
k,q

=

√
E

(u)
S α

(u)
S,ks

(u)
k +

√
α
(u)
J,knJ,k + nw,k + Ik (8)

where E
(u)
S = E

(u)
c Nc, is the symbol energy, nJ,k is the

jamming signal, nw,k is the background noise and Ik is
the interference from other users occupying the same band.
Further, nJ,k ∼ CN (0, ηJ) and nw,k ∼ CN (0, N0), where
k is the time index and ηJ

2 is the double sided PSD of the
jamming signal. We assume the users in the downlink are syn-
chronized at the transmitter, and hence the interference can be
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S2 LDPC code of rate 1
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removed by using mutually orthogonal spreading codes (e.g.,
Walsh-Hadamard codes). The received instantaneous signal-
to-interference-plus-noise ratio (SINR) at the k-th symbol
detection can be written as

γk =
E

(u)
S α

(u)
S,k

ηJα
(u)
J,k +N0

=
α
(u)
S,k

E
(u)
S

N0

α
(u)
J,k

ηJ

N0
+ 1

=

α
(u)
S,k

ᾱ
(u)
S

γ̄S

α
(u)
J,k

ᾱJ
γ̄J + 1

(9)

where γ
(u)
S,k , α

(u)
S,k

E
(u)
S

N0
and γ

(u)
J,k , α

(u)
J,k

ηJ

N0
. γ̄S = E[γS,k] =

ᾱ
(u)
S E

(u)
S

N0
and γ̄J = ᾱJηJ

N0
, where ᾱ

(u)
S = E[α

(u)
S,k] and ᾱJ =

E[α
(u)
J,k]. We define α̃S,k , α

(u)
S,k

ᾱ
(u)
S

and α̃J,k , α
(u)
J,k

ᾱJ
to simplify

the analysis, so that

γk =
α̃S,kγ̄S

α̃J,kγ̄J + 1
(10)

and α̃S,k, α̃J,k ∼ Exp(1). Since PJ,i is the jamming power
allocated for the subcarrier, we know PJ,i = ηJW , so that

γ̄J =
ᾱJPJ,i

N0W
(11)

1) Fast fading: Under fast fading, we assume the channel
coherence time is significantly lower than the transmission
duration of one codeword, T1. The adversary models the
probability of packet error as a step function of the received
average SINR over a word, as shown in Fig 6(a). Therefore,

Pr(packet error) =

{
0, if γ̃ > γT

1, if γ̃ ≤ γT
(12)

where γ̃ is the SINR at the receiver averaged over the duration
of the word, and γT is a threshold parameter dependent on
the alphabet and the FEC used. Note that γT is determined
through simulations, and in Fig 6(b), the simulation results of
the word error rate of the DVB-S2 rate 1

2 LDPC code with
4-QAM modulation under Rayleigh fading are presented.

In fast fading, as the channel coherence time is significantly
smaller than the duration of a codeword, we approximate the
average SINR over a codeword with the ensemble average
over the channel gains α̃S,k and α̃J,k. The average SINR over
a word in this case can be calculated as follows:

γ̃(γ̄J,i) =

∫ ∞

0

∫ ∞

0

xγ̄S
yγ̄J,i + 1

e−xe−y dxdy (13)

= − γ̄Se
1

γ̄J,i

γ̄J,i
Ei
(
− 1

γ̄J,i

)
[15, Eq. 4.2.6] (14)

where Ei(x) = −
∫∞
−x

e−t

t dt is the exponential integral
function [16, Eq. 5.1.2].
Lemma 2: γ̃(γ̄J,i) is a monotonically decreasing function of
γ̄J,i, and the range of γ̃ is (0, γ̄S ].
Proof in Appendix D.

From lemma 1, we know a unique γ̄∗
J exists ∀ γT ∈ (0, γ̄S ],

such that γ̃(γ̄∗
J) = γT , and γ̄J,i < γ̄∗

J ⇔ γ̃ > γT . Using (11),
we define P ∗

J , N0Wγ̄∗
J

ᾱJ
. Since the jamming power in the

band PJ,i ∝ γ̄J,i, PJ,i < P ∗
J ⇔ γ̄J,i < γ̄∗

J ⇔ γ̃ > γT . Using
this result and (12), we can write the packet error rate as a
function of jamming power under fast fading, re,f (PJ,i), as

re,f (PJ,i) =

{
0, if PJ,i < P ∗

J

log2 M, if PJ,i ≥ P ∗
J

(15)

where log2 M is the number of bits per symbol.
2) Slow fading: In slow fading, we assume the coherence

time is larger than T1. Therefore, the channel gains α̃S,k and
α̃J,k, and instantaneous SINR, γk, remain constant over a
word. The adversary again models the probability of word
error with a step function of the SINR.

Pr(packet error) =

{
0, if γk > γT

1, if γk ≤ γT
(16)

where γk is the instantaneous SINR at the receiver, and γT is
a threshold parameter dependent on the alphabet and the FEC
used. Through simulations of word error rates of an ensemble
of LDPC rate 1

2 codes of code length Lp, γT is estimated.
Therefore, from (12), the probability of packet error in a band
jammed with power PJ,i, as a function of γ̄J,i =

ᾱJPJ,i

N0W
is

given by

Pr(packet error|γ̄J,i) = Pr

(
α̃S,iγ̄S

α̃J,iγ̄J,i + 1
< γT

)
=

∫ ∞

0

∫ (yγ̄J,i+1)γT
γ̄S

0

fα̃S,k
(x)fα̃J,k

(y)dxdy

=

∫ ∞

0

∫ (yγ̄J,i+1)γT
γ̄S

0

e−xe−ydxdy

= 1− e
− γT

γ̄S(
γ̄J,iγT

γ̄S
+ 1
) (17)
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Fig. 7: (a) The probability of word error given an alphabet
ai (Pr(e|Ai)). The shaded area represents the region of SNR
in which the alphabet ai is used. (b) Average word error rate
of DVB-S2 LDPC code of rate 1

2 for alphabets 4-QAM and
16-QAM vs. SNR.

The packet error rate per user per band, re,s,1(PJ,i) under
slow fading for a single alphabet size, as a function of the
jamming power allocated to the band PJ,i is given by

re,s,1(PJ,i) = Pr

(
packet error| ᾱJPJ,i

N0W

)
log2 M. (18)

3) Slow fading with adaptive modulation: If the SU net-
work is experiencing slow fading due to low mobility, the
system may use an adaptive modulation scheme to improve
the system throughput. Here, we analyze the jamming opti-
mization in an adaptive modulation system under slow fading.
We assume the SU network has a choice of NA alphabets,
which is known to the adversary.

Let ai denote the i-th alphabet and Ai denote the event that
ai is used for transmission. The probability of a received word
being in error for a given alphabet ai (Pr (e|Ai)), is a step
function of the instantaneous SINR (γk, Eq. (10)).

Pr(e|Ai, γk) =

{
0, if γk > γT,i

1, if γk ≤ γT,i

(19)

As shown in Fig 7(a), the alphabet (ai) is used if the SNR
(γS,k) ∈ (θγT,i, θγT,i+1). Fig 7(b) shows the word error
rate of the DVB-S2 rate 1

2 LDPC code for alphabets 4-
QAM and 16-QAM in an AWGN channel. Consider the
probability a word is received in error, when the alphabet ai

is selected (Pr(e ∩ Ai)). Since alphabet ai is selected when
α̃S,k ∈

(
θγT,i

γ̄S
,
θγT,i+1

γ̄S

)
, we have

Pr(Ai|α̃S,k) =

{
1, if α̃S,k ∈

(
θγT,i

γ̄S
,
θγT,i+1

γ̄S

)
0, otherwise

(20)

A word is received in error when α̃S,kγ̄S

α̃J,kγ̄J+1 < γT,i, so that

Pr(e ∩Ai) =

∫ ∞

0

∫ ∞

0

Pr(e ∩Ai|α̃S,k = x, α̃J,k = y)

× fα̃S,k
(x)fα̃J,k

(y)dxdy

=

∫ θ−1
γ̄J

0

∫ θγT,i+1
γ̄S

θγT,i
γ̄S

fα̃S,k
(x)fα̃J,k

(y)

× Pr
(

xγ̄S
yγ̄J + 1

< γT,i|α̃S,k = x, α̃J,k = y

)
dxdy

+

∫ (
θγT,i+i
γT,iγ̄J

− 1
γ̄J

)
θ−1
γ̄J

∫ θγT,i+1
γ̄S

θγT,i
γ̄S

fα̃S,k
(x)fα̃J,k

(y)

× Pr
(

xγ̄S
yγ̄J + 1

< γT,i|α̃S,k = x, α̃J,k = y

)
dxdy

+

∫ ∞(
θγT,i+i
γT,iγ̄J

− 1
γ̄J

)
∫ θγT,i+1

γ̄S

θγT,i
γ̄S

fα̃S,k
(x)fα̃J,k

(y)

× Pr
(

xγ̄S
yγ̄J + 1

< γT,i|α̃S,k = x, α̃J,k = y

)
dxdy

=
γ̄JγT,i

γ̄JγT,i+γ̄S

(
e
−
(
θγT,i
γ̄S

+θ−1
γ̄J

)
−e

−
(
θγT,i+1

γ̄S
+

θγT,i+i
γT,iγ̄J

− 1
γ̄J

))
(21)

The average packet error rate per user per band, re,s,2(PJ,i)
under slow fading with adaptive modulation, as a function of
PJ,i is given by

re,s,2(PJ,i) =

NA∑
j=1

Pr(e ∩Aj) log2 Mj (22)

where log2 Mi is the number of bits per symbol when using
the alphabet ai.

C. Adversary

The adversary uses Gaussian noise signals when it spoofs
or jams. The objective of the adversary is to disrupt the
communication, and we use the average throughput as the
performance metric. We assume, in accordance with [3]–[5],
that the adversary is aware of the basic characteristics of the
system, including the receiver structure, type of spreading,
bandwidth of the waveform, sensing and transmission times,
background noise power spectral density (PSD), that all links
undergo Rayleigh fading and whether it is slow or fast fading.
We also assume that the links from the adversary to the SUs
in the cluster have equal average gain in each band, which is
known by the adversary.

We assume that the adversary has knowledge of the system
false alarm probability, i.e., the probability of false detection
caused only due to background noise with no spoofing. The
adversary senses and detects the bands used for transmis-
sion before jamming, and hence knows Bsu ∪ Bpu, where
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Bpu ⊆ {1, 2, . . . , NT } is the set of bands occupied by PUs.
The average SNR of SUs maintained by the CHS through
power control is assumed to be known by the adversary. We
further assume that the adversary is aware of the type and
rate of FEC, alphabet sizes and thresholds used. However, the
adversary is not aware of instantaneous system parameters,
such as the instantaneous CSI, the instantaneous numbers of
secondary users in the i-th band (Ωi), and which alphabet each
user is using.

Because a practical adversary cannot have all the assumed
knowledge, including the average channel gain, the work done
here is a worst-case analysis, which gives a lower bound to
the throughput with jamming and spoofing.

III. SPOOFING POWER OPTIMIZATION

During the sensing interval, the adversary attacks the system
by spoofing to reduce the bandwidth available to the SUs. Let
Bal ⊆ B be the set of allowed bands in the current sensing
interval. The objective of the adversary when spoofing is to
minimize the number of allowed bands accessible to SUs.
Following the same approach as in [3, Eq. 1], we can show
that the expected number of allowed bands accessible to SUs
is
∑

i∈Bal
(1 − p

(i)
fd), where p

(i)
fd is the probability of false

detection of the i-th band, given that the i-th band is vacant.
At the start of the sensing interval the adversary does not

know which bands are allowed for SUs. Therefore, from the
adversary’s perspective, every band has an equal probability
of being vacant. Hence, the objective of the adversary is to

max

NT∑
i=1

p
(i)
fd, s.t.

NT∑
i=1

PS,i ≤ PS (23)

where PS,i is the spoofing power allocated for the i-th band
and PS is the total spoofing power available.

A. Fast fading

For fast fading, from (3), we have

p
(i)
fd = pfd,f (PS,i)

= Q

(
K
√
T0W − T0W (ᾱJ(PS,i/W ) +N0)√

T0W (5ᾱ2
J(PS,i/W )2 + 4ᾱJ(PS,i/W )N0 + 2N2

0 )/2

)
(24)

Therefore, the objective of the optimization in (23) is to maxi-
mize

∑NT

i=1 pfd,f (PS,i), under the constraint
∑NT

i=1 PS,i ≤ PS .
Proposition 1: pfd,f has properties P0, P1 and P2 stated in
Theorem 1.
Proof in Appendix C.
Therefore, we can use Theorem 1 to solve this optimization
problem.

B. Slow fading

For slow fading, p(i)fd = pfd,s(PS,i), from (6).
Proposition 2: Pr(Y (t) > K

√
T0W |ηS,i) has properties P0,

P1 and P2 stated in Theorem 1.
Proof in Appendix C.
Therefore, we can use Theorem 1 to solve this optimization
problem.

IV. JAMMING POWER OPTIMIZATION

In Section III, we analyzed the interference from the ad-
versary during the sensing period, and discussed optimizing
the adversary power allocation during the sensing period. In
this section, we look at the interference from the adversary
during the data transmission period, and the jamming power
optimization of the adversary.

From (1), to minimize the throughput of the network
by jamming, the adversary ideally aims to maximize∑

i∈Bsu

∑Ωi

u=1 LP p
(i,u)
e log2 Mi,u. However, the adversary is

not aware of instantaneous system parameters, such as the
instantaneous CSI, the instantaneous numbers of secondary
users in the i-th band (Ωi), and which alphabet each user is
using. Further, the adversary cannot differentiate between the
bands occupied by PUs and SUs through observations during
the transmission interval. Therefore, to minimize the average
throughput without this information, the objective function to
maximize is changed to be max

∑
i∈Bsu∪Bpu

re(PJ,i), under
the constraint

∑
i∈Bsu∪Bpu

PJ,i ≤ PJ , where PJ is the total
power available for jamming, PJ,i is the jamming power
allocated for the i-th band, re(PJ,i) is the expected value of
p
(i,u)
e log2 Mi,u and the expectation is taken over the fading

gains of the links from the CHS to the SUs, and the adversary
to the SUs.

A. Fast fading

Under fast fading, the objective is to maximize∑
i∈Bsu∪Bpu

re,f (PJ,i), under the constraint∑
i∈Bsu∪Bpu

PJ,i ≤ PJ . From (15), we have

re,f (PJ,i) =

{
0, if PJ,i < P ∗

J

log2 M, if PJ,i ≥ P ∗
J

(25)

If the adversary has a total power PJ for jamming, to maxi-
mize

∑
i∈Bsu∪Bpu

re,f (PJ,i), according to (25), the adversary
aims to maximize the number of bands with PJ,i ≥ P ∗

J .
Therefore, the optimal number of bands to jam is n∗

J =

min
(⌊

PJ

P∗
J

⌋
, NT

)
.

Since the first and second derivatives of re,f (PJ,i) do not
exist, we cannot use Theorem 1 here. Fortunately, we do not
need Theorem 1, since the packet error rate as a function of
jamming power (re,f (PJ,i)) is a step function, as shown in
(25), so the optimal jamming strategy is trivial.

B. Slow fading

Under slow fading with a single alphabet, the objective
is to maximize

∑
i∈Bsu∪Bpu

re,s,1(PJ,i), under the constraint∑
i∈Bsu∪Bpu

PJ,i ≤ PJ .
Proposition 3: Pr(packet error|γ̄J,i) satisfies the conditions
P0, P0 and P0 of Theorem 1.
Proof:
1) P0 is satisfied by definition.

2) d
dγ̄J,i

Pr(packet error|γ̄J,i) = d
dγ̄J,i

(
1− e

− γT
γ̄S(

γ̄J,iγT
γ̄S

+1
)) =

γT
γ̄S

e
− γT

γ̄S(
γ̄J,iγT

γ̄S
+1

)2 > 0. ∴ P1 is satisfied.
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3) d2

dγ̄2
J,i

Pr(packet error|γ̄J,i) = d
dγ̄J,i

γT
γ̄S

e
− γT

γ̄S(
γ̄J,iγT

γ̄S
+1

)2 =

γT
γ̄S

e
− γT

γ̄S(
γ̄J,iγT

γ̄S
+1

)3 (−2)γT

γ̄S
< 0. ∴ P2 is satisfied.

From (18), we have re,s,1(PJ,i)=Pr
(packet

error
| ᾱJPJ,i

N0W

)
log2 M .

Since Pr
(

packet error| ᾱJPJ,i

N0W

)
satisfies P0, P1 and P2,

re,s,1(PJ,i) also satisfies P0, P1 and P2. Therefore, we can
use Theorem 1 to solve this optimization problem.

C. Slow fading with adaptive modulation

Under slow fading with adaptive modulation, the objective
is to maximize

∑
i∈Bsu∪Bpu

re,s,2(PJ,i), under the constraint∑
i∈Bsu∪Bpu

PJ,i ≤ PJ .
Proposition 4: re,s,2(PJ,i) satisfies the conditions P0, P0 and
P0 of Theorem 1.
Proof:
1) By definition, we have re,s,2(PJ,i) ≤

∑NA

i=1 log2 Mi. Hence,
P0 is satisfied.
2) Define ti , γT,i

γ̄S
. Note that θ > 1 and ti+1 > ti > 0

(∵ γT,i < γT,i+1 by design). From (21),

re,s,2 (PJ,i) =

NA∑
i=1

hi

(
ᾱJPJ,i

N0W

)

where hi(x), tix log2 Mi

1+tix

(
e−(θti+

θ−1
x ) − e−

(
θti+1+

ti+1θ

ti
−1

x

))
.

From Appendix E, Eq. (51), we show that h′
i(x) ≥ 0. As a

consequence, d
dPJ,i

re,s,2(PJ,i) = ᾱJ

N0W

∑NA

i=1h
′
i

(
ᾱJPJ,i

N0W

)
≥ 0.

Therefore, P1 is satisfied.
3) From Appendix E, Eq. (63), we see that

∑NA

i=1 h
′′
i (x) <

0 ⇔ x > x∗, and so

d2

dP 2
J,i

re,s,2(PJ,i)

=

(
ᾱJ

N0W

)2 NA∑
i=1

h′′
i

(
ᾱJPJ,i

N0W

)
< 0 ⇔ ᾱJPJ,i

N0W
> x∗ (26)

Therefore, P2 is satisfied.
Hence, we can use Theorem 1 to solve this optimization

problem.

V. JOINT SPOOFING AND JAMMING OPTIMIZATION

Suppose the adversary has an energy budget E for a single
sensing-plus-transmission duration T0 + T1. It can be shown
that the average throughput of the SUs is proportional to∑min(N̄r,N̄a−Nfd)

i=1 (Γ1 − re(PJ,i)), where Γ1 is the average
number of packets per user per band per transmission interval,
N̄r is the average number of bands required by SUs, N̄a is
the average number of allowed bands, and Nfd is the average
number of false detections per sensing interval. The average
number of bands occupied by PUs is NT − N̄a. The objec-
tive of the adversary is to minimize

∑min(N̄r,N̄a−Nfd)
i=1 (Γ1 −

re(PJ,i)), under the constraint T0PS + T1PJ = E. Let ξE be
the amount of energy allocated for spoofing, where ξ ∈ [0, 1].

Therefore, PS = ξE
T0

and PJ = (1−ξ)E
T1

. The optimal energy
allocation for spoofing (ξ∗) is given by

ξ∗ = argmin
ξ∈[0,1]

Nsu(ξ)Γ1 −
Nsu(ξ)

Nsu(ξ) +NT − N̄a

× F
(
re,

(1− ξ)E

T1
, Nsu(ξ) +NT − N̄a

)
(27)

where Nsu(ξ) = min
(
N̄r, N̄a − N̄a

NT
F
(
pfd,

ξE
T0

, NT

))
.

The adversary can estimate N̄r and N̄a by detecting the
average number of occupied bands in the T0 and T1 intervals,
using an energy detector before it starts spoofing or jamming.
From (28), we know that the threshold x∗ in F (f,XT , N)
does not depend on XT or N . Therefore, the thresholds in
F
(
re,

(1−ξ)E
T1

, Nsu(ξ) + NT − N̄a

)
and F

(
pfd,

ξE
T0

, NT

)
do

not depend on ξ. Hence, (27) only involves direct evaluations
of re(PJ,i) and pfd(PS,i). Therefore, the optimal fraction of
energy allocation for spoofing, ξ∗, can be found from (27)
using a single parameter search [17].

VI. SIMULATION RESULTS

We consider a cluster-based SU system, sharing NT DS-
CDMA subcarriers with PUs. In the simulations, in each
transmission and sensing interval, the PUs occupy |Bpu| =
min(Npu, NT ) bands at random, where Npu is a Poisson
random variable with mean parameter N̄pu. The number
of SUs (Ωsu) in each transmission interval is modeled as
a Poisson random variable with mean parameter Ω̄su. The
number of bands used by SUs in each transmission interval
is |Bsu| = min

(
⌈Ωsu

ΩM
⌉, |B −Bpu|

)
, where ΩM is the maxi-

mum number of SUs that can share a single band. We select
ᾱJ = 1, β = 0.2, Nc = 256, ΩM = 8, T0 = 128Ts and
T1 = 1024Ts, where Ts is the symbol time. For FEC, we
use rate 1

2 LDPC codes with block lengths varying from 1024
bits to 6144 bits. We assume the CHS uses power control to
maintain γ̄S = 10 dB at each SU. We define the jamming-
to-signal power ratio (JSR) as the ratio of adversary-power-
to-signal-power per user. That is, the adversary power J is
taken to be the sum of the jamming and the spoofing power
available in all bands, and the signal power S is taken to be the
transmission power available for a single SU. When there is
no knowledge of the system other than its operating frequency
range, the adversary can perform equal power spoofing or
jamming across the total bandwidth. We use this equal power
spoofing and jamming strategy as a reference, to which the
performance of the optimized strategy is compared.

A. Spoofing

Figure 8(a) shows the average number of false detections
per sensing interval versus the JSR under slow fading, when
the adversary employs the optimal jamming and spoofing
strategy (solid curve). For comparison, the average number
of false detections if the adversary spoofed all bands at
equal power is also presented (dashed curve). The optimal
spoofing power allocation increases the average number of
false detections by more than 5 in JSR ∈ (0, 6) dB region,
compared to equal spoofing power allocation across bands
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Fig. 8: (pfd,f (0) = 10−4, Nc = 256, T0 = 128Ts, NT = 100,
Ω̄su

ΩM
= 50, N̄pu = 50): (a) Average number of false detections

under slow fading (b) Percentage loss of throughput under fast
fading.

without optimization. As JSR is further increased, the optimal
spoofing power allocation strategy shifts from partial band
spoofing to full band spoofing, and hence the curves overlap
at high JSR. Figure 8(b) shows the average throughput loss
in the SU network due to spoofing, under fast fading. At a
JSR of 7 dB, the optimal spoofing power allocation reduces
the throughput by 35.1%, while the equal power allocation
reduces the throughput only by 10.2%. For JSR > 10dB, the
optimal spoofing strategy is equal power allocation across all
bands.

B. Jamming

In the simulations of the slow fading system, we use the
alphabets BPSK, 4-QAM, 16-QAM and 64-QAM for adaptive
modulation. Figure 9 shows the comparison of the average
PER versus JSR per band, calculated using the step-function
approximation and the simulations. We note that the values
of the PER calculated using the approximation are notably

Fig. 9: Average packet error rate vs. JSR per band. (Nc = 64,
γ̄S = 12 dB, θ = 2 dB)

different from the simulation results. The two vertical dotted
lines show the threshold JSR, on which the decision for partial
band jamming or full band jamming is made. We note that
using the approximation, the adversary would decide to move
to full jamming at a lower JSR than the optimal value given
by the simulations. The gray shaded region represents the
reduction in the average PER, i.e., the performance loss of the
adversary due to the use of the step function approximation
when calculating the PER, to decide on the optimal jamming
strategy. The horizontal-striped region represents the increase
in the average BER using optimization based on the step
function approximation, over jamming all bands at every JSR.
Therefore, we note that, even though the average PER value
given by the approximation is different from the simulations,
the optimization based on the approximation yields results
comparable to the optimal achievable with perfect information
of the FEC performance by the adversary.

Figure 10(a) shows the average PER versus JSR, with total
power put into jamming by the adversary, under slow fading.
We note that the optimal jamming power allocation based on
the step function approximation performs very close to the
optimal power allocation with perfect FEC information. The
average PER of the system when all transmitting bands are
jammed at equal power without any attempt at optimizing is
also presented for comparison. The optimization significantly
increases the average PER at low JSR. Figure 10(b) shows the
average PER due to jamming under fast fading. The optimal
jamming power allocation achieves a 10−2 average PER at a
JSR more than 10 dB below the JSR required for the same
average PER with equal jamming power allocation.

C. Joint optimization of spoofing and jamming

Figure 11(a) shows the SU throughput-per-transmission
interval versus JSR when the adversary jointly optimizes the
jamming and spoofing power allocation under slow fading.
It is compared with the throughput if the adversary spoofed
and jammed bands at equal power. Notice that for JSR in the
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Fig. 10: Average packet error rate vs. JSR (γ̄S = 12 dB, Nc =
64, Ω̄su

ΩM
= 10, N̄pu = 10, NT = 20): (a) under slow fading

(b) under fast fading.

vicinity of 25dB, the use of the optimization technique by the
adversary reduces the CR throughput by a factor of 4 to 5,
relative to an adversary who divides power equally across all
bands. At low JSR, below about 18dB under simulated system
parameters, spoofing is ineffective, as the system is lightly
loaded. However, the optimized adversary is able to reduce
the throughput slightly through increased packet error rate by
jamming. Beyond 18dB, the system throughput is significantly
reduced, predominantly due to successful spoofing. Figure
11(b) shows the SU throughput-per-transmission interval ver-
sus JSR under fast fading. We note that the optimal power
allocation can significantly reduce the throughput of SUs at
a JSR 10.5 dB lower than constant power allocation, under
simulated system parameters.

VII. CONCLUSION

In this paper, we analyze the optimal spoofing and jamming
power allocations across subcarriers, in a Rayleigh fading
channel, with an optimization approach which enables simpli-
fied calculation of threshold JSRs, below which partial-band
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Fig. 11: Throughput vs. JSR (T0 = 128Ts, T1 = 1024Ts,
Ω̄su

ΩM
= 10, N̄pu = 10, NT = 100, Nc = 256): (a) under slow

fading (b) under fast fading.

attacks are optimal. We derive the optimal jamming power
allocation based on a simplified step-function approximation
of the word error rate of LDPC codes. Through comparisons
of the throughput with optimal spoofing and jamming power
allocation with the throughput for equal power spoofing and
jamming, we observe that the optimization has notable gains
in the low and medium JSR regions.

We learn that it is generally optimal to attack with both
spoofing and jamming, whereby the optimal energy allocation
between the two methods of attack is dependent on system
parameters and JSR. While successful spoofing has the most
noticeable impact on SU throughput, we observe that when the
system is not heavily loaded, spoofing is not effective at low
JSR, and the optimal method of attack is jamming. An increase
in the average number of subcarriers required by SUs, or a
decrease in the sensing duration relative to the transmission
duration, would lower the JSR, at which point the optimal
strategy shifts from jamming to spoofing.
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APPENDIX A: OPTIMIZATION APPROACH

In this section we present the optimization approach we use
in this work.
Theorem 1
Let f : R+ → R+ be a function such that
P0: f is bounded above, i.e., ∃M < ∞, s.t. f(x) ≤ M ∀x ∈
[0,∞)
P1: f is an increasing function, i.e., f ′(x) ≥ 0, where f ′(x)
is the first derivative of f(x),
P2: f ′′(x) = 0 has at most one root in x > 0, where f ′′(x) is
the second derivative of f(x). Also, define g : R+ → R , as
g(x) , f(x) − f(0) − xf ′(x). Then, if

∑N
i=1 xi ≤ XT and

xi ≥ 0,
N∑
i=1

f(xi) ≤

{
Nf

(
XT

N

)
, if XT

N ≥ x∗

(N − n∗) f(0) + n∗f(XT

n∗ ), if XT

N < x∗

(28)

where n∗ = XT

x∗ and x∗ is the largest root of g(x) = 0. Also,
the set of arguments, Sx, that correspond to the equality when
n∗ is an integer, is given by

Sx = argmax∑N
i=1 xi=XT , xi≥0

(
N∑
i=1

f(xi)

)

=



{XT

N
, . . . ,

XT

N︸ ︷︷ ︸
}

N elements

, if XT

N ≥ x∗

{XT

n∗ , . . . ,
XT

n∗︸ ︷︷ ︸
n∗ elements

, 0, . . . , 0︸ ︷︷ ︸
}

(N−n∗)

, if XT

N < x∗
(29)

When XT

x∗ is not an integer, we use the approximation
n∗ = argmax

n=
{⌊

XT
x∗

⌋
,
⌈

XT
x∗

⌉} (N − n) f(0) + nf
(
XT

n

)
, to arrive at

a suboptimal set Sx.
In optimizing power allocation for spoofing, f(x) is the

probability of false detection in one band as a function of the
spoofing power allocated for that band. A false detection is
mistakenly detecting a vacant band as being occupied by the
PUs. In jamming, f(x) is the packet error rate per user in a
band, as a function of the jamming power allocated for that
band. Geometrically, g(xt) is the difference between f(0) and
the y-intercept of the tangent to f(x) at xt.
Proof of theorem 1
Case 1 : XT

N ≥ x∗ : From Appendix B, Eq. (39), we know
f(x) ≤ f

(
XT

N

)
+ (x− XT

N )f ′ (XT

N

)
.

∴
N∑
i=1

f

(
XT

N

)
≤

N∑
i=1

(
f

(
XT

N

)
+

(
xi −

XT

N

)
f ′
(
XT

N

))
= Nf

(
XT

N

)
(30)

Case 2 : 0 ≤ XT

N < x∗ : From Appendix B, Eq. (40), we have
f(x) ≤ f(0) + xi

x∗ (f(x
∗)− f(0)).

∴
N∑
i=1

f(xi) ≤
N∑
i=1

(
f(0) +

xi

x∗ (f(x
∗)− f(0))

)
= (N − n∗)f(0) + n∗f(x∗) (31)

where n∗ = XT

x∗ . From (30) and (31),

N∑
i=1

f(xi) ≤ F (f,XT , N)

,
{
Nf

(
XT

N

)
, if x̄ ≥ x∗

(N − n∗)f(0) + n∗f(x∗), if x̄ < x∗ (32)

Lemma 1: g(x) = 0 has at most one solution in x > 0
Proof of Lemma 1
Taking the derivative of g(x) = f(x) − f(0) − xf ′(x) with
respect to x, we have g′(x) = −xf ′′(x). From property P2,
we know f ′′(x) < 0 ∀x > 0 or ∃x0 > 0 such that f ′′(x) < 0
for x ∈ (x0,∞) and f ′′(x) > 0 for x ∈ (0, x0).

If ∀x > 0 f ′′(x) < 0, then g′(x) > 0 and g(x) > 0 because
g(0) = 0. Therefore, g(x) = 0 does not have any solutions
in x > 0 and x∗ = 0. If f ′′(x) > 0 for 0 < x < x0, then
for x ∈ (0, x0), g′(x) < 0 and g(x) < 0. But, lim

x→∞
g(x) =

lim
x→∞

(f(x)− f(0)− xf ′(x)) = lim
x→∞

f(x)−f(0)−0 > 0, be-
cause f(x) is an increasing function (P1) and lim

x→∞
xf ′(x) = 0

(see (34) below). Therefore, g(x) = 0 for some x ∈ (x0,∞).
Since g′(x) > 0 for x ∈ (x0,∞), there is only one root.

Since we defined x∗ is the largest root of g(x) = 0, from
the above analysis we have

f ′′(x∗) < 0 (33)

Proof lim
x→∞

xf ′(x) = 0.

We prove this by contradiction. Suppose lim
x→∞

xf ′(x) ̸= 0.
Because xf ′(x) ≥ 0, we have limx→∞ xf ′(x) > 0. Since
f ′(x) is decreasing in x > x0, we know xf ′(x) does not have
oscillations and ∃L > 0, xL > x0, s.t. xf ′(x) > L ∀ x > xL.

⇒ f ′(x) >
L

x
∀x > xL

⇒ lim
x1→∞

∫ x1

xL

f ′(x)dx > lim
x1→∞

∫ x1

xL

L

x
dx

⇒ lim
x1→∞

(f(x1)− f(xL)) > lim
x1→∞

L(ln(x1)− ln(xL))

⇒ L <
limx1→∞(f(x1)− f(xL))

limx1→∞(ln(x1)− ln(xL))
= 0

(∵ f(x) is finite, from property P0)
⇒ L < 0, but this is a contradiction.

Therefore, we conclude that

lim
x→∞

xf ′(x) = 0 (34)

APPENDIX B : PROOF OF UPPER BOUNDS TO f(x)

Define dx0(x) , f(x0)+(x−x0)f
′(x0)−f(x). Taking the

derivative with respect to x, we obtain d′x0
(x) = f ′(x0)−f ′(x)

and

d′′x0
(x) = −f ′′(x) (35)

From (33) and P2, we know f ′′(x) < 0 for x ≥ x∗ and
therefore, d′′x0

(x) > 0 for x ≥ x∗.
Let x0 ≥ x∗. We have

dx0(x) ≥ 0 ∀x > x0 (∵ dx0(x0) = 0, d′x0
(x0) = 0) (36)
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Further, from (35) and P2, we know d′′x0
(x) = 0 has at

most one root in (0, x0]. Therefore, d′x0
(x) has at most one

root in (0, x0) because d′x0
(x0) = 0. Since d′′x0

(x0) > 0,
lim

x→x−
0

d′x0
(x0) = 0−. ∴, ∃ x1 ∈ [0, x0) s.t. d′x0

(x) > 0 ∀x ∈

(0, x1) and d′x0
(x) < 0 ∀x ∈ (x1, x0). From the definition of

dx0(x), we have dx0(0) = g(x0) and from Appendix A, we
know g(x0) > 0 ∀x0 ≥ x∗.

∴ dx0(x) ≥ 0 ∀x ∈ [0, x1] (37)

Further,

dx0(x) ≥ 0 ∀x ∈ (x1, x0] (38)

because d′x0
(x) < 0 ∀x ∈ (x1, x0), dx0(x0) = 0. From

(36),(37) and (38), we know when x0 ≥ x∗, dx0(x) ≥ 0 ∀x ≥
0. Therefore, when XT

N0
≥ x∗, dXT

N0

(x) ≥ 0, and

f(x) ≤ f

(
XT

N

)
+

(
x− XT

N

)
f ′
(
XT

N

)
(39)

Further, since dx∗(x) ≥ 0, f(x) ≤ f (x∗) + (x− x∗) f ′ (x∗).
From the definition of x∗, g(x∗) = f(x∗)−f(0)−x∗f ′(x∗) =

0, and f ′(x∗) = f(x∗)−f(0)
x∗ . Substituting this in (VII), we have

f(x) ≤ f(x∗) + (x− x∗)
(f(x∗)− f(0))

x∗

= f(0) +
x

x∗ (f(x
∗)− f(0)) (40)

APPENDIX C: PROOFS OF PROPOSITION 1 AND
PROPOSITION 2

Proposition 1: pfd,f has properties P0, P1 and P2 stated in
Theorem 1.
Proof:

Define

gf (y) , pfd,f

(
WN0y

ᾱJ

)
=Q

(
K
√
2/N0 −

√
2T0W −

√
2T0Wy√

(5y2 + 4y + 2)

)

=Q

(
b− ay√

5y2 + 4y + 2

)
(41)

where b = K
√
2

N0
−

√
2T0W and a =

√
2T0W . As long

as the detector threshold is selected so that the false alarm
probability (false detection without spoofing) is less than 0.5,
then pfd,f (0) < 0.5 ⇔ g(0) < 0.5 ⇔ b > 0. We now show
that the conditions of Theorem 1 are satisfied.
1) From the definition of pfd,f (PS,i), condition P0 is obvi-
ously satisfied by pfd,f (PS,i).
2) From the definition of gf (y), we have

pfd,f (PS,i) = g

(
ᾱJPS,i

WN0

)
(42)

and from (41),

g′f (y) =
d

dy
Q

(
b− ay√

5y2 + 4y + 2

)

=

(
(2a+ 5b)y + 2a+ 2b

)
(5y2 + 4y + 2)

3
2

√
2π

e
− (ay−b)2

2(5y2+4y+2) (43)

From (43), g′f (y) > 0 ∀y > 0, because a, b > 0. From

(42), d
dPS,i

pfd,f (PS,i) = ᾱJ

WN0
g′f

(
ᾱJPS,i

WN0

)
> 0 ∀PS,i > 0.

Therefore, condition P1 is satisfied.
3) From (43),

g′′f (y)=
d

dy
g′f (y)=

p(y)

(5y2 + 4y + 2)
7
2

√
2π

e
− (ay−b)2

2(5y2+4y+2) (44)

where p(y) = c4y
4 + c3y

3 + c2y
2 + c1y + c0, c0 = −16a −

4b+4a2b+8ab2+4b3, c3 = −250a−400b−a(2a+5b)2 < 0,
c4 = −50(2a+ 5b) < 0 and

c1 = −100a− 88b− 4a3 + 24ab2 + 20b3

= 5c0 − 20a− 68b− 4a3 − 20a2b− 16ab2, (45)

c2 = −216a− 270b− 8a3 − 24a2b+ 25b3

=
5

4
c1 − 91a− 160b− 3a3 − 24a2b− 30ab2. (46)

According to Descartes’ rule of signs, the number of real
positive roots of the polynomial p(y) = 0 equals the number
of sign changes between nonzero cis (ordered from c4 to c0),
or is less than the number of sign changes by a multiple of 2.
Note that c4, c3 < 0. From (45), we see that c0 ≤ 0 ⇒ c1 < 0,
and from (46), c1 ≤ 0 ⇒ c2 < 0. Therefore, if c0 ≤ 0, all non-
zero coefficients are negative and there are no sign changes,
i.e., there are no positive roots.

Let us consider the case c0 > 0. If c1 ≤ 0, then c2 < 0,
and there is only one sign change in the coefficients (∵ c0 >
0, c1, c2, c3, c4 ≤ 0). If otherwise, i.e., c1 > 0, there will be
only one sign change irrespective of the sign of c2 (∵ c0, c1 >
0, c3, c4 < 0). Therefore, we can see that the number of sign
changes between coefficients is either 0 or 1. Hence, there
will be at most one positive root for p(y) = 0. Further, since
c4 < 0, lim

y→∞
p(y) → −∞. We conclude that p(y) < 0 ∀y > 0

or ∃y0 > 0, s.t. q(y) < 0 ∀y > y0 and p(y) ≥ 0 ∀y ≤
y0. From (44), we know g′′f (y) has the same sign as p(y).
Therefore, we conclude that gf (y) satisfies the condition P2.
From (42), d2

dP 2
S,i

pfd,f (PS,i) =
ᾱ2

J

W 2N2
0
g′′f

(
ᾱJPS,i

WN0

)
. Therefore,

pfd,f (PS,i) satisfies the condition P2.
Proposition 2: pfd,s(PS,i) has properties P0, P1 and P2 stated
in Theorem 1.
Proof : Consider Pr(Y (t) > K

√
T0W |ηS,i).

1) Condition P0 is obviously satisfied from (5).
2) We have, d

dηS,i
Pr(Y (t) > K

√
T0W |ηS,i) =

K
ᾱJ

√
2π

∫∞
0

y
(yηS,i+N0)2

e
− 1

2

(
K

yηS,i+N0
−
√
T0W

)2

e
− y

ᾱJ dy > 0.
Therefore, condition P1 is satisfied.
3)

d2

dη2S,i
Pr(Y (t) > K

√
T0W |ηS,i)

=
K

ᾱJ

√
2π

∫ ∞

0

e
− y

ᾱJ e
− 1

2

(
K

yηS,i+N0
−
√
T0W

)2

×
y2
{
K(K − (yηS,i +N0)

√
T0W )− 2(yηS,i +N0)

2
}

(yηS,i +N0)5
dy
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=
K

ᾱJ

√
2π

∫ ∞

0

e
− y

ᾱJηS,i e
− 1

2

(
K

y+N0
−
√
T0W

)2

y2

× (K2−K
√
T0W (y+N0)−2(y+N0)

2)

η3S,i(y +N0)5
dy=

I(ηS,i)

η3S,i
(47)

where I(ηS,i) ,
∫∞
0

ι(y)e
− y

ᾱJηS,i dy and ι(y) ,
Ky2(K2−K

√
T0W (y+N0)−2(y+N0)

2)

ᾱJ

√
2π(y+N0)5

e
− 1

2

(
K

y+N0
−
√
T0W

)2

. Note
that the sign of ι(y) depends only on the sign of the quadratic
polynomial K2 − K

√
T0W (y + N0) − 2(y +N0)

2. Further,
ι(y) > 0 ⇔ K2−K

√
T0W (y+N0)−2(y +N0)

2 > 0 ⇔ y+

N0 ∈
(
−K(

√
T0W+8+

√
T0W )

4 , K(
√
T0W+8−

√
T0W )

4

)
. Define

y0 , max
(

K(
√
T0W+8−

√
T0W )

4 −N0, 0
)

. From the definition
of y0, y > y0 ⇒ ι(y) < 0 and 0 < y < y0 ⇒ ι(y) > 0. Also,

I ′(ηS,i) ,
d

dηS,i
I(ηS,i) =

1

ᾱJη2S,i

∫ ∞

0

yι(y)e
− y

ηS,iᾱJ dy

<
1

ᾱJη2S,i

(∫ y0

0

y0ι(y)e
− y

ηS,iᾱJ dy +

∫ ∞

y0

y0ι(y)e
− y

ηS,iᾱJ dy

)
=

y0
ᾱJη2S,i

∫ ∞

0

ι(y)e
− y

ηS,iᾱJ dy

I ′(ηS,i) <
y0I(ηS,i)

ᾱJη2S,i
(48)

From (48), we have I(ηS,i) ≤ 0 ⇒ I ′(η̃S,i) < 0. Therefore,
if ∃η̃S,i ≥ 0 s.t. I(η̃S,i) ≤ 0, then I(ηS,i) < 0 ∀ ηS,i > η̃S,i.
Further, from (47), d2

dη2
S,i

Pr(Y (t) > K
√
T0W |ηS,i) ≤ 0 ⇔

I(ηS,i) ≤ 0.

∴ d2

dη2S,i
Pr(Y (t) > K

√
T0W |ηS,i)(η̃S,i) ≤ 0

⇒ I(η̃S,i) ≤ 0 ⇒ I(ηS,i) < 0 ∀ ηS,i > η̃S,i

⇒ d2

dη2S,i
Pr(Y (t) > K

√
T0W |ηS,i) < 0 ∀ ηS,i > η̃S,i.

Therefore, Pr(Y (t) > K
√
T0W |ηS,i) satisfies condition P2.

Note that pfd,s(PS,i) = Pr
(
Y (t) > K

√
T0W |PS,i

W

)
=

Pr
(
Y (t) > K

√
T0W |ηS,i

)
. Since Pr

(
Y (t) > K

√
T0W |ηS,i

)
satisfies the conditions P0, P1 and P2, pfd,s(PS,i) also satis-
fies the conditions P0, P1 and P2.

APPENDIX D: PROOF OF LEMMA 2
Lemma 2: γ̃(γ̄J,i) is a monotonically decreasing function of
γ̄J,i, and the range of γ̃ is (0, γ̄S ].
Proof:
From (13), we can see γ̃(γ̄J,i) is monotonically de-
creasing in γ̄J,i. From (13), we further have γ̃(0) =∫∞
0

∫∞
0

xγ̄S

y.0+1e
−xe−y dxdy = γ̄S . and from (14), we have

lim
γ̄J,i→∞

γ̃(γ̄J,i) = lim
γ̄J,i→∞

− γ̄Se
1

γ̄J,i

γ̄J,i
Ei
(
− 1

γ̄J,i

)
∝ lim

γ̄J,i→∞
− 1

γ̄J,i
log

(
−1

γ̄J,i

)
= 0 (49)

Note that lim
x→0

Ei(x) ∝ log x [16]. Hence, we have shown

γ̃(γ̄J,i) is a monotonically decreasing function in R+, and the
range of γ̃(γ̄J,i) is (0, γ̄S ].

APPENDIX E : DERIVATIONS SUPPORTING THE ANALYSIS
IN SECTION V-D

I. Proof h′
i(x) ≥ 0

h′
i(x) =

tie
−ti log2 Mi

(1 + tix)2

{(
(tiθ − ti)

(
1 +

1

tix

)
+ 1

)
× e

−
(
(tiθ−ti)

(
1+ 1

tix

))
− e

−
(
(ti+1θ−ti)

(
1+ 1

tix

))

×
(
(ti+1θ − ti)

(
1 +

1

tix

)
+ 1

)}
(50)

Define qt(x) , (tiθ − ti)
(
1 + 1

tix

)
and qv(x) , (ti+1θ −

ti)
(
1 + 1

tix

)
. Note qv(x) > qt(x) > 0.

h′
i(x) =

tie
−(ti+qv(x))(qt(x) + 1) log2 Mi

(1 + tix)2

×
(
e(qv(x)−qt(x)) −

(
1 +

qv(x)− qt(x)

qt(x) + 1

))
>

tie
−(ti+qv(x))(qt(x) + 1) log2 Mi

(1 + tix)2

×
(
e(qv(x)−qt(x)) − (1 + (qv(x)− qt(x)))

)
≥ 0 (51)

II. Proof ∃x∗ ≥ 0 s.t.
∑NA

i=1 h
′′
i (x) < 0 ⇔ x > x∗

h′′
i (x) =

(
e−ti log2 Mi

x2(1 + tix)3

){
((tiθ − ti)(1 + tix)qt(x)

− 2t2ix
2(qt(x) + 1))e−qt(x) − ((ti+1θ − ti)(1 + tix)qv(x)

− 2t2ix
2(qv(x) + 1))e−qv(x)

}
(52)

tix
3etih′′

i (x)

log2 Mi
=
(
(tiθ − ti)

2e−qt(x) − (ti+1θ − ti)
2e−qv(x)

)
− 2t3ix

3

(1 + tix)3

{(
q2t (x)

2
+ qt(x) + 1

)
e−qt(x)

−
(
q2v(x)

2
+ qv(x) + 1

)
e−qv(x)

}
(53)

Substituting y = 1 + 1
tix

, we can rewrite (53) as follows:

gi(y) ,
tix

3etih′′
i (x)

log2 Mi
(54)

= k2tie
−kti

y − k2vie
−kvi

y − 2

y3

[(
k2tiy

2

2
+ ktiy + 1

)
×e−kti

y −
(
k2viy

2

2
+ kviy + 1

)
e−kvi

y

]
where kti = tiθ − ti, kvi = ti+1θ − ti and
y = 1+ 1

tix
∈ (1,∞). We have kvi − kti = (ti+1 − ti)θ > 0.

Further kti = ti(θ − 1) > 0. Therefore, we have
kvi > kti > 0. Further, g′i(y) = −k3tie

−kti
y +

k3vie
−kvi

y + 6
y4

[(
k3
ti
y3

6 +
k2
ti
y2

2 + ktiy + 1

)
e−kti

y−
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13(
k3
vi

y3

6 +
k2
vi

y2

2 + kviy + 1

)
e−kvi

y

]
. We have

g′i(y) + ktigi(y) = k2vi(kvi − kti)e
kvi

y +
1

y4

{
[k2tiy

2 + 4ktiy

+ 6]e−kti
y − (6 + 4ktiy + k2tiy

2)e−kvi
y
[
1 + (kvi − kti)y

+
(3 + 2ktiy)(kvi − kti)

2y2

(6 + 4ktiy + k2tiy
2)

+
(kvi − kti)

3y3

(6 + 4ktiy + k2tiy
2)

]}

> k2vi
(kvi − kti)e

kvi
y +

(6 + 4ktiy + k2tiy
2)e−kvi

y

y4

×

{
e(kvi

−kti
)y −

(
1 + (kvi − kti)y +

(kvi − kti)
2y2

2

+
(kvi − kti)

3y3

6

)}
> 0 (55)

because kvi > kti > 0 and y > 1. Further,

gi(1) = −2[(kti + 1)e−kti − (kvi + 1)e−kvi ]

= −2(kti + 1)e−kvi

(
e(kvi

−kti
) −

(
1 +

kvi − kti
1 + kti

))
< −2(kti + 1)e−kvi

(
e(kvi

−kti
) − (1 + (kvi − kti))

)
< 0 (56)

because kvi > kti > 0, and

lim
y→∞

gi(y) = lim
y→∞

k2tie
−kti

y − k2vie
−kvi

y − 2

y3

×
[(

k2tiy
2

2
+ ktiy + 1

)
e−kti

y −
(
k2vi

y2

2
+ kviy + 1

)
e−kvi

y

]
= lim

y→∞
k2tie

−kti
y − k2vi

e−kvi
y

= 0+ (57)

because k2tie
−kti

y − k2vi
e−kvi

y > 0 ⇔ y >
2 ln

(
kvi
kti

)
kvi

−kti
from

(64).
We need to show that

∑NA

i=1 h
′′
i (x) has only one zero for

x ∈ (0,∞) and goes from positive to negative with
increasing x. From (54),

NA∑
i=1

h′′
i (x) < 0 ⇔

NA∑
i=1

log2 Migi

(
1 + 1

tix

)
tix3eti

< 0

⇔
NA∑
i=1

gi (yi) log2 Mi

tieti
< 0, (58)

where yi = 1 + 1
tix

. Define

G(y1) ,
NA∑
i=1

gi (yi) log2 Mi

tieti
(59)

where yi= 1 + 1
tix

= t1
ti
y1 + 1 − t1

ti
. Therefore, we have

d
dy1

yi =
t1
ti

and kti = (θ − 1)ti =
(

ti
t1

)
kt1 .

G′(y1) =
d

dy1

NA∑
i=1

gi (yi) log2 Mi

tieti

=

NA∑
i=1

g′i (yi) log2 Mi

tieti
dyi
dy1

=

NA∑
i=1

g′i (yi) log2 Mi

tieti

(
t1
ti

)

>

NA∑
i=1

−ktigi (yi) log2 Mi

tieti

(
t1
ti

)

= −kt1

NA∑
i=1

gi (yi) log2 Mi

tieti

= −ktiG(y1) (60)

Further, because y1 = 1 ⇒ yi = 1 and gi(1) < 0 from (56),
we have

G(1) =

NA∑
i=1

gi (1) log2 Mi

tieti
< 0 (61)

and because y1 → ∞ ⇒ yi → ∞ and limyi→∞ gi (yi) = 0+

from (57), we have

lim
y1→∞

G(y1) = lim
y1→∞

NA∑
i=1

gi (yi) log2 Mi

tieti

=

NA∑
i=1

limyi→∞ gi (yi) log2 Mi

tieti
= 0+ (62)

From (61) and (62), we know G(y1) = 0 has at least one
finite solution in y1 ∈ (1,∞). From (60) we know at a root
of G(y1) = 0, G′(y1) > 0, i.e., at the roots the function is
increasing, and therefore, must go from negative to positive.
Hence, there can be only one solution for G(y1) = 0. Define
y∗1 , s.t. G(y∗1) = 0. From (61) it follows that, G(y1) < 0 ⇔
y1 < y∗1 . Define x∗ , 1

t1(y∗
1−1) . Therefore, y1 < y∗1 ⇔ x > x∗

and G(y1) < 0 ⇔
∑NA

i=1 h
′′
i (x) < 0 from (58).

∴
NA∑
i=1

h′′
i (x) < 0 ⇔ x > x∗ (63)

III. Proof ∃y∗ > 0 s.t. kntie
−kti

y − knvi
e−kvi

y < 0 ⇔ y < y∗

Define Q
(i)
n : ℜ+ → ℜ, Q(i)

n (y) , kntie
−kti

y − knvi
e−kvi

y ,
where 0 < kti < kvi are constants. Note that Q

(i)
n (0) =

knti − knvi < 0, because kti < kvi . Further, Q(i)
n (y) = 0 ⇔

kntie
−kti

y − knvie
−kvi

y = 0 ⇔ e(kvi
−kti

)y =
kn
vi

kn
ti

⇔ y =

n ln

(
kvi
kti

)
kvi

−kti
, i.e., Q(i)

n (y) = 0 has exactly one solution at y =

n ln

(
kvi
kti

)
kvi

−kti
∈ (0,∞). Therefore,

Q(i)
n (y) < 0 ⇔ y <

n ln
(

kvi

kti

)
kvi − kti

(64)
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