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Abstract

With progressive image or scalable video encoders, as more bits are received, the source image

or video can be reconstructed with progressively better quality at the receiver. These progressive

codes have gradual differences of importance in their bitstreams, which necessitates multiple levels

of unequal error protection (UEP). One practical method of achieving UEP is based on a constellation

of nonuniformly spaced signal points, or hierarchical constellations. However, hierarchical modulation

can achieve only a limited number of UEP levels for a given constellation size. Though hierarchical

modulation has been intensively studied for digital broadcasting or multimedia transmission, most work

has considered only two layered source coding, and methods of achieving a large number of levels

of UEP for progressive transmission have rarely been studied. In this paper, we propose a multilevel

UEP system using multiplexed hierarchical quadrature amplitude modulation (QAM) for progressive

transmission over mobile radio channels. We show that multiple levels of UEP are achieved by the

proposed method. When the BER is dominated by the minimum Euclidian distance, we derive an

optimal multiplexing approach which minimizes both the average and peak powers. We next propose an

asymmetric hierarchical QAM which reduces the peak-to-average power ratio (PAPR) of the proposed

UEP system without any performance loss. Numerical results show that the performance of progressive

transmission over Rayleigh fading channels is significantly enhanced by the proposed multiplexing

methods.

S.-H. Chang, P. C. Cosman and L. B. Milstein are with the Department of Electrical and Computer Engineering,

University of California, San Diego, La Jolla, CA, 92093–0407, USA (e-mail: s4chang@ucsd.edu; pcosman@ucsd.edu;

milstein@ece.ucsd.edu). M. Rim is with the Department of Information and Communication Engineering, Dongguk University,

Seoul, Korea (e-mail: minjoong@dongguk.edu).

This work was supported in part by the SETsquared UK/US Programme for Applied Collaborative Research and by the US

Army Research Office under MURI, grant number W911NF-04-1-0224.

July 21, 2011 DRAFT



2

Index Terms

Cross-layer, hierarchical modulation, multimedia communications, progressive image, scalable video,

unequal error protection, wireless video.

I. INTRODUCTION

When a communication system transmits messages over mobile radio channels, they are

subject to errors, in part because mobile channels typically exhibit time-variant channel-quality

fluctuations. For two-way communication links, these effects can be mitigated using adaptive

methods [1]–[3]. However, the adaptive schemes require a reliable feedback link from the receiver

to the transmitter. Moreover, for a one-way broadcast system, those schemes are not appropriate

because of the nature of broadcasting. When adaptive schemes cannot be used, the way to

ensure communications is to classify the data into multiple classes with unequal error protection

(UEP). The most important class should be recovered by the receiver even under poor receiving

conditions. Hence, strong error protection is used for the important data all of the time, even

though sometimes there is no need for it. Less important data is always protected less even

though sometimes it cannot be recovered successfully.

Theoretical investigation of efficient communication from a single source to multiple receivers

established the fundamental idea that optimal broadcast transmission could be achieved by a

superposition or hierarchical transmission scheme [4]–[6]. Since the theoretical and conceptual

basis for UEP was initiated by Cover [4], much of the work has shown that one practical

method of achieving UEP is based on a constellation of nonuniformly spaced signal points

[7]–[10], which is called a hierarchical, embedded, or multi-resolution constellation. In this

constellation, more important bits in a symbol have larger minimum Euclidian distance than less

important bits. Hierarchical constellations were previously considered in [11], and intensively

studied for digital broadcasting systems [7][9][10]. Ramchandran et al. [7] designed an overall

multiresolution digital HDTV broadcast system using hierarchical modulation under a joint

source-channel coding (JSCC) framework. Calderbank and Seshadri [9] considered the use of

hierarchical quadrature amplitude modulation (QAM) as the adaptive constellations for digital

video broadcasting. Moreover, the Digital Video Broadcasting (DVB-T) standard [12], which is

now commercially available, incorporated hierarchical QAM for layered video data transmis-

sion, since it provides enhanced system-level capacity and coverage in a wireless environment
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[13][14]. Pursley and Shea [15][16] also proposed communication systems based on hierarchical

modulation which support multimedia transmission by simultaneously delivering different types

of traffic, each with its own required quality of service.

Another well known and obvious method to achieve UEP is based on channel coding: more

powerful error-correction coding is applied to a more important data class. Block codes for

providing UEP were studied by Masnick and Wolf [17], and Suda and Miki [18]. The use of

rate-compatible punctured convolutional (RCPC) codes to achieve UEP was suggested by Cox et

al. [19]. These UEP methods based on error-correction coding have been widely used for layered

video or image transmission [20]–[23]. Sometimes, UEP approaches based on hierarchical mod-

ulation and error-correction coding were jointly employed in a system [8][9][12][15][23]. For

example, in the DVB-T standard [12], two different layers of video data are channel encoded

with corresponding coding rates, and then they are mapped to hierarchical 16 or 64 QAM

constellation. Pei and Modestino [23] showed that when error-correction coding approach for

UEP and hierarchical modulation are jointly used, more efficient and flexible UEP is achieved.

Hierarchical modulation has other desirable properties in addition to performance considerations.

The amount of UEP can be adjusted in a continuous manner by modifying the spacing between

signal points of the constellation [8], and different levels of protection are achieved without an

increase in bandwidth compared to channel coding [24].

Progressive image or scalable video encoders [25]–[30], which are expected to have more

prominence in the future, employ a mode of transmission such that as more bits are received,

the source can be reconstructed with better quality at the receiver. In other words, the decoder

can use each additional received bit to improve the quality of the previously reconstructed

images. Since these progressive transmissions have gradual differences of importance in their

bitstreams, multiple levels of error protection are required. However, unlike channel coding

for UEP, hierarchical modulation can achieve only a limited number of UEP levels for a

given constellation size. For example, hierarchical 16 QAM provides two levels of UEP, and

hierarchical 64 QAM yields at most three levels [31]. In the DVB-T standard, video data encoded

by MPEG-2 consists of two different layers, and thus the use of hierarchical 16 or 64 QAM

meets the required number of UEP levels. However, if scalable video is to be incorporated in a

digital video broadcasting system, hierarchical 16 or 64 QAM may not meet the system needs.

Most of the work about hierarchical modulation up to now has been restricted to consideration
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of two layered source coding, and methods of achieving a large number of levels of UEP for

progressive mode of transmission have rarely been studied.

In this paper, we propose a multilevel UEP system using multiplexed hierarchical modulation

for progressive transmission over mobile radio channels. We propose a way of multiplexing

hierarchical QAM constellations, and show that arbitrarily large number of UEP levels are

achieved by the proposed method. These results are presented in Section II. When the BER is

dominated by the minimum Euclidian distance, we derive an an optimal multiplexing approach

which minimizes both the average and peak powers, which is presented in Section III. While

the suggested methods achieve multilevel UEP, the PAPR typically will be increased when

constellations having distinct minimum distances are time-multiplexed. To mitigate this effect, an

asymmetric hierarchical QAM constellation, which reduces the PAPR without performance loss,

is designed in Section IV. In Section V, we consider the case where multiplexed constellations

need to have constant power, either due to the limited capability of a power amplifier, or for the

ease of cochannel interference control. In Section VI, the performance of the suggested UEP

system for the transmission of progressive images is analyzed in terms of the expected distortion,

and Section VII presents numerical results of performance analysis.

II. MULTILEVEL UEP BASED ON MULTIPLEXING HIERARCHICAL QAM CONSTELLATIONS

A. Hierarchical 16 QAM Constellation

First, we analyze hierarchical 16 QAM as a special case. Fig. 1 shows a hierarchical 16 QAM

constellation with Gray coded bit mapping [12]. The 16 signal points are divided into four

clusters and each cluster consists of four signal points. The two most significant bits (MSBs),

i1 and q1, determine one of the four clusters, and their minimum Euclidian distance is dM .

The two least significant bits (LSBs), i2 and q2, determine which of the four signal points

within the cluster is chosen, and their minimum Euclidian distance is dL. The distance ratio

α = dM/dL (> 1) determines how much more the MSBs are protected against errors than are

the LSBs. Hierarchical 16 QAM has one embedded QPSK subconstellation consisting of four

clusters, and thus is denoted by 4/16 QAM.

We consider multiplexing N hierarchical 16 QAM constellations, all of which have distinct

minimum distances. The average power per symbol of all the multiplexed constellations, Savg,
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Fig. 1. Hierarchical 16 QAM constellation.

is given by

Savg =
1

N

N∑
i=1

Savg,i (1)

where Savg,i is the average power per symbol of constellation i. For hierarchical 16 QAM, Savg,i

is given by

Savg,i =

(
dM,i

2

)2

+

(
dM,i

2
+ dL,i

)2

=
d2

M,i

2
+ dM,idL,i + d2

L,i (2)

where dM,i and dL,i are minimum distances for the MSBs and LSBs of constellation i, respec-

tively. The BERs of the MSBs and LSBs of hierarchical 16 QAM constellation i, denoted by

PM,i and PL,i, respectively, are given by [31]

PM,i =
1

2
Q

(
dM,i

2

√
2γs

Savg

)
+

1

2
Q

((
dM,i

2
+ dL,i

) √
2γs

Savg

)

PL,i = Q

(
dL,i

2

√
2γs

Savg

)
+

1

2
Q

((
dM,i +

dL,i

2

) √
2γs

Savg

)
− 1

2
Q

((
dM,i +

3dL,i

2

) √
2γs

Savg

)

(3)
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where Savg is given by (1) and (2), γs is the signal-to-noise ratio (SNR) per symbol, and Q(x) =

1/
√

2π
∫∞

x
e−y2/2dy.

The following theorem states that 2N levels of UEP can be achieved by multiplexing N

hierarchical 16 QAM constellations.

Theorem 1: For N hierarchical 16 QAM constellations, PM,i and PL,i, given by (3), satisfy

PM,1 < PM,2 < · · · < PM,N < PL,1 < PL,2 < · · · < PL,N (4)

for all SNR if

dM,1 > dM,2 > · · · > dM,N > dL,1 > dL,2 > · · · > dL,N . (5)

Proof: We will first show that, for 1 ≤ i, j ≤ N ,

PM,i < PL,j if dM,i > dL,j. (6)

Since Q(x) is a monotonically decreasing function, from (3), we have

PM,i <
1

2
Q

(
dM,i

2

√
2γs

Savg

)
+

1

2
Q

(
dM,i

2

√
2γs

Savg

)
= Q

(
dM,i

2

√
2γs

Savg

)
. (7)

If dM,i > dL,j , from (3) and (7), we have

PM,i < Q

(
dL,j

2

√
2γs

Savg

)
< PL,j. (8)

We next show that, for dM,1 > dM,2 > · · · > dM,N and dL,1 > dL,2 > · · · > dL,N ,

PM,1 < PM,2 < · · · < PM,N . (9)

Consider two constellations i and i + 1 among N hierarchical constellations (1 ≤ i ≤ N − 1).

From (3), we have PM,i < PM,i+1 if dM,i > dM,i+1 and dL,i > dL,i+1.

Lastly, we show that for dM,1 > dM,2 > · · · > dM,N and dL,1 > dL,2 > · · · > dL,N ,

PL,1 < PL,2 < · · · < PL,N . (10)

We define a function f(x, y) as

f(x, y) = Q
(y

2

)
+

1

2
Q

(
x +

y

2

)
− 1

2
Q

(
x +

3y

2

)
. (11)

f(x, y) is a monotonically decreasing function of x > 0 and y > 0, since

∂f(x, y)

∂x
=

−1

2
√

2π

[
e−

1
2(x+ y

2 )
2

− e−
1
2(x+ 3y

2 )
2]

< 0, and

∂f(x, y)

∂y
=

−1

2
√

2π

[
e−

1
2(

y
2 )

2

− e−
1
2(x+ 3y

2 )
2

+
1

2

{
e−

1
2(x+ y

2 )
2

− e−
1
2(x+ 3y

2 )
2}]

< 0. (12)
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(6)

(7)

(8)

(5) or (8)
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(7) or (6)

(4)

(8) or (5)

Average power 1

Distance ratio 1

Average power 2

Distance ratio 2

Average power 3

Distance ratio 3

Average power 4
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Fig. 2. The multilevel UEP system using multiplexed hierarchical 16 QAM constellations. (a) The system based on Corollary

2: dashed lines (b) The system based on Corollary 9: dotted lines (note that solid lines are for both Corollaries 2 and 9).

From (3) and (11), it is seen that PL,i = f
(
dM,i

√
2γs/Savg, dL,i

√
2γs/Savg

)
. Hence, from (12),

we have

PL,i < PL,i+1 if dM,i > dM,i+1 and dL,i > dL,i+1. (13)

Finally, (4) and (5) are derived from (6), (9) and (10).

¤
Theorem 1 tells us that 2N levels of UEP are achieved by multiplexing N hierarchical 16

QAM constellations having the minimum distances satisfying (5).

Corollary 2: Suppose that there are 2N unequally important data classes to be transmitted,

and class i is more important than class i + 1 for 1 ≤ i ≤ 2N − 1. Let Pi denote the BER of
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data class i. Then,

P1 < P2 < · · · < P2N (14)

is satisfied for all SNR if the following conditions hold:

i) Class i and class N + i are mapped to the MSBs and LSBs of constellation i, respectively,

(1 ≤ i ≤ N).

ii) The minimum Euclidian distances of the constellations satisfy (5).

Proof: If i) is satisfied, Pi is given by

Pi = PM,i and PN+i = PL,i (1 ≤ i ≤ N). (15)

If ii) is satisfied, we have PM,1 < PM,2 < · · · < PM,N < PL,1 < PL,2 < · · · < PL,N from

Theorem 1.

¤
Fig. 2 (a) depicts the multilevel UEP system using multiplexed hierarchical 16 QAM constel-

lations based on Corollary 2 for eight data classes (N = 4).

B. Hierarchical 22K (K ≥ 3) QAM Constellation

Next, we consider multiplexing hierarchical 22K (K ≥ 3) QAM constellations. As an example,

Fig. 3 depicts a hierarchical 64 QAM constellation (K = 3). The two MSBs i1 and q1 determine

the quadrant of the first cluster, and their minimum Euclidian distance is dM1. The second two

MSBs i2 and q2 determine the quadrant within the first cluster, and their minimum distance is dM2.

Lastly, the third two MSBs (or LSBs) i3 and q3 determine the symbol within the second cluster,

and their minimum distance is dM3. Hierarchical 64 QAM has two embedded subconstellations,

and thus is denoted by 4/16/64 QAM. The hierarchical 64 QAM operates as QPSK when channel

conditions are poor, and it operates as 16 or 64 QAM when channel quality gets better. The

BER of hierarchical 22K QAM, PMn , is given by a recursive expression in [31].

In the following lemma, the BERs of hierarchical 22K QAM are derived under some assump-

tion based on the fact that for hierarchical constellations, minimum distance for more important

bits is greater than that for less important bits.

Lemma 3: Let dMn denote the minimum distance for the nth MSBs (1 ≤ n ≤ K). Note that

the distance ratio of the hierarchical constellation, dMn−1/dMn , is greater than unity (2 ≤ n ≤ K).
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1  1  0

1  1  1

1  0  1

1  0  0
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d
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2M
d

3M
d
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d

Fig. 3. Hierarchical 64 QAM constellation.

If the SNR of interest for the nth MSBs is sufficiently large so that the probability of the noise

exceeding the Euclidian distance of dMn−1 + 1
2
dMn is insignificant compared to that of the noise

exceeding 1
2
dMn , the BER of the nth MSBs (2 ≤ n ≤ K), PMn , becomes

P app
Mn

=





∑2K−n−1
p=0

1
2K−n Q

((
dMn

2
+

∑K
q=n+1

⌊
p+2K−q

2K−q+1

⌋
dMq

) √
2γs

Savg

)
,

for 2 ≤ n ≤ K − 1

Q
(

dMK

2

√
2γs

Savg

)
+ 1

2
Q

((
dMK−1

+
dMK

2

) √
2γs

Savg

)
,

for n = K

(16)

where bxc denotes the largest integer less than or equal to x, and Savg =
∑K

u=1

∑K
v=u µuvdMudMv

is the average power of a hierarchical 22K QAM, where the µuv are constants. Note that for the

MSBs (i.e., n = 1), the top line of (16) is the exact BER expression when n is set to unity (i.e.,

P app
M1

= PM1).

Proof: See Appendix A.
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¤
P app

Mn
is numerically evaluated for hierarchical 64 and 256 QAM in Appendix B as an example.

For both constellations, P app
Mn

(2 ≤ n ≤ K) is shown to be close to the exact BER within 0.001

dB for BER ≤ 0.1 even at the lower bound of the distance ratio (i.e., dMn−1/dMn = 1). Note

that for reference, the distance ratio of hierarchial 16 and 64 QAM in the DVB-T standard [12]

is 2 or 4.

For N multiplexed hierarchical 22K QAM constellations, the average power per symbol of

constellation i is given by

Savg,i =
K∑

u=1

K∑
v=u

µuvdMu,idMv ,i (17)

where dMn,i (1 ≤ n ≤ K) is the minimum distance for the nth MSBs of constellation i

(1 ≤ i ≤ N ), and the µuv are constants. When the condition of Lemma 3 is satisfied, from

(1), (16) and (17), the BER of the nth MSBs (2 ≤ n ≤ K) of a hierarchical 22K QAM

constellation i, PMn,i, becomes

P app
Mn,i =





∑2K−n−1
p=0

1
2K−n Q

((
dMn,i

2
+

∑K
q=n+1

⌊
p+2K−q

2K−q+1

⌋
dMq ,i

) √
2γs

Savg

)
,

for 2 ≤ n ≤ K − 1

Q
(

dMk,i

2

√
2γs

Savg

)
+ 1

2
Q

((
dMK−1,i +

dMK,i

2

) √
2γs

Savg

)
,

for n = K.

(18)

Note that the top line of (18) is the exact BER expression when n is set to unity (i.e., P app
M1,i =

PM1,i).

Theorem 4: For N hierarchical 22K QAM constellations, P app
Mn,i, given by (18), satisfy

P app
M1,1 < · · · < P app

M1,N < P app
M2,1 < · · · < P app

M2,N < · · · < P app
MK ,1 < · · · < P app

MK ,N (19)

if dM1,1 > · · · > dM1,N > dM2,1 > · · · > dM2,N > · · · > dMK ,1 > · · · > dMK ,N . (20)

Proof: We will first show that, for 1 ≤ i, j ≤ N ,

P app
M1,i < P app

M2,j, P app
M2,i < P app

M3,j, · · · , P app
MK−1,i < P app

MK ,j

if dM1,i > dM2,j, dM2,i > dM3,j, · · · , dMK−1,i > dMK ,j. (21)
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From (18), P app
Mn,i (1 ≤ n ≤ K − 2) can be expressed as

P app
Mn,i =

2K−n−1−1∑
r=0

1

2K−n
Q

((
dMn,i

2
+

K∑
q=n+1

⌊
2r + 2K−q

2K−q+1

⌋
dMq ,i

)√
2γs

Savg

)

+
2K−n−1−1∑

r=0

1

2K−n
Q

((
dMn,i

2
+

K∑
q=n+1

⌊
2r + 1 + 2K−q

2K−q+1

⌋
dMq ,i

)√
2γs

Savg

)
. (22)

Eq. (22) can be rewritten as

P app
Mn,i =

2K−n−1−1∑
r=0

1

2K−n
Q

((
dMn,i

2
+

K∑
q=n+1

⌊
r + 2K−q−1

2K−q

⌋
dMq ,i

) √
2γs

Savg

)

+
2K−n−1−1∑

r=0

1

2K−n
Q

((
dMn,i

2
+

K∑
q=n+1

⌊
r + 2−1 + 2K−q−1

2K−q

⌋
dMq ,i

)√
2γs

Savg

)
. (23)

From (23), since r + 2K−q−1 and 2K−q are integers for q ≤ K − 1, we have
⌊

r + 2−1 + 2K−q−1

2K−q

⌋
=

⌊
r + 2K−q−1

2K−q

⌋
for q ≤ K − 1. (24)

From (23), for q = K, we have
⌊

r + 2K−q−1

2K−q

⌋
= r and

⌊
r + 2−1 + 2K−q−1

2K−q

⌋
= r + 1. (25)

From (24) and (25), (23) can be rewritten as

P app
Mn,i =

2K−n−1−1∑
r=0

1

2K−n
Q

((
dMn,i

2
+

K−1∑
q=n+1

⌊
r + 2K−q−1

2K−q

⌋
dMq ,i + rdMK ,i

)√
2γs

Savg

)

+
2K−n−1−1∑

r=0

1

2K−n
Q

((
dMn,i

2
+

K−1∑
q=n+1

⌊
r + 2K−q−1

2K−q

⌋
dMq ,i + (r + 1)dMK ,i

)√
2γs

Savg

)
.

(26)

Setting t = q + 1, P app
Mn,i (1 ≤ n ≤ K − 2), given by (26), can be expressed as

P app
Mn,i =

2K−n−1−1∑
r=0

1

2K−n
Q

((
dMn,i

2
+

K∑
t=n+2

⌊
r + 2K−t

2K−t+1

⌋
dMt−1,i + rdMK ,i

) √
2γs

Savg

)

+
2K−n−1−1∑

r=0

1

2K−n
Q

((
dMn,i

2
+

K∑
t=n+2

⌊
r + 2K−t

2K−t+1

⌋
dMt−1,i + (r + 1)dMK ,i

)√
2γs

Savg

)
.

(27)
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From (18), P app
Mn+1,j (1 ≤ n ≤ K − 2) can be rewritten as

P app
Mn+1,j =

2K−n−1−1∑
p=0

1

2K−n
Q

((
dMn+1,j

2
+

K∑
q=n+2

⌊
p + 2K−q

2K−q+1

⌋
dMq ,j

) √
2γs

Savg

)

+
2K−n−1−1∑

p=0

1

2K−n
Q

((
dMn+1,j

2
+

K∑
q=n+2

⌊
p + 2K−q

2K−q+1

⌋
dMq ,j

) √
2γs

Savg

)
. (28)

From (27) and (28), for 1 ≤ n ≤ K − 2 , we have

P app
Mn,i < P app

Mn+1,j if dMn,i > dMn+1,j, dMn+1,i > dMn+2,j, · · · , dMK−1,i > dMK ,j. (29)

From (18), P app
MK−1,i is given by

P app
MK−1,i =

1

2
Q

(
dMK−1,i

2

√
2γs

Savg

)
+

1

2
Q

((
dMK−1,i

2
+ dMK ,i

) √
2γs

Savg

)
. (30)

From (18) and (30), we have

P app
MK−1,i < P app

MK ,j if dMK−1,i > dMK ,j. (31)

From (29) and (31), (21) is derived.

We next show that

P app
M1,1 < · · · < P app

M1,N , P app
M2,1 < · · · < P app

M2,N , · · · , P app
MK ,1 < · · · < P app

MK ,N

if dM1,1 > · · · > dM1,N , dM2,1 > · · · > dM2,N , · · · , dMK ,1 > · · · < dMK ,N . (32)

We define a function f(xn, xn+1, · · · , xK) as

f(xn, xn+1, · · · , xK) =
2K−n−1∑

p=0

1

2K−n
Q

((
xn

2
+

K∑
q=n+1

⌊
p + 2K−q

2K−q+1

⌋
xq

))
. (33)

The f(xn, xn+1, · · · , xK) is a monotonically decreasing function of xn > 0, xn+1 > 0, · · · , xK >

0, since

∂f(xn, xn+1, · · · , xK)

∂xn

=
−1

2
√

2π

2K−n−1∑
p=0

1

2K−n
e
− 1

2

(
xn
2

+
∑K

q=n+1

⌊
p+2K−q

2K−q+1

⌋
xq

)2

< 0, and

∂f(xn, xn+1, · · · , xK)

∂xn+m

=
−1√
2π

2K−n−1∑
p=0

1

2K−n
e
− 1

2

(
xn
2

+
∑K

q=n+1

⌊
p+2K−q

2K−q+1

⌋
xq

)2 ⌊
p + 2K−n−m

2K−n−m+1

⌋

< 0 (34)
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for m = 1, · · · , K − n (i.e., for xn+1, · · · , xK). From (18) and (33), it is seen that for 1 ≤ n ≤
K − 1,

P app
Mn,i = f

(
dMn,i

√
2γs

Savg

, dMn+1,i

√
2γs

Savg

, · · · , dMK ,i

√
2γs

Savg

)
. (35)

From (34) and (35), for 1 ≤ n ≤ K − 1, we have

P app
Mn,i < P app

Mn,i+1 if dMn,i > dMn,i+1, dMn+1,i > dMn+1,i+1, · · · , dMK ,i > dMK ,i+1. (36)

From (18), for n = K, we have

P app
MK ,i < P app

MK ,i+1 if dMK−1,i > dMK−1,i+1 and dMK ,i > dMK ,i+1. (37)

From (36) and (37), the following is derived.

P app
M1,i < P app

M1,i+1, P app
M2,i < P app

M2,i+1, · · · , P app
MK ,i < P app

MK ,i+1

if dM1,i > dM1,i+1, dM2,i > dM2,i+1, · · · , dMK ,i > dMK ,i+1. (38)

With i = 1, · · · , N−1, (38) leads to (32). Finally, from (21) and (32), (19) and (20) are derived.

¤
Theorem 4 tells us that, by multiplexing N hierarchical 22K (K ≥ 3) QAM constellations

having the minimum distances satisfying (20), KN levels of UEP are achieved under the

assumption that the SNR of interest for the nth MSBs (2 ≤ n ≤ K) is reasonably large so

that the condition of Lemma 3 is satisfied. We note that there are counter examples showing

that KN levels of UEP is not achieved for a very low SNR, even when the minimum distances

satisfy (20).

III. OPTIMAL MULTIPLEXING OF HIERARCHICAL QAM CONSTELLATIONS FOR HIGH SNR

In this section, we define high SNR as an SNR which is sufficiently large so that the BER is

dominated by the Q-function term having the minimum Euclidian distance.

A. Hierarchical 22J/22K (K > J ≥ 1) QAM Constellation

Hierarchical 22J/22K QAM refers to a specific kind of hierarchical constellations which

provide two levels of UEP. Typical examples are hierarchical 4/16 QAM (i.e., hierarchical 16

QAM) and 4/64 QAM which are employed in DVB-T standard. Similar to Section II, we first

July 21, 2011 DRAFT
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analyze a hierarchical 16 QAM as a simple example. For high SNR, from (3), the BERs of a

hierarchical 16 QAM constellation i (1 ≤ i ≤ N) are given by

PM,i ≈ 1

2
Q

(
dM,i

2

√
2γs

Savg

)
and PL,i ≈ Q

(
dL,i

2

√
2γs

Savg

)
. (39)

Theorem 5: Suppose that there are N multiplexed hierarchical 16 QAM constellations, and

the minimum distances satisfying (5) are given. Also suppose the given minimum distances can be

permuted such that dM,1, · · · , dM,N for the MSBs can be arbitrarily combined with dL,1, · · · , dL,N

for the LSBs. After the distances are permuted, the resultant minimum distances for the MSBs

and LSBs of constellation i, denoted by d̃M,i and d̃L,i, respectively, can be expressed as

d̃M,i = dM,i and d̃L,π(i) = dL,i (40)

where π(i) is the index of the constellation to which dL,i is permuted. Then, with the permuted

distances given by (40), the BERs of the data classes satisfy

P1 < P2 < · · · < P2N (41)

for high SNR if class i and class N + i are mapped to the MSBs of constellation i and the LSBs

of constellation π(i), respectively (1 ≤ i ≤ N).

Proof: After distances are permuted, from (39), (40) and the mapping condition below (41),

the BERs of data classes are given by

Pi ≈ 1

2
Q

(
dM,i

2

√
2γs

Savg

)
and PN+i ≈ Q

(
dL,i

2

√
2γs

Savg

)
(1 ≤ i ≤ N). (42)

Since dM,N > dL,1 from (5), and from (42), we have PN < PN+1. Since dM,i > dM,i+1 and

dL,i > dL,i+1 (1 ≤ i ≤ N − 1) from (5), and from (42), we have

Pi < Pi+1 and PN+i < PN+1+i (1 ≤ i ≤ N − 1). (43)

Since PN < PN+1, and from (43), it follows that P1 < · · · < PN < PN+1 < · · · < P2N .

¤
In contrast to Theorem 1 and Corollary 2, Theorem 5 tells us that 2N levels of UEP are

achieved for high SNR even after the minimum distances satisfying (5) are arbitrarily permuted.

Corollary 6: From Theorem 5, when the minimum distances dM,1, · · · , dM,N and dL,1, · · · ,
dL,N are permuted for high SNR, the BERs of the data classes, P1, · · · , P2N , are unchanged.
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Proof: From (42), it is seen that Pi (1 ≤ i ≤ 2N) is not dependent on the choice of π(i).

¤
Theorem 7: After the distances are permuted as described in Theorem 5, the average power

of all the multiplexed hierarchical 16 QAM constellations, Savg, given by

Savg =
1

N

N∑
i=1

Savg,i =
1

N

N∑
i=1

(
d̃2

M,i

2
+ d̃M,id̃L,i + d̃2

L,i

)
(44)

is minimized if and only if distances are permuted such that dM,i is combined with dL,N+1−i in

the same constellation. That is,

d̃M,i = dM,i and d̃L,i = dL,N+1−i (1 ≤ i ≤ N). (45)

Proof: We will prove the following by induction on the number of hierarchical constellations:

For given distances dM,1 > · · · > dM,N and dL,1 > · · · > dL,N ,

f ∗N =
N∑

i=1

(
d2

M,i

2
+ dM,idL,N+1−i + d2

L,N+1−i

)
(46)

is the minimum of fN =
∑N

i=1

(
d̃2

M,i/2 + d̃M,id̃L,i + d̃2
L,i

)
.

Consider two constellations (i.e., N = 2). For given dM,1 > dM,2 and dL,1 > dL,2, the distances

can be permuted such that dM,1 is combined with either dL,1 or dL,2. The two possible values

of f2 are given by

f2,]1 =
d2

M,1

2
+ dM,1dL,1 + d2

L,1 +
d2

M,2

2
+ dM,2dL,2 + d2

L,2

f2,]2 =
d2

M,1

2
+ dM,1dL,2 + d2

L,2 +
d2

M,2

2
+ dM,2dL,1 + d2

L,1. (47)

The difference between f2,]1 and f2,]2 is given by

f2,]1 − f2,]2 = (dM,1 − dM,2)(dL,1 − dL,2) > 0 (48)

because dM,1 > dM,2 and dL,1 > dL,2. From (48), it is seen that f2,]2 is the minimum. For N = 2,

f ∗2 given by (46) is equal to f2,]2.

Suppose that (46) holds when there are l constellations (i.e., N = l). In other words, for given

dM,1 > · · · > dM,l and dL,1 > · · · > dL,l, f ∗l =
∑l

i=1(d
2
M,i/2 + dM,idL,l+1−i + d2

L,l+1−i) is the

minimum of fl. Consider l + 1 constellations (i.e., N = l + 1). For given dM,1 > · · · > dM,l+1

and dL,1 > · · · > dL,l+1, we will prove that if fl+1 is minimized, dM,1 should be combined with

dL,l+1 in the same constellation by contradicting the following assumption: fl+1 is minimized
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with dM,1 and dL,l+1 not being combined. By the assumption, dM,1 and dL,j (for some j in the

range of 1 ≤ j < l + 1) are combined in some specific constellation, and dM,k and dL,l+1 (for

some k in the range of 1 < k ≤ l+1) are combined in another constellation. The corresponding

fl+1, denoted by fl+1,]1, is given by

fl+1,]1 =

(
d2

M,1

2
+ dM,1dL,j + d2

L,j

)
+

(
d2

M,k

2
+ dM,kdL,l+1 + d2

L,l+1

)

+
l+1∑
i=2
i6=k

(
d̃2

M,i

2
+ d̃M,id̃L,i + d̃2

L,i

)
(49)

where the other minimum distances, except dM,1, dM,k, dL,j , and dL,l+1, are arbitrarily combined.

We modify fl+1,]1 such that dM,1 and dL,l+1 are combined, and dM,k and dL,j are combined. The

modified fl+1 is denoted by fl+1,]2:

fl+1,]2 =

(
d2

M,1

2
+ dM,1dL,l+1 + d2

L,l+1

)
+

(
d2

M,k

2
+ dM,kdL,j + d2

L,j

)

+
l+1∑
i=2
i6=k

(
d̃2

M,i

2
+ d̃M,id̃L,i + d̃2

L,i

)
. (50)

The difference between fl+1,]1 and fl+1,]2 is given by

fl+1,]1 − fl+1,]2 = (dM,1 − dM,k)(dL,j − dL,l+1) > 0 (51)

because dM,1 > dM,k and dL,j > dL,l+1. From (51), fl+1,]1, given by (49), cannot be the minimum

of fl+1, and thus the above assumption is false. We have thus showed that the largest distance

for the MSBs, dM,1 should be combined with the smallest distance for the LSBs, dL,l+1. The

other minimum distances, except dM,1 and dL,l+1, are given by

dM,2 > dM,3 > · · · > dM,l+1 and dL,1 > dL,2 > · · · > dL,l. (52)

By the induction hypothesis, the following is the minimum for 2l distances given by (52):
l∑

i=1

(
d2

M,i+1

2
+ dM,i+1dL,l+1−i + d2

L,l+1−i

)
. (53)

Thus, the minimum of fl+1 is given by

d2
M,1

2
+ dM,1dL,l+1 + d2

L,l+1 +
l∑

i=1

(
d2

M,i+1

2
+ dM,i+1dL,l+1−i + d2

L,l+1−i

)

=
l+1∑
i=1

(
d2

M,i

2
+ dM,idL,l+2−i + d2

L,l+2−i

)
. (54)
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Setting N = l + 1 in (46), we obtain f ∗l+1 =
∑l+1

i=1(d
2
M,i/2 + dM,idL,l+2−i + d2

L,l+2−i), and this is

identical to (54). Hence, (46) holds for N = l + 1.

¤
Corollary 6 and Theorem 7 indicate that the average power of all the multiplexed constellations

is minimized by permuting distances according to (45), while the BERs are unchanged for high

SNR.

Next, we consider the peak signal power of the multiplexed hierarchical constellations. If we

assume that all the hierarchical constellations are time-multiplexed, the peak power of all the

multiplexed constellations, Speak, is given by

Speak = max
[{

Speak,i

∣∣∣1 ≤ i ≤ N
}]

(55)

where max[X] denotes the maximum element of the set X , and Speak,i is the peak power of a

hierarchical constellation i. For hierarchical 16 QAM, Speak,i is given by

Speak,i = 2

(
dM,i

2
+ dL,i

)2

=
d2

M,i

2
+ 2dM,idL,i + 2d2

L,i. (56)

Theorem 8: After the distances are permuted as described in Theorem 5, the peak power of

all the multiplexed hierarchical 16 QAM constellations, Speak, given by

Speak = max
[{

Speak,i

∣∣∣1 ≤ i ≤ N
}]

= max

[{
d̃2

M,i

2
+ 2d̃M,id̃L,i + 2d̃2

L,i

∣∣∣1 ≤ i ≤ N

}]
(57)

is minimized if the distances are permuted according to (45) of Theorem 7.

Proof: When (45) is satisfied, the corresponding Speak, denoted by Speak,]1, is given by

Speak,]1 = max

[{
d2

M,i

2
+ 2dM,idL,N+1−i + 2d2

L,N+1−i

∣∣∣1 ≤ i ≤ N

}]

=
d2

M,j

2
+ 2dM,jdL,N+1−j + 2d2

L,N+1−j, (58)

for some j in the range of 1 ≤ j ≤ N . We will contradict the following assumption: When

distances are permuted in some way other than (45), the corresponding Speak, denoted by Speak,]2,

is smaller than Speak,]1. Let dL,k be the distance with which dM,j is combined (for some k in

the range of 1 ≤ k ≤ N ) when the distances are permuted in a different manner from (45). The

possible values of k can be classified into

1 ≤ k < N + 1− j, k = N + 1− j, and N + 1− j < k ≤ N. (59)
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i) For 1 ≤ k < N + 1− j, Speak,]2 > Speak,]1. To see this, note that

Speak,]2 ≥ 1

2
d2

M,j + 2dM,jdL,k + 2d2
L,k >

1

2
d2

M,j + 2dM,jdL,N+1−j + 2d2
L,N+1−j = Speak,]1 (60)

where the strict inequality follows from dL,k > dL,N+1−j (since k < N + 1− j).

ii) For k = N + 1− j, Speak,]2 ≥ Speak,]1 since Speak,]2 ≥ 1
2
d2

M,j + 2dM,jdL,N+1−j + 2d2
L,N+1−j =

Speak,]1.

iii) For N + 1 − j < k ≤ N , Speak,]2 > Speak,]1. This is proved as follows: Since dM,j is

combined with dL,k, other distances {dM,i|1 ≤ i ≤ N, i 6= j} should be combined with

{dL,i|1 ≤ i ≤ N, i 6= k}. Note that
∣∣∣
{

dM,i

∣∣∣1 ≤ i < j
}∣∣∣ = j − 1 and

∣∣∣
{

dL,i

∣∣∣N + 1− j < i ≤ N, i 6= k
}∣∣∣ = j − 2 (61)

where |X| denotes the cardinality of the set X , and the equality of the second expression follows

from N + 1− j < k ≤ N . Since j− 1 > j− 2 in (61), at least one element of {dM,i|1 ≤ i < j}
should be combined with one element of {dL,i|1 ≤ i ≤ N + 1 − j}. Suppose that dM,p is

combined with dL,q for some p ∈ {1, · · · , j − 1} and q ∈ {1, · · · , N + 1− j}. Then, we have

Speak,]2 ≥ 1

2
d2

M,p + 2dM,pdL,q + 2d2
L,q >

1

2
d2

M,j + 2dM,jdL,N+1−j + 2d2
L,N+1−j = Speak,]1 (62)

where the strict inequality follows from the fact that dM,p > dM,j and dL,q ≥ dL,N+1−j (since

p < j and q ≤ N + 1 − j). From i), ii), and iii), it is seen that there is no possible way of

permuting distances which makes Speak,]2 smaller than Speak,]1. Therefore, the assumption below

(58) is false.

¤
Theorems 7 and 8 tell us that the permutation of the distances that minimizes the average

power of all the multiplexed hierarchical constellations also, coincidentally, minimizes the peak

power. Note that from (5) and (45), these optimally permuted distances satisfy

d̃M,1 > · · · > d̃M,N > d̃L,N > · · · > d̃L,1. (63)

Corollary 9: When the distances are optimally permuted according to (45) of Theorem 7,

the BERs of the data classes satisfy P1 < P2 < · · · < P2N for high SNR if class i and class

2N + 1− i are mapped to the MSBs and LSBs of constellation i, respectively (1 ≤ i ≤ N ).

Proof: The proof is similar to the proof of Corollary 2.

¤

July 21, 2011 DRAFT



19

Fig. 2 (b) depicts the multilevel UEP system using multiplexed hierarchical 16 QAM constel-

lations based on Corollary 9 for eight data classes (N = 4).

Next, we generalize to hierarchical 22J/22K (K > J ≥ 1) QAM constellations. Recall that

dMn,i denotes the minimum distance for the nth MSBs (1 ≤ n ≤ K) of a hierarchical 22K QAM

constellation i. Hierarchical 22J/22K QAM has two distinct minimum Euclidian distances such

that [31]

dMn,i =





dMJ ,i, for 1 ≤ n ≤ J

dMK ,i, for J + 1 ≤ n ≤ K.
(64)

The average power of a hierarchical 22J/22K QAM constellation i (1 ≤ i ≤ N ) can be expressed,

from (17) and (64), as the following:

Savg,i =
J∑

u=1

J∑
v=u

µuvd
2
MJ ,i +

J∑
u=1

K∑
v=J+1

µuvdMJ ,idMK ,i +
K∑

u=J+1

K∑
v=u

µuvd
2
MK ,i. (65)

Lemma 10: For high SNR, the BERs of a hierarchical 22J/22K QAM constellation i (1 ≤
i ≤ N ) are given by

PMn,i ≈





1
2K−n Q

(
dMJ ,i

2

√
2γs

Savg

)
, for 1 ≤ n ≤ J

1
2K−n Q

(
dMK,i

2

√
2γs

Savg

)
, for J + 1 ≤ n ≤ K

(66)

where Savg is given by (1) and (65).

Proof: The BERs of a hierarchical 22K QAM constellation i, P app
Mn,i (1 ≤ n ≤ K − 1), given

by (18), can be rewritten as

P app
Mn,i =

1

2K−n
Q

((
dMn,i

2
+

K∑
q=n+1

⌊
2K−q

2K−q+1

⌋
dMq ,i

) √
2γs

Savg

)

+
2K−n−1∑

p=1

1

2K−n
Q

((
dMn,i

2
+

K∑
q=n+1

⌊
p + 2K−q

2K−q+1

⌋
dMq ,i

)√
2γs

Savg

)

=
1

2K−n
Q

(
dMn,i

2

√
2γs

Savg

)

+
2K−n−1∑

p=1

1

2K−n
Q

((
dMn,i

2
+

K∑
q=n+1

⌊
p + 2K−q

2K−q+1

⌋
dMq ,i

)√
2γs

Savg

)
. (67)

From (67), we have
K∑

q=n+1

⌊
p + 2K−q

2K−q+1

⌋
dMq ,i ≥

K∑
q=n+1

⌊
1 + 2K−q

2K−q+1

⌋
dMq ,i ≥

⌊
1 + 20

21

⌋
dMK ,i = dMK ,i, (68)
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where the first inequality follows from p ≥ 1 in (67). From (67) and (68), it is clear that the

first Q-function term of (67) is the only term having the minimum distance of dMn,i for the nth

MSBs (1 ≤ n ≤ K − 1). Also, for P app
MK ,i (i.e., n = K) given by (18), it is clear that the first

Q-function term is the only term having the minimum distance of dMK ,i. From the condition of

approximation described in Lemma 3, it follows that the Q-function term having the minimum

distance in P app
MK ,i, given by (18), is the same as that in PMn,i, the exact BER. Therefore, from

(64) and (67), (66) is derived.

¤
From (66), the average BER for n = 1, · · · J th MSBs of constellation i , denoted by (PMJ ,i)avg,

is given by

(PMJ ,i)avg =
1

J

J∑
n=1

PMn,i ≈ AJQ

(
dMJ ,i

2

√
2γs

Savg

)
(69)

where AJ = 1
J

∑J
n=1 1/2K−n. Likewise, the average BER for n = J + 1, · · · , Kth MSBs of

constellation i, denoted by (PMK ,i)avg, is given by

(PMK ,i)avg =
1

K − J

K∑
n=J+1

PMn,i ≈ AKQ

(
dMK ,i

2

√
2γs

Savg

)
(70)

where AK = 1
K−J

∑K
n=J+1 1/2K−n. Similar to the average power given by (65), the peak power

of a hierarchical 22J/22K QAM constellation i (1 ≤ i ≤ N ) can be expressed as

Speak,i =
K∑

u=1

K∑
v=u

λuvdMu,idMv ,i

=
J∑

u=1

J∑
v=u

λuvd
2
MJ ,i +

J∑
u=1

K∑
v=J+1

λuvdMJ ,idMK ,i +
K∑

u=J+1

K∑
v=u

λuvd
2
MK ,i (71)

where the λuv are constants.

Theorem 11: Theorems 5, 7 and 8, and Corollaries 6 and 9 hold for hierarchical 22J/22K

QAM when

i) dM,i and dL,i are replaced by dMJ ,i and dMK ,i, respectively, and PM,i and PL,i are replaced

by (PMJ ,i)avg and (PMK ,i)avg, respectively.

ii) Eqs. (2) and (56) are replaced by (65) and (71), respectively.

Proof: From (69) and (70), AJ < AK , since

AJ =
1

J

J∑
n=1

1

2K−n
<

1

2K−J
and AK =

1

K − J

K∑
n=J+1

1

2K−n
>

1

2K−J−1
. (72)
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Hence, Theorem 5 and Corollary 6 hold for hierarchical 22J/22K QAM.

Since
∑J

u=1

∑J
v=u µuv,

∑J
u=1

∑K
v=J+1 µuv and

∑K
u=J+1

∑K
v=u µuv of (65) are coefficients, just

as 1/2, 1, and 1 of (2) are coefficients, Theorem 7 holds for hierarchical 22J/22K QAM. Likewise,
∑J

u=1

∑J
v=u λuv,

∑J
u=1

∑K
v=J+1 λuv, and

∑K
u=J+1

∑K
v=u λuv of (71) are coefficients, just as 1/2,

2, and 2 of (56) are coefficients, and thus Theorem 8 holds for hierarchical 22J/22K QAM.

¤

IV. ASYMMETRIC HIERARCHICAL QAM CONSTELLATION

While the proposed methods provide a large number of levels of UEP, the peak-to-average

power ratio (PAPR) typically will be increased when hierarchical constellations having distinct

minimum distances are time-multiplexed. To mitigate this effect, we design an asymmetric

hierarchical QAM which reduces the PAPR without performance loss. From here onwards, we

refer to conventional hierarchical QAM, which has been presented in Sections II and III, as

symmetric hierarchical QAM, in order to distinguish it from asymmetric hierarchical QAM.

A. Asymmetric Hierarchical 22K (K ≥ 2) QAM Constellation

For an asymmetric hierarchical 22K QAM, the minimum distances for the inphase and quadra-

ture components are different from each other. Similar to the previous sections, we first present

asymmetric hierarchical 16 QAM, depicted in Fig. 4, as a simple example. The MSB i1 for

the inphase component determines the first cluster, and its minimum distance is dA,I
M . The MSB

q1 for the quadrature component determines the second cluster within the first cluster that i1

determined, and its minimum distance is dA,Q
M . The LSB i2 for the inphase component determines

the third cluster, and its minimum distance is dA,I
L , and the LSB q2 for the quadrature component

determines the specific signal point within the third cluster, and has minimum distance dA,Q
L .

Asymmetric hierarchical 16 QAM has three embedded subconstellations, and it provides four

levels of UEP if dA,I
M > dA,Q

M > dA,I
L > dA,Q

L , which will be shown below in Corollary 13.

In order to provide 2N levels of UEP, we consider multiplexing N/2 (N is assumed to be even)

asymmetric hierarchical 16 QAM constellations instead of N symmetric hierarchical 16 QAM

constellations. The average power per symbol of all the multiplexed asymmetric constellations,
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i1 0 0 1 1

i2 0 1 1 0

q1 q2

0 0

0 1

1 1

1 0

1st cluster

3rd cluster

IA
Md
, IA

Ld
,

QA
Md
,

QA
Ld
,

2nd cluster

Fig. 4. Asymmetric hierarchical 16 QAM constellation.

SA
avg, is given by

SA
avg =

1

N/2

N/2∑
i=1

SA
avg,i (73)

where SA
avg,i is the average power per symbol of asymmetric constellation i. For asymmetric

hierarchical 16 QAM, SA
avg,i is given by

SA
avg,i = SA,I

avg,i + SA,Q
avg,i

=
1

2




(
dA,I

M,i

2

)2

+

(
dA,I

M,i

2
+ dA,I

L,i

)2

 +

1

2




(
dA,Q

M,i

2

)2

+

(
dA,Q

M,i

2
+ dA,Q

L,i

)2

 (74)

where SA,I
avg,i and SA,Q

avg,i are the average powers per symbol for the inphase and quadrature

components of asymmetric constellation i, respectively, and dA,I
M,i, dA,I

L,i , dA,Q
M,i , and dA,Q

L,i are the

minimum distances for the inphase MSB and LSB, and quadrature MSB and LSB, respectively.

Note that the BERs of rectangular QAM are derived from those of the corresponding PAMs

since the inphase and quadrature components are separated at the demodulator [31][33]. Let
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PA,I
M,i , PA,I

L,i , PA,Q
M,i , and PA,Q

L,i denote the BERs for the inphase MSB and LSB, and quadrature

MSB and LSB of asymmetric hierarchical constellation i, respectively (1 ≤ i ≤ N/2). From (3),

(73), and (74), they are derived as

PA,I
M,i =

1

2
Q

(
dA,I

M,i

2

√
2γs

SA
avg

)
+

1

2
Q

((
dA,I

M,i

2
+ dA,I

L,i

) √
2γs

SA
avg

)

PA,I
L,i = Q

(
dA,I

L,i

2

√
2γs

SA
avg

)
+

1

2
Q

((
dA,I

M,i +
dA,I

L,i

2

)√
2γs

SA
avg

)
− 1

2
Q

((
dA,I

M,i +
3dA,I

L,i

2

) √
2γs

SA
avg

)

PA,Q
M,i =

1

2
Q

(
dA,Q

M,i

2

√
2γs

SA
avg

)
+

1

2
Q

((
dA,Q

M,i

2
+ dA,Q

L,i

)√
2γs

SA
avg

)

PA,Q
L,i = Q

(
dA,Q

L,i

2

√
2γs

SA
avg

)
+

1

2
Q

((
dA,Q

M,i +
dA,Q

L,i

2

)√
2γs

SA
avg

)
− 1

2
Q

((
dA,Q

M,i +
3dA,Q

L,i

2

)√
2γs

SA
avg

)
.

(75)

Theorem 12: Suppose there are N multiplexed symmetric hierarchical 16 QAM constellations

whose minimum distances are given by dM,1, · · · , dM,N and dL,1, · · · , dL,N . Also suppose there

are N/2 asymmetric hierarchical 16 QAM constellations, and the minimum distances for the

inphase and quadrature components of asymmetric hierarchical constellation i are the same as

those of two distinct symmetric hierarchical constellations x(i) and y(i), respectively (1 ≤ i ≤
N/2). In other words,

dA,I
M,i = dM,x(i), dA,I

L,i = dL,x(i), dA,Q
M,i = dM,y(i), and dA,Q

L,i = dL,y(i) (1 ≤ i ≤ N/2) (76)

where x(i) and y(i) satisfy

x(i), y(i) ∈ {1, · · · , N} and {x(i), y(i)|1 ≤ i ≤ N/2} = {1, · · · , N}. (77)

With the minimum distances given by (76), the average power and BERs of N/2 multiplexed

asymmetric hierarchical 16 QAM constellations are the same as those of N multiplexed sym-

metric hierarchical 16 QAM constellations, regardless of the choice of x(i) and y(i) satisfying

(77).

Proof: From (74) and (76), SA
avg,i can be expressed as

SA
avg,i =

1

2

((
dM,x(i)

2

)2

+

(
dM,x(i)

2
+ dL,x(i)

)2
)

+
1

2

((
dM,y(i)

2

)2

+

(
dM,y(i)

2
+ dL,y(i)

)2
)

=
1

2
Savg,x(i) +

1

2
Savg,y(i), (78)

July 21, 2011 DRAFT



24

where the second equality follows from (2). From (73) and (78), SA
avg is given by

SA
avg =

1

N/2

N/2∑
i=1

(
1

2
Savg,x(i) +

1

2
Savg,y(i)

)
=

1

N

N/2∑
i=1

(
Savg,x(i) + Savg,y(i)

)
. (79)

From (77), (79) can be rewritten as

SA
avg =

1

N

N∑
i=1

Savg,i = Savg (80)

where the second equality follows from (1). We next compare the BERs of asymmetric and

symmetric constellations. From (3), (75) and (76), we have

PA,I
M,i = PM,x(i), PA,I

L,i = PL,x(i), PA,Q
M,i = PM,y(i), and PA,Q

L,i = PL,y(i) (1 ≤ i ≤ N/2). (81)

From (77) and (81), a set of 2N BERs for N/2 multiplexed asymmetric constellations satisfy
{

PA,I
M,i , P

A,I
L,i , PA,Q

M,i , PA,Q
L,i

∣∣∣1 ≤ i ≤ N/2
}

=
{

PM,x(i), PL,x(i), PM,y(i), PL,y(i)

∣∣∣1 ≤ i ≤ N/2
}

=
{

PM,i, PL,i

∣∣∣1 ≤ i ≤ N
}

. (82)

Hence, a set of 2N BERs for N/2 multiplexed asymmetric constellations is the same as that for

N multiplexed symmetric constellations.

¤
Corollary 13: Suppose that the minimum distances of the N multiplexed symmetric hier-

archical 16 QAM constellations satisfy (5) of Theorem 1. Then, with the minimum distances

given by (76), N/2 multiplexed asymmetric hierarchical 16 QAM constellations also provide

2N levels of UEP.

Proof: Since dM,i and dL,i satisfy (5), PM,i and PL,i satisfy (4) by Theorem 1. From (82), it

follows that N/2 multiplexed asymmetric hierarchical 16 QAM constellations also provide 2N

levels of UEP.

¤
As an example, suppose that there is single asymmetric hierarchical 16 QAM (i.e., N = 2),

and x(i) and y(i) satisfying (77) are chosen as x(1) = 1 and y(1) = 2. From (76) and (81), (4)

and (5) of Theorem 1 lead to the following:

PA,I
M,1 < PA,Q

M,1 < PA,I
L,1 < PA,Q

L,1 if dA,I
M,1 > dA,Q

M,1 > dA,I
L,1 > dA,Q

L,1 . (83)
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Next, we consider the peak power of all the multiplexed asymmetric hierarchical constellations,

SA
peak, which is given by

SA
peak = max

[{
SA

peak,i

∣∣∣1 ≤ i ≤ N/2
}]

(84)

where SA
peak,i is the peak power of an asymmetric hierarchical constellation i. For asymmetric

hierarchical 16 QAM, SA
peak,i is given by

SA
peak,i = SA,I

peak,i + SA,Q
peak,i =

(
dA,I

M,i

2
+ dA,I

L,i

)2

+

(
dA,Q

M,i

2
+ dA,Q

L,i

)2

(85)

where SA,I
peak,i and SA,Q

peak,i are the peak powers of the inphase and quadrature components of

asymmetric hierarchical constellation i, respectively.

Theorem 14: Suppose that the minimum distances of the N multiplexed symmetric hierar-

chical 16 QAM satisfy (5) of Theorem 1. With the minimum distances given by (76), the peak

power of all N/2 multiplexed asymmetric hierarchical 16 QAM constellations, SA
peak , given by

(84) and (85), is less than that of all N multiplexed symmetric hierarchical 16 QAM, Speak,

given by (55) and (56), regardless of the choice of x(i) and y(i) satisfying (77).

Proof: From (76) and (85), SA
peak,i is given by

SA
peak,i =

(
dM,x(i)

2
+ dL,x(i)

)2

+

(
dM,y(i)

2
+ dL,y(i)

)2

=
1

2
Speak,x(i) +

1

2
Speak,y(i), (86)

where the second equality follows from (56). From (84) and (86), SA
peak is given by

SA
peak = max

[{
1

2
Speak,x(i) +

1

2
Speak,y(i)

∣∣∣1 ≤ i ≤ N/2

}]

=
1

2
Speak,x(j) +

1

2
Speak,y(j), (87)

for some j in the range of 1 ≤ j ≤ N/2. Since x(i), y(i) ∈ {1, · · · , N} from (77), we have

Speak,x(j) ≤ max
[{

Speak,i

∣∣∣1 ≤ i ≤ N
}]

= Speak, and Speak,y(j) ≤ Speak, (88)

where the second equality of the first expression follows from (55). From (5) and (56), the peak

powers of each symmetric hierarchical 16 QAM constellation satisfy

Speak,1 > Speak,2 > · · · > Speak,N . (89)

From (77), (88) and (89), Speak,x(j) and Speak,y(j) satisfy either of the following:

Speak,x(j) < Speak,y(j) ≤ Speak or Speak,y(j) < Speak,x(j) ≤ Speak. (90)
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From (87) and (90), we have

SA
peak =

1

2
Speak,x(j) +

1

2
Speak,y(j) < Speak. (91)

¤
Theorems 12 and 14 tell us that when asymmetric hierarchical 16 QAM is used instead of

symmetric hierarchical 16 QAM, the PAPR is reduced without performance loss.

The following theorem states how to choose x(i) and y(i) (1 ≤ i ≤ N/2) satisfying (77) to

minimize the PAPR of all the multiplexed asymmetric hierarchical constellations.

Theorem 15: Suppose that the minimum distances of the N multiplexed symmetric hierarchi-

cal 16 QAM satisfy (5) of Theorem 1. Also suppose the minimum distances of N/2 multiplexed

asymmetric hierarchical 16 QAM are given by (76). Then, from (84) and (86), SA
peak is given by

SA
peak = max

[{
1

2
Speak,x(i) +

1

2
Speak,y(i)

∣∣∣1 ≤ i ≤ N/2

}]
(92)

and this is minimized if x(i) and y(i) satisfying (77) are chosen as

x(i) = i and y(i) = N + 1− i (1 ≤ i ≤ N/2). (93)

Proof: The proof is similar to the proof of Theorem 8.

¤
Next, we generalize to asymmetric hierarchical 22K (K ≥ 2) QAM. Let dA,I

Mn,i and dA,Q
Mn,i

denote the minimum distances of the nth MSB (1 ≤ n ≤ K) for the inphase and quadrature

components of asymmetric hierarchical 22K QAM constellation i (1 ≤ i ≤ N/2). From (17), the

average power of asymmetric hierarchical 22K QAM constellation i, SA
avg,i, can be expressed as

SA
avg,i = SA,I

avg,i + SA,Q
avg,i =

K∑
u=1

K∑
v=u

µuv

2
dA,I

Mu,id
A,I
Mv,i +

K∑
u=1

K∑
v=u

µuv

2
dA,Q

Mu,id
A,Q
Mv ,i (94)

where SA,I
avg,i and SA,Q

avg,i are the average powers for the inphase and quadrature components of

asymmetric constellation i.

Let PA,I
Mn,i and PA,Q

Mn,i denote the BERs of the nth MSB (1 ≤ n ≤ K) for the inphase and

quadrature components of asymmetric hierarchical 22K QAM constellation i (1 ≤ i ≤ N/2).

Recall that PMn,i denotes the BER of the nth MSBs (1 ≤ n ≤ K) of symmetric hierarchical

22K QAM constellation i (1 ≤ i ≤ N ).
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Theorem 16: Suppose that there are N multiplexed symmetric hierarchical 22K QAM whose

minimum distances are given by dMn,1, · · · , dMn,N (1 ≤ n ≤ K). Also suppose that the minimum

distances of N/2 multiplexed asymmetric hierarchical 22K QAM satisfy

dA,I
Mn,i = dMn,x(i) and dA,Q

Mn,i = dMn,y(i) (1 ≤ n ≤ K, 1 ≤ i ≤ N/2) (95)

where x(i) and y(i) satisfy (77). Theorem 12 holds for asymmetric hierarchical 22K QAM when

i) dA,I
M,i and dA,I

L,i are replaced by dA,I
Mn,i (1 ≤ n ≤ K); dA,Q

M,i and dA,Q
L,i are replaced by dA,Q

Mn,i

(1 ≤ n ≤ K); dM,i and dL,i are replaced by dMn,i (1 ≤ n ≤ K).

ii) PA,I
M,i and PA,I

L,i are replaced by PA,I
Mn,i (1 ≤ n ≤ K); PA,Q

M,i and PA,Q
L,i are replaced by PA,Q

Mn,i

(1 ≤ n ≤ K); PM,i and PL,i are replaced by PMn,i (1 ≤ n ≤ K).

iii) Eq. (76) is replaced by (95).

Proof: We omit the proof for conciseness, but it can be found in [32].

¤
We next consider the peak power for asymmetric hierarchical 22K QAM. In the following,

we rewrite the peak power of symmetric hierarchical 22K QAM constellation i (1 ≤ i ≤ N ),

Speak,i, given by (71):

Speak,i =
K∑

u=1

K∑
v=u

λuvdMu,idMv,i. (96)

From (96), the peak power of asymmetric hierarchical 22K QAM constellation i, SA
peak,i, can be

expressed as

SA
peak,i = SA,I

peak,i + SA,Q
peak,i =

K∑
u=1

K∑
v=u

λuv

2
dA,I

Mu,id
A,I
Mv,i +

K∑
u=1

K∑
v=u

λuv

2
dA,Q

Mu,id
A,Q
Mv,i (97)

where SA,I
peak,i and SA,Q

peak,i are the peak powers for the inphase and quadrature components of

asymmetric constellation i.

Theorem 17: Theorems 14 and 15 hold for asymmetric hierarchical 22K QAM when

i) dA,I
M,i and dA,I

L,i are replaced by dA,I
Mn,i (1 ≤ n ≤ K); dA,Q

M,i and dA,Q
L,i are replaced by dA,Q

Mn,i

(1 ≤ n ≤ K); dM,i and dL,i are replaced by dMn,i (1 ≤ n ≤ K).

ii) Speak,i given by (56) is replaced by (96).

iii) SA
peak,i given by (85) is replaced by (97).

iv) Eq. (5) of Theorem 1 is replaced by (20) of Theorem 4.

v) Eq. (76) is replaced by (95).
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Proof: We omit the proof for conciseness, but it can be found in [32].

¤
We note that, like other rectangular QAM constellations, the asymmetric hierarchical 22K

QAM can be easily generated as two PAM signals impressed on the inphase and quadrature

carriers, and possesses the distinct advantage of being easily demodulated. Hence, it does not

increase any decoding complexities, compared to conventional hierarchical or non-hierarchical

rectangular QAM constellations.

V. MULTILEVEL UEP BASED ON MULTIPLEXING HIERARCHICAL QAM CONSTELLATIONS

HAVING CONSTANT POWER

In this section, we consider the case where it is desirable for the multiplexed hierarchical

QAM constellations to have the same average power (i.e., constant power), either due to the

limited capability of a power amplifier, or for cochannel interference control.

A. Symmetric Hierarchical 22J/22K (K > J ≥ 1) QAM Constellation

Theorem 18: When N multiplexed symmetric hierarchical 16 QAM constellations are re-

quired to have constant power, there exist minimum distances satisfying

dM,1 > dM,2 > · · · > dM,N > dL,N > dL,N−1 > · · · > dL,1. (98)

Proof: The proof of this theorem as well as the proofs of all other theorems in this section

are not included here for conciseness, but they can be found in [32].

¤
From (63) and (98), it is seen that even if symmetric hierarchical 16 QAM constellations have

constant power, the suggested UEP system, depicted in Fig. 2 (b), can provide 2N levels of

UEP for high SNR.

Theorem 18 holds for symmetric hierarchical 22J/22K (K > J ≥ 1) QAM, when dM,i and

dL,i are replaced by dMJ ,i and dMK ,i, respectively.

B. Asymmetric Hierarchical 22K (K ≥ 2) QAM Constellation

Theorem 19: Suppose that N/2 multiplexed asymmetric hierarchical 16 QAM constellations

are required to have constant power, and their minimum distances are given by (76). If x(i) and
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y(i) are chosen according to (93) of Theorem 15, there exist minimum distances satisfying both

(5) of Theorem 1 and (76).

¤
From Corollary 13 and Theorem 19, it follows that even if asymmetric hierarchical 16 QAM

constellations have constant power, 2N levels of UEP can be achieved.

Theorem 19 holds for asymmetric hierarchical 22K (K ≥ 3) QAM, when

i) dM,i and dL,i are replaced by dMn,i (1 ≤ n ≤ K).

ii) Eq. (76) is replaced by (95).

iii) Eq. (5) of Theorem 1 is replaced by (20) of Theorem 4.

Theorem 20: Suppose that N/2 multiplexed asymmetric hierarchical 22K (K ≥ 2) QAM

constellations are required to have constant power. Then the performance of the system stays

the same or degrades compared to the case where multiplexed constellations are not required to

have constant power.

¤

VI. THE PERFORMANCE OF THE PROPOSED UEP SYSTEM FOR PROGRESSIVE BITSTREAM

TRANSMISSION

In this section, we analyze the performance of the proposed UEP system for progressive image

source transmission over Rayleigh fading channels. We first consider the UEP system depicted

in Fig. 2 (a). The system takes successive blocks (data classes) of the compressed progressive

bitstream, and transforms them into a sequence of channel codewords of fixed length lc [22] with

error detection and correction capability. Then, the coded classes are mapped to the multiplexed

symmetric hierarchical 16 QAM constellations. At the receiver, if a received class is correctly

decoded, then the next class is considered by the decoder. Otherwise, the decoding is stopped

and the image is reconstructed from the correctly decoded classes. We assume that all decoding

errors can be detected.

Let ri be an error correction code rate for class i (1 ≤ i ≤ 2N ), and di = (dM,c(i), dL,c(i)) be

a pair of minimum distances of some specific constellation c(i) (1 ≤ c(i) ≤ N ) to which class

i (1 ≤ i ≤ 2N ) is mapped. From Corollary 2, di (1 ≤ i ≤ 2N ) is given by

di =





(dM,i, dL,i), for 1 ≤ i ≤ N

(dM,i−N , dL,i−N), for N + 1 ≤ i ≤ 2N
(99)
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where dM,1, · · · , dM,N and dL,1, · · · , dL,N satisfy (5) of Theorem 1 to achieve 2N levels of UEP.

Let p(ri, di, γs) denote the probability of a decoding error of class i. Then, the probability that

no decoding errors occur in the first i classes with an error in the next one, Pc,i is given by

Pc,i = p(ri+1, di+1, γs)
i∏

j=1

(
1− p(rj, dj, γs)

)
for 1 ≤ i ≤ 2N − 1. (100)

Note that Pc,0 = p(r1, d1, γs) is the probability of an error in the first class, and Pc,2N =
∏2N

j=1

(
1− p(rj, dj, γs)

)
is the probability that all 2N classes are correctly decoded. The end-to-

end performance can be measured by the expected distortion, E[D], given by

E[D] =
2N∑
i=0

Pc,iDi (101)

where Di is the reconstruction error using the first i classes (1 ≤ i ≤ 2N ), and D0 is a

constant. For the case of an uncoded system, Di is given by Di = V (ilc), where V (x) denotes

the operational rate-distortion function of the source coder. Also, for the uncoded system, the

probability of a decoding error of class i, p(ri, di, γs) = p(di, γs), can be obtained analytically:

p(di, γs) = 1− {1− Pi(di, γs)}lc . (102)

Recall that Pi, a function of di and γs, is the BER of data class i. Pi (1 ≤ i ≤ 2N ) is given

by (3) and (15) of Corollary 2. We define a frame as a group of constellation symbols to which

one image bitstream is mapped. We assume the channel experiences slow Rayleigh fading such

that the fading coefficients are nearly constant over a frame. With this channel model, from

(100)–(102), the expected distortion for the uncoded system is given by

E[D] =

∫ ∞

0

{ (
1− {

1− P1(d1, h
2γs)

}lc
)

V (0)

+
2N−1∑
i=1

[(
1− {

1− Pi+1(di+1, h
2γs)

}lc
) i∏

j=1

{
1− Pj(dj, h

2γs)
}lc

]
V (ilc)

+
2N∏
j=1

{
1− Pj(dj, h

2γs)
}lc

V (2Nlc)

}
f(h)dh (103)

where h is the Rayleigh-distributed envelope of complex channel coefficients and f(h) is the

Rayleigh-distributed probability density function of h. Note that for a given SNR of γs, E[D] is

the conditional expected distortion. In situations when exact SNR information is not available

at the transmitter, one can find the minimum distances, d1, · · · , d2N (or dM,1, · · · , dM,N and
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Fig. 5. PSNR performance of UEP system using multiplexed symmetric hierarchical 16 QAM (H-16QAM denotes hierarchical

16 QAM).

dL,1, · · · , dL,N ), which minimize the expected distortion over a range of expected SNRs using

the weighted cost function

arg min
d1,··· ,d2N

∫∞
0

ω(γs)E[D]dγs∫∞
0

ω(γs)dγs

(104)

where ω(γs) in [0, 1] is the weight function. For example, ω(γs) can be given by

ω(γs) =





1, for γa
s ≤ γs ≤ γb

s

0, otherwise.
(105)
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TABLE I

PAPR OF MULTIPLEXED SYMMETRIC OR ASYMMETRIC HIERARCHICAL 16 QAM

PAPR (dB)

Number of UEP levels 4 16 64

Multiplexed symmetric
3.31 6.87 9.43

hierarchical 16 QAM

Multiplexed symmetric

2.82 5.84 8.32hierarchical 16 QAM

with permuted min. distances

Multiplexed asymmetric
1.11 4.18 6.60

hierarchical 16 QAM

Multiplexed asymmetric

1.11 1.43 1.46hierarchical 16 QAM

having constant power

TABLE II

PAPR OF UNIFORMLY SPACED 16 QAM AND SINGLE SYMMETRIC HIERARCHICAL 16 QAM

PAPR (dB)

Uniformly spaced 16 QAM 2.55

Single symmetric hierarchical 16 QAM 0.90

VII. NUMERICAL RESULTS

We evaluate the performance of the proposed UEP system using multiplexed hierarchical 16

QAM constellations for the progressive source coder SPIHT [26] as an example. We provide

the results for the standard 8 bits per pixel (bpp) 512×512 Lena image with a transmission rate

of 0.375 bpp. To compare the image quality, we use peak-signal-to-noise ratio (PSNR) defined

as

PSNR = 10log
2552

E[D]
(dB) (106)

where 255 is due to the 8 bpp image, and E[D] is given by (103).

We present the PSNR performance for the uncoded case by numerically evaluating (103)–(106)

as follows: We first compute (104) for the block Rayleigh fading channel using the expected

distortion, E[D], given by (103), and the weight function, ω(γs) , given by (105). Next, with
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Multiplexed Symm. H−16QAM (64 UEP Levels)

Fig. 6. PSNR performance of UEP system using multiplexed asymmetric hierarchical 16 QAM having constant power (H-

16QAM denotes hierarchical 16 QAM).

d1, · · · , d2N (or dM,1, · · · , dM,N and dL,1, · · · , dL,N ) obtained from (104), we evaluate PSNR

using (103) and (106) over a range of expected SNRs given by (105).

Fig. 5 shows the PSNR performance of the multiplexed symmetric hierarchical 16 QAM

constellations. For reference, it also shows PSNRs for single symmetric hierarchical 16 QAM,

as well as uniformly spaced QPSK and 16 QAM constellations. The PSNR of single symmetric

hierarchical constellation is evaluated in the same way as that for multiplexed symmetric hierar-

chical constellations. From Fig. 5, it is seen that multiplexed symmetric hierarchical constellations

improve the performance more than does single symmetric hierarchical constellation. It is also

seen that 32 multiplexed symmetric hierarchical 16 QAM constellations, which provide 64 levels
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of UEP, have almost saturated performance in this evaluation. However, by optimally permuting

the minimum distances according to Theorem 7, an additional SNR gain of more than 0.5 dB is

achieved. Note that the performance of N/2 multiplexed asymmetric hierarchical constellations

is the same as that of N multiplexed symmetric hierarchical constellations (N=8,16,32) as stated

by Theorem 12, though the former is not depicted here.

Table I shows the PAPRs of the multiplexed symmetric or asymmetric hierarchical 16 QAM

constellations. For reference, the PAPRs of single symmetric hierarchical 16 QAM and uniformly

spaced 16 QAM constellations are also listed in Table II. From Tables I and II, it is seen that when

symmetric hierarchical 16 QAM constellations are time-multiplexed, they have larger PAPR than

does uniformly spaced 16 QAM as well as single symmetric hierarchical 16 QAM constellation.

Table I also shows that PAPR is reduced when asymmetric hierarchical constellation is used, as

stated by Theorem 14.

Fig. 6 shows the PSNR performance of the multiplexed asymmetric hierarchical 16 QAM

constellations having constant power. It is shown that the performance is degraded when con-

stellations are required to have constant power, which is consistent with Theorem 20. However,

as seen from Table I, this scheme provides PAPR smaller than uniformly-spaced QAM, and a

high PAPR problem is solved.

VIII. CONCLUSION

Progressive image or scalable video encoders employ progressive transmission, so that encoded

data have gradual differences of importance in their bitstreams, which necessitates multiple levels

of UEP. Though hierarchical modulation has been intensively studied for digital broadcasting or

multimedia transmission, methods of achieving a large number of levels of UEP for progressive

mode of transmission have rarely been studied.

In this paper, we proposed a multilevel UEP system using multiplexed hierarchical modulation

for progressive transmission over mobile radio channels. Specifically, we proposed a way of

multiplexing N hierarchical 22K QAM constellations (K ≥ 2) and proved that KN levels of

UEP are achieved, under the assumption that the SNR of interest for the nth most important

bits is reasonably large so that the probability of noise exceeding the Euclidian distance of

dMn−1 + 1
2
dMn is insignificant compared to that of noise exceeding 1

2
dMn , where dMn and dMn−1

are the minimum distances for the nth and n − 1th important bits, respectively (2 ≤ n ≤ K).
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This assumption is based on the fact that for hierarchical constellations, the minimum distance

for more important bits is greater than that for less important bits (i.e., dMn−1 > dMn). As a

special case, for hierarchical 16 QAM (K = 2), we showed that 2N levels of UEP are achieved

without the assumption.

When the BER is dominated by the Q-function term having the minimum Euclidian distance,

we derived an optimal multiplexing approach which minimizes both the average and peak powers

for hierarchical 22J/22K QAM (K > J ≥ 1) constellations (typical examples are 4/16 QAM and

4/64 QAM which are employed in the DVB-T standard). While the suggested methods achieve

multiple levels of UEP, the PAPR typically will be increased when constellations having distinct

minimum distances are time-multiplexed. To mitigate this effect, an asymmetric hierarchical

QAM constellation, which reduces the PAPR without performance loss, was proposed. We also

considered the case where multiplexed constellations need to have constant power, and showed

that multilevel UEP can be achieved while the performance stays the same or degrades in this

case. Numerical results showed that the proposed multilevel UEP system based on multiplexed

modulation significantly enhances the performance for progressive transmission over Rayleigh

fading channels without any additional system bandwidth or transmit power.

APPENDIX A

PROOF OF LEMMA 3

A. Gray coded bit mapping vector for hierarchical 2K PAM

For a hierarchical 2K PAM constellation, let gn,i denote the Gray code for the nth MSB

(1 ≤ n ≤ K) assigned to the ith signal point (1 ≤ i ≤ 2K) from the left. Then, it can be shown

that the 2K-tuple Gray coded bit mapping vector, gn =
[
gn,1 gn,2 · · · gn,2K

]
, for the nth MSB is

given by

gn =





[
02K−1 12K−1

]
, for n = 1

[
02K−n 12K−n 12K−n 02K−n · · ·02K−n 12K−n 12K−n 02K−n

]
, for 2 ≤ n ≤ K

(107)

where 0l is a l-tuple all zero vector, and 1l is a l-tuple all one vector.
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Fig. 7. The construction of hierarchical 2K+1 PAM from hierarchical 2K PAM.

B. Euclidian distance between adjacent signal points for hierarchical 2K PAM

Let S
(K)
i (1 ≤ i ≤ 2K) and S

(K+1)
i (1 ≤ i ≤ 2K+1) denote the ith signal point from the left

for hierarchical 2K and 2K+1 PAM constellations, respectively. Also, let d
(K)
Mn

(1 ≤ n ≤ K) and

d
(K+1)
Mn

(1 ≤ n ≤ K + 1) denote minimum distances for the nth MSB of hierarchical 2K and

2K+1 PAM constellations, respectively. Fig. 7 shows how hierarchical 2K+1 PAM is constructed

from hierarchical 2K PAM. There are two rules with regard to the construction of hierarchical

2K+1 PAM from hierarchical 2K PAM:

i) The ith signal point for 2K PAM, S
(K)
i , is replaced by the 2i− 1th and 2ith signal points

for 2K+1 PAM, S
(K+1)
2i−1 and S

(K+1)
2i , which satisfy

d
(
S

(K+1)
2i−1 , S

(K+1)
2i

)
= d

(K+1)
MK+1

for 1 ≤ i ≤ 2K (108)

where d(X,Y ) is the Euclidian distance between two signal points, X and Y .

ii) If the distance between S
(K)
i and S

(K)
i+1 for 2K PAM is d

(K)
Mn

, then the distance between

S
(K+1)
2i and S

(K+1)
2i+1 for 2K+1 PAM is d

(K+1)
Mn

. That is, for 1 ≤ i ≤ 2K − 1 and 1 ≤ n ≤ K,

d
(
S

(K+1)
2i , S

(K+1)
2i+1

)
= d

(K+1)
Mn

if d
(
S

(K)
i , S

(K)
i+1

)
= d

(K)
Mn

. (109)

As an example, Fig. 8 depicts hierarchical 4 and 8 PAM constellations.

We will prove the following by induction: For hierarchical 2K PAM (K ≥ 2), the Euclidian

distance between adjacent signal points is given by

d
(
S

(K)

(2i−1)2K−n , S
(K)

(2i−1)2K−n+1

)
= d

(K)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ K. (110)
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Fig. 8. Hierarchical 4 and 8 PAM constellations.

Consider hierarchical 4 PAM. From Fig. 8, it is seen that

d
(
S

(2)
2 , S

(2)
3

)
= d

(2)
M1

and d
(
S

(2)
1 , S

(2)
2

)
= d

(
S

(2)
3 , S

(2)
4

)
= d

(2)
M2

. (111)

If we let K = 2 in (110), we have

d
(
S

(2)

(2i−1)22−n , S
(2)

(2i−1)22−n+1

)
= d

(2)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ 2. (112)

From (112), for n = 1, we have

d
(
S

(2)
(2i−1)2, S

(2)
(2i−1)2+1

)
= d

(2)
M1

for i = 1 ⇔ d
(
S

(2)
2 , S

(2)
3

)
= d

(2)
M1

(113)

where A ⇔ B denotes A and B are identical. From (112), for n = 2, we have

d
(
S

(2)
2i−1, S

(2)
2i

)
= d

(2)
M2

for i = 1, 2 ⇔ d
(
S

(2)
1 , S

(2)
2

)
= d

(
S

(2)
3 , S

(2)
4

)
= d

(2)
M2

. (114)

It is seen that (113) and (114) are identical to (111). Suppose that (110) holds for 2l PAM. That

is,

d
(
S

(l)

(2i−1)2l−n , S
(l)

(2i−1)2l−n+1

)
= d

(l)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ l. (115)

Consider hierarchical 2l+1 PAM. Eq. (109) can be rewritten as

d
(
S

(l+1)
2i , S

(l+1)
2i+1

)
= d

(l+1)
Mn

if d
(
S

(l)
i , S

(l)
i+1

)
= d

(l)
Mn

, (116)
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Fig. 9. Hierarchical 2K PAM constellation with the bit mapping vector g1 for the MSB.

for 1 ≤ i ≤ 2l − 1 and 1 ≤ n ≤ l. From (115) and (116), it can be shown that

d
(
S

(l+1)

(2i−1)2l+1−n , S
(l+1)

(2i−1)2l+1−n+1

)
= d

(l+1)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ l. (117)

Eq. (108) can be rewritten as

d
(
S

(l+1)
2i−1 , S

(l+1)
2i

)
= d

(l+1)
Ml+1

for 1 ≤ i ≤ 2l. (118)

From (118), (117) can be extended to the case n = l + 1. That is,

d
(
S

(l+1)

(2i−1)2l+1−n , S
(l+1)

(2i−1)2l+1−n+1

)
= d

(l+1)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ l + 1. (119)

If we let K = l + 1 in (110), it is identical to (119). Hence, (110) holds for hierarchical 2l+1

PAM.

For convenience, from here onwards, we use Si and dMn instead of S
(K)
i and d

(K)
Mn

for

hierarchical 2K PAM. For integers j, n in the range of 1 ≤ j ≤ 2K − 1 and 1 ≤ n ≤ K,

we define a function fn(j) as

fn(j) =





1, for j = (2 · 1− 1)2K−n, (2 · 2− 1)2K−n, · · · , (2 · 2n−1 − 1)2K−n

0, otherwise.
(120)

From (120), it can be shown that (110) is expressed as

d
(
Sj, Sj+1

)
=

K∑
n=1

fn(j)dMn for 1 ≤ j ≤ 2K − 1. (121)

C. BER of the MSB for hierarchical 2K PAM

Fig. 9 depicts a hierarchical 2K PAM constellation with the bit mapping vector g1 for the

MSB given by (107). The system model for hierarchical 2K PAM is shown in Fig. 10. The
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)(tn

NX +

tωcos2

ttxts ωcos2)()( = ∫ ⋅
T

dt
0

Fig. 10. System model for hierarchical PAM.

transmitted signal is given by

s(t) = x(t)
√

2 cos ωt

= sgn(i− 2K−1 − 0.5)d
(
0, Si

)
PT (t)

√
2 cos ωt for 1 ≤ i ≤ 2K (122)

where sgn(·) denotes the sign of the real number, d
(
0, Si

)
is the Euclidian distance between the

origin and ith signal point Si (1 ≤ i ≤ 2K), and PT (t) is the transmit pulse defined as

PT (t) =





1, 0 ≤ t ≤ T

0, elsewhere
(123)

where T is the symbol duration. n(t) is zero-mean additive white Gaussian noise having a power

spectral density of N0/2. At the receiver, the decision statistic is given by

X = sgn(i− 2K−1 − 0.5)d
(
0, Si

)
T and N =

∫ T

0

n(t)
√

2 cos ωt dt (124)

where the standard deviation of N is
√

N0T/2. From Fig. 9, since the decision boundary for

bits 0 and 1 is the origin, the probability of correct decision for a signal point assigned for bit

1, Si (i > 2K−1 + 1), is given by

Pc,Si
= Pr

[
0 ≤ d

(
0, Si

)
T + N < ∞

]
= 1−Q

(
d
(
0, Si

)
T√

N0T/2

)
= 1−Q

(
d
(
0, Si

)√2T

N0

)
.

(125)

From (125), the probability of correct decision for the MSB is given by

Pc =
1

2K−1

2K∑

i=2K−1+1

Pc,Si
= 1− 1

2K−1

2K∑

i=2K−1+1

Q

(
d
(
0, Si

)√2T

N0

)
(126)

and the BER for the MSB, PM1 , is given by

PM1 = 1− Pc =
1

2K−1

2K∑

i=2K−1+1

Q

(
d
(
0, Si

)√2T

N0

)
. (127)
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From (110), for n = 1, we have

d
(
S(2i−1)2K−1 , S(2i−1)2K−1+1

)
= dM1 for i = 1 ⇔ d

(
S2K−1 , S2K−1+1

)
= dM1 . (128)

Since the hierarchical PAM constellation is symmetric with respect to the origin, from (128),

we have

d
(
0, S2K−1+1

)
=

1

2
d
(
S2K−1 , S2K−1+1

)
=

dM1

2
. (129)

For i ≥ 2K−1 + 2, d
(
0, Si

)
can be expressed as

d
(
0, Si

)
= d

(
0, S2K−1+1

)
+

i−1∑

j=2K−1+1

d
(
Sj, Sj+1

)
=

dM1

2
+

i−1∑

j=2K−1+1

d
(
Sj, Sj+1

)

(130)

where the second equality follows from (129). From (129) and (130), the BER of the MSB,

given by (127), can be rewritten as

PM1 =
1

2K−1
Q

(
dM1

2

√
2T

N0

)
+

1

2K−1

2K∑

i=2K−1+2

Q

((
dM1

2
+

i−1∑

j=2K−1+1

d
(
Sj, Sj+1

))√
2T

N0

)
.

(131)

From (121),
∑i−1

j=2K−1+1 d
(
Sj, Sj+1

)
in (131) can be rewritten as

i−1∑

j=2K−1+1

d
(
Sj, Sj+1

)
=

i−1∑

j=2K−1+1

K∑
n=1

fn(j)dMn =
K∑

n=1

dMn

i−1∑

j=2K−1+1

fn(j). (132)

From (120), it can be shown that
∑l

j=1 fn(j) is expressed as

l∑
j=1

fn(j) =

⌊
l + 2K−n

2K−n+1

⌋
for 1 ≤ l ≤ 2K − 1 and 1 ≤ n ≤ K. (133)

From (133), (132) can be rewritten as
i−1∑

j=2K−1+1

d
(
Sj, Sj+1

)
=

K∑
n=1

dMn

(⌊
i− 1 + 2K−n

2K−n+1

⌋
−

⌊
2K−1 + 2K−n

2K−n+1

⌋)
. (134)

From (134), the second term of PM1 given by (131) can be expressed as

1

2K−1

2K∑

i=2K−1+2

Q

((
dM1

2
+

K∑
n=1

dMn

{⌊
i− 1 + 2K−n

2K−n+1

⌋
−

⌊
2K−1 + 2K−n

2K−n+1

⌋}) √
2T

N0

)
. (135)
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Let p = i− 2K−1 − 1. Then (135) can be rewritten as

1

2K−1

2K−1−1∑
p=1

Q

((
dM1

2
+

K∑
n=1

dMn

{⌊
p + 2K−n

2K−n+1
+ 2n−2

⌋
− ⌊

2n−2 + 2−1
⌋}

)√
2T

N0

)
. (136)

For n ≥ 2, we have
⌊

p + 2K−n

2K−n+1
+ 2n−2

⌋
=

⌊
p + 2K−n

2K−n+1

⌋
+ 2n−2 and

⌊
2n−2 + 2−1

⌋
= 2n−2. (137)

For n = 1, we have
⌊

p + 2K−n

2K−n+1
+ 2n−2

⌋
=

⌊ p

2K
+ 1

⌋
= 1 and

⌊
2n−2 + 2−1

⌋
= 1 (138)

where the second equality of the first expression follows from 1 ≤ p ≤ 2K−1− 1 in (136). From

(137) and (138), the second term of PM1 , given by (136), can be rewritten as

1

2K−1

2K−1−1∑
p=1

Q

((
dM1

2
+

K∑
n=2

dMn

⌊
p + 2K−n

2K−n+1

⌋) √
2T

N0

)
. (139)

Since
∑K

n=2 dMn

⌊
p+2K−n

2K−n+1

⌋
= 0 for p = 0, from (139), the BER of the MSB given by (131) can

be expressed as

PM1 =
1

2K−1

2K−1−1∑
p=0

Q

((
dM1

2
+

K∑
n=2

dMn

⌊
p + 2K−n

2K−n+1

⌋) √
2T

N0

)
. (140)

Note that (140) is the exact BER expression for the MSB of hierarchical 2K PAM.

D. BER of the n0th MSB (2 ≤ n0 ≤ K − 1) for hierarchical 2K PAM

D-1. Classification of 2K signal points into 2n0−1 mutually exclusive groups

We first find every pair of adjacent signal points which are separated by a Euclidian distance

greater than dMn0
(i.e., dMn0−1 , dMn0−2, · · · , dM1): For given n0 in the range of 2 ≤ n0 ≤ K−1,

let n = n0 −m (1 ≤ m ≤ n0 − 1) in (110). Then, we have

d
(
S(2i−1)2K−n0+m , S(2i−1)2K−n0+m+1

)
= dMn0−m

for 1 ≤ i ≤ 2n0−m−1 and 1 ≤ m ≤ n0 − 1. (141)

It can be shown that {(2i− 1)2m−1 | 1 ≤ i ≤ 2n0−m−1 and 1 ≤ m ≤ n0 − 1} is identical to

{j | 1 ≤ j ≤ 2n0−1 − 1}. Hence, every pair of adjacent signal points which are separated by

a Euclidian distance greater than dMn0
, given by (141), can be expressed as

Sj·2K+1−n0 , Sj·2K+1−n0+1 for 1 ≤ j ≤ 2n0−1 − 1. (142)
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Next, we classify 2K signal points into 2n0−1 mutually exclusive groups such that the Euclidian

distance between adjacent signal points of the same group is smaller than or equal to dMn0
. From

(142), the signal points of the jth group can be derived as

S(j−1)2K+1−n0+1, S(j−1)2K+1−n0+2, · · · , Sj·2K+1−n0 for 1 ≤ j ≤ 2n0−1. (143)

We rewrite (110) in the following: For hierarchical 2K PAM (K ≥ 2), the Euclidian distance

between adjacent signal points is given by

d
(
S(2i−1)2K−n , S(2i−1)2K−n+1

)
= dMn for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ K. (144)

From (143) and (144), it can be shown that the Euclidian distance between adjacent signal points

of the jth group is given by

d
(
S(2i−1)2K−n , S(2i−1)2K−n+1

)
= dMn

for (j − 1)2n−n0 + 1 ≤ i ≤ j · 2n−n0 , n0 ≤ n ≤ K, and 1 ≤ j ≤ 2n0−1. (145)

Let p = i− (j − 1)2n−n0 . Then, (145) can be rewritten as

d
(
S(2p−1)2K−n+(j−1)2K+1−n0 , S(2p−1)2K−n+(j−1)2K+1−n0+1

)
= dMn

for 1 ≤ p ≤ 2n−n0 , n0 ≤ n ≤ K, and 1 ≤ j ≤ 2n0−1. (146)

Notation change: Let S
(j)
i denote S(j−1)2K+1−n0+i for convenience. Then, every pair of adjacent

signal points which are separated by a Euclidian distance greater than dMn0
(i.e., dMn0−1 , dMn0−2,

· · · , dM1), given by (142), can be rewritten as

S
(j)

2K+1−n0
, S

(j+1)
1 for 1 ≤ j ≤ 2n0−1 − 1. (147)

The signal points of the jth group, given by (143), can be expressed as

S
(j)
1 , S

(j)
2 , · · · , S

(j)

2K+1−n0
for 1 ≤ j ≤ 2n0−1. (148)

Lastly, the Euclidian distance between adjacent signal points of the jth group, given by (146),

can be rewritten as

d
(
S

(j)

(2p−1)2K−n , S
(j)

(2p−1)2K−n+1

)
= dMn

for 1 ≤ p ≤ 2n−n0 , n0 ≤ n ≤ K, and 1 ≤ j ≤ 2n0−1. (149)

D-2. Probability of correct decision for signal points of the jth group
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Fig. 11. The j − 1, j and j + 1th groups with the bit mapping vector for j = odd.

From (148), for 2 ≤ j ≤ 2n0−1 − 1, the signal points of the j − 1, j, and j + 1th groups are

given by

S
(j−1)
1 , S

(j−1)
2 , · · · , S

(j−1)

2K+1−n0︸ ︷︷ ︸, S
(j)
1 , S

(j)
2 , · · · , S

(j)

2K+1−n0︸ ︷︷ ︸, S
(j+1)
1 , S

(j+1)
2 , · · · , S

(j+1)

2K+1−n0︸ ︷︷ ︸ .

j − 1th group jth group j + 1th group (150)

From (107), the bit mapping vector for the n0th MSB (2 ≤ n0 ≤ K − 1) of the j − 1, j and

j + 1th groups is derived as




[
02K−n0 12K−n0 12K−n0 02K−n0 02K−n0 12K−n0

]
, for j = even

[
12K−n0 02K−n0 02K−n0 12K−n0 12K−n0 02K−n0

]
, for j = odd.

(151)

From (150) and (151), j − 1, j, and j + 1th groups with the bit mapping vector for j = odd

are shown in Fig. 11, where D(j−1), D(j), and D(j+1) denote the decision boundaries for bits

0 and 1 in the j − 1, j, and j + 1th groups, respectively. In the following, we will derive the

probability of correct decision for signal points of the jth group (1 ≤ j ≤ 2n0−1):

i) Signal points assigned for bit 0 when j is odd in the range of 2 ≤ j ≤ 2n0−1 − 1

We here assume that for S
(j)
i (1 ≤ i ≤ 2K−n0), a signal point of the jth group which is

assigned for bit 0, the probability of correct decision can be calculated without considering the

other groups except for the j− 1, j, and j +1 th groups (we will later show that the assumption

is correct if the SNR condition of this lemma is satisfied). Fig. 12 shows the correct decision

area for S
(j)
i (1 ≤ i ≤ 2K−n0) under the above assumption. From Fig. 12, it follows that the

probability of correct decision for S
(j)
i (1 ≤ i ≤ 2K−n0) based on the system model depicted in
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Fig. 10 is given by

P bit0
c = Pr

[
− d

(
D(j−1), S

(j)
i

)
T < N < d

(
S

(j)
i , D(j)

)
T

]

+Pr
[
d
(
S

(j)
i , D(j+1)

)
T < N < d

(
S

(j)
i , S

(j+1)

2K+1−n0

)
T

]

= Pr
[
−

(
d
(
D(j−1), S

(j)
1

)
+ d

(
S

(j)
1 , S

(j)
i

))
T < N <

(
d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j)

))
T

]

+Pr
[ (

d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j+1)

))
T < N <

(
S

(j)
i , S

(j+1)

2K+1−n0

)
T

]
(152)

where the first and second terms follow from the correct decision areas #1 and #2 shown in Fig.

12, respectively. Eq. (152) can be rewritten as

P bit0
c = 1− Pr

[
N >

(
d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j)

))
T

]

−Pr
[
N >

(
d
(
D(j−1), S

(j)
1

)
+ d

(
S

(j)
1 , S

(j)
i

))
T

]

+Pr
[ (

d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j+1)

))
T < N <

(
S

(j)
i , S

(j+1)

2K+1−n0

)
T

]
. (153)

From Fig. 12, d
(
D(j−1), S

(j)
1

)
in the second term of (153) can be expressed as

d
(
D(j−1), S

(j)
1

)
= d

(
D(j−1), S

(j−1)

2K−n0+1

)
+ d

(
S

(j−1)

2K−n0+1
, S

(j−1)

2K+1−n0

)
+ d

(
S

(j−1)

2K+1−n0
, S

(j)
1

)
. (154)

From (149), for n = n0, we have

d
(
S

(j)

2K−n0
, S

(j)

2K−n0+1

)
= dMn0

for 1 ≤ j ≤ 2n0−1. (155)

From the fact that d
(
D(j−1), S

(j−1)

2K−n0+1

)
= 1

2
d
(
S

(j−1)

2K−n0
, S

(j−1)

2K−n0+1

)
and (155), (154) can be rewritten

as

d
(
D(j−1), S

(j)
1

)
=

1

2
dMn0

+ d
(
S

(j−1)

2K−n0+1
, S

(j−1)

2K+1−n0

)
+ d

(
S

(j−1)

2K+1−n0
, S

(j)
1

)
. (156)
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Fig. 12. The correct decision area for S
(j)
i (1 ≤ i ≤ 2K−n0 ) when j = odd.
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From (147), we have

d
(
S

(j)

2K+1−n0
, S

(j+1)
1

) ≥ dMn0−1 for 1 ≤ j ≤ 2n0−1 − 1. (157)

From (157), d
(
D(j−1), S

(j)
1

)
, given by (156), satisfies

d
(
D(j−1), S

(j)
1

) ≥ 1

2
dMn0

+ dMn0−1 + d
(
S

(j−1)

2K−n0+1
, S

(j−1)

2K+1−n0

)
. (158)

Since d
(
S

(j−1)

2K−n0+1
, S

(j−1)

2K+1−n0

)
> 0 for n0 ≤ K − 1, we have

d
(
D(j−1), S

(j)
1

)
>

1

2
dMn0

+ dMn0−1 . (159)

Likewise, from Fig. 12, d
(
S

(j)

2K−n0
, D(j+1)

)
in the third term of (153) can be expressed as

d
(
S

(j)

2K−n0
, D(j+1)

)
= d

(
S

(j)

2K−n0
, S

(j)

2K−n0+1

)
+ d

(
S

(j)

2K−n0+1
, S

(j)

2K+1−n0

)
+ d

(
S

(j)

2K+1−n0
, S

(j+1)
1

)

+d
(
S

(j+1)
1 , S

(j+1)

2K−n0

)
+ d

(
S

(j+1)

2K−n0
, D(j+1)

)
. (160)

Since d
(
S

(j+1)

2K−n0
, D(j+1)

)
= 1

2
d
(
S

(j+1)

2K−n0
, S

(j+1)

2K−n0+1

)
and from (155), (160) can be rewritten as

d
(
S

(j)

2K−n0
, D(j+1)

)
=

3

2
dMn0

+ d
(
S

(j)

2K−n0+1
, S

(j)

2K+1−n0

)
+ d

(
S

(j)

2K+1−n0
, S

(j+1)
1

)

+d
(
S

(j+1)
1 , S

(j+1)

2K−n0

)
. (161)

From (157), d
(
S

(j)

2K−n0
, D(j+1)

)
satisfies

d
(
S

(j)

2K−n0
, D(j+1)

)
=

3

2
dMn0

+ dMn0−1 + d
(
S

(j)

2K−n0+1
, S

(j)

2K+1−n0

)
+ d

(
S

(j+1)
1 , S

(j+1)

2K−n0

)
. (162)

We have d
(
S

(j)

2K−n0+1
, S

(j)

2K+1−n0

)
> 0 and d

(
S

(j+1)
1 , S

(j+1)

2K−n0

)
> 0 for n0 ≤ K − 1. Hence,

d
(
S

(j)

2K−n0
, D(j+1)

)
satisfies

d
(
S

(j)

2K−n0
, D(j+1)

)
>

3

2
dMn0

+ dMn0−1 . (163)

From (159) and (163), it follows that the second and third terms of P bit0
c , given by (153), are

insignificant when the condition of this lemma is satisfied. Since S
(j)
i , S

(j)

2K−n0
, and D(j) belong

to the jth group, d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j)

)
in the first term of P bit0

c is the combination

of dMn0
, dMn0+1 , · · · , dMK

from (149), and thus the first term is not affected by the condition of

this lemma. Hence, if the condition of this lemma is satisfied, P bit0
c , given by (153), becomes

P bit0
c ≈ 1− Pr

[
N >

(
d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j)

))
T

]
, (164)

which is identical to the probability of correct decision calculated only by considering 2K+1−n0

signal points of the isolated jth group. Since the j − 1 and j + 1th groups have no effect on
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the correct decision probability for signal points of the jth group due to the condition of this

lemma, the other groups (i.e., 1, · · · , j − 2, j + 2, · · · , 2n0−1th groups), which are separated by

larger Euclidian distances from the jth group than are the j − 1 and j + 1th groups, also have

no effect. Hence, the assumption above (152) is correct.

ii) Signal points assigned for bit 1 when j is odd in the range of 2 ≤ j ≤ 2n0−1 − 1

It can be shown that the probability of correct decision for S
(j)
i (2K−n0 + 1 ≤ i ≤ 2K+1−n0)

based on the system model depicted in Fig. 10 is given by

P bit1
c = 1− Pr

[
N >

(
d
(
D(j), S

(j)

2K−n0+1

)
+ d

(
S

(j)

2K−n0+1
, S

(j)
i

))
T

]

−Pr
[
N >

(
d
(
S

(j)
i , S

(j)

2K+1−n0

)
+ d

(
S

(j)

2K+1−n0
, D(j+1)

))
T

]

+Pr
[ (

d
(
D(j−1), S

(j)

2K−n0+1

)
+ d

(
S

(j)

2K−n0+1
, S

(j)
i

))
T < N < d

(
S

(j−1)
1 , S

(j)
i

)
T

]
, (165)

where d
(
S

(j)

2K+1−n0
, D(j+1)

)
in the second term of (165) satisfies 1

d
(
S

(j)

2K+1−n0
, D(j+1)

)
>

1

2
dMn0

+ dMn0−1 , (166)

and d
(
D(j−1), S

(j)

2K−n0+1

)
in the third term of (165) satisfies

d
(
D(j−1), S

(j)

2K−n0+1

)
>

3

2
dMn0

+ dMn0−1 . (167)

From (165)–(167), if the condition of this lemma is satisfied, P bit1
c , given by (165), becomes

P bit1
c ≈ 1− Pr

[
N >

(
d
(
D(j), S

(j)

2K−n0+1

)
+ d

(
S

(j)

2K−n0+1
, S

(j)
i

))
T

]
, (168)

which is identical to the probability of correct decision calculated only by considering 2K+1−n0

signal points of the isolated jth group.

iii) Signal points assigned for bit 0/1 when j is even in the range of 2 ≤ j ≤ 2n0−1 − 1

From (151), the bit mapping vector for j = even is just the complement of that for j = odd.

Hence, for j = even, P bit0
c and P bit1

c are given by (165) and (153), respectively, and the results

of i) and ii) hold for the case j is even.

iv) Signal points assigned for bit 0/1 when j = 1 (odd)

1 Since the analysis of ii) is similar to that of i), we omit the detailed steps.
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From Fig. 12, it follows that P bit0
c for j = 1 is given by

P bit0
c = 1− Pr

[
N >

(
d
(
S

(1)
i , S

(1)

2K−n0

)
+ d

(
S

(1)

2K−n0
, D(1)

))
T

]

+Pr
[ (

d
(
S

(1)
i , S

(1)

2K−n0

)
+ d

(
S

(1)

2K−n0
, D(2)

))
T < N < d

(
S

(1)
i , S

(2)

2K+1−n0

)
T

]
. (169)

The only difference between (153) and (169) is that (169) does not have the second term of

(153), and thus the result of i) holds for the case j = 1. In a similar way, it can be shown that

for bit 1, the result of ii) holds for the case j = 1.

v) Signal points assigned for bit 0/1 when j = 2n0−1 (even)

In a similar way to iv), it can be shown that the result of iii) holds for the case j = 2n0−1 .

From i)–v), it is seen that if the SNR condition of this lemma is satisfied, the BER of the

n0th MSB can be calculated only by considering 2K+1−n0 signal points of the isolated jth group

given by (148).

D-3. BER of the n0th MSB (2 ≤ n0 ≤ K − 1) for the isolated jth group

We derive the BER of the n0th MSB for the isolated jth group of 2K PAM from that of the

MSB for 2K+1−n0 PAM.

i) For hierarchical 2K+1−n0 PAM, from (144), the Euclidian distance between adjacent signal

points is given by

d
(
S(2i−1)2K+1−n0−n , S(2i−1)2K+1−n0−n+1

)
= dMn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ K + 1− n0. (170)

Let r = n + n0 − 1 and p = i. Then, (170) can be rewritten as

d
(
S(2p−1)2K−r , S(2p−1)2K−r+1

)
= dMr+1−n0

for 1 ≤ p ≤ 2r−n0 and n0 ≤ r ≤ K. (171)

From (149) and (171), it is seen that, if dMr+1−n0
in (171) is set equal to dMr , the Euclidian

distance between adjacent signal points for 2K+1−n0 PAM is the same as that for the jth group

of 2K PAM.

ii) For hierarchical 2K+1−n0 PAM, from (107), the bit mapping vector for the MSB is given by

g1 =
[
02(K+1−n0)−1 12(K+1−n0)−1

]
=

[
02K−n0 12K−n0

]
. (172)
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For the jth group of hierarchical 2K PAM, from (151), the bit mapping vector for the n0th MSB

is given by




[
12K−n0 02K−n0

]
, for j = even

[
02K−n0 12K−n0

]
, for j = odd.

(173)

It is seen that (173) is the same as or the complement of (172).

From i) and ii), it follows that the BER of the MSB for 2K+1−n0 PAM is the same as that of

the n0th MSB for the isolated jth group of 2K PAM, if dMr+1−n0
for 2K+1−n0 PAM is set equal

to dMr (i.e., dMx is set equal to dMx+n0−1). From (140), the BER of the MSB for hierarchical

2K+1−n0 PAM (2 ≤ n0 ≤ K − 1) is derived as

1

2K−n0

2K−n0−1∑
p=0

Q

((
dM1

2
+

K+1−n0∑
n=2

⌊
p + 2K+1−n0−n

2K+2−n0−n

⌋
dMn

)√
2T

N0

)
. (174)

Let r = n0 − 1 + n. Then (174) can be rewritten as

1

2K−n0

2K−n0−1∑
p=0

Q

((
dM1

2
+

K∑
r=n0+1

⌊
p + 2K−r

2K−r+1

⌋
dMr−n0+1

)√
2T

N0

)
. (175)

As stated above (174), by setting dMx equal to dMx+n0−1 in (175), the BER for the n0th MSB

(2 ≤ n0 ≤ K − 1) of the isolated jth group can be derived as

1

2K−n0

2K−n0−1∑
p=0

Q

((
dMn0

2
+

K∑
r=n0+1

⌊
p + 2K−r

2K−r+1

⌋
dMr

)√
2T

N0

)
. (176)

Note that the BER expression for the n0th MSB (2 ≤ n0 ≤ K − 1) of hierarchial 2K PAM,

given by (176), holds if the condition of this lemma is satisfied.

E. BER of the Kth MSB (or LSB) for hierarchical 2K PAM

For the Kth MSB (or LSB), we define the signal points of the jth group as

S
(j)
1 , S

(j)
2 , S

(j)
3 , S

(j)
4 for 1 ≤ j ≤ 2K−2, (177)

which is identical to (148) with n0 = K − 1. If we let n0 = K − 1 in (147), every pair of

adjacent signal points which are separated by Euclidian distances greater than dMK−1
is given

by

S
(j)
4 , S

(j+1)
1 for 1 ≤ j ≤ 2K−2 − 1. (178)
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Also let n0 = K − 1 in (149). Then, for 1 ≤ j ≤ 2K−2, the Euclidian distance between adjacent

signal points of the jth group can be derived as

d
(
S

(j)
2 , S

(j)
3

)
= dMK−1

and d
(
S

(j)
1 , S

(j)
2

)
= d

(
S

(j)
3 , S

(j)
4

)
= dMK

. (179)

From (107) and (177) – (179), it can be shown that if the condition of this lemma is satisfied,

the BER of the Kth MSB becomes 2

Q

(
dMK

2

√
2T

N0

)
+

1

2
Q

((
dMK−1

+
dMK

2

) √
2T

N0

)
. (180)

From (140), (176), and (180), the BER of the n0th MSB (1 ≤ n0 ≤ K) for hierarchical 2K

PAM can be expressed as




∑2K−n0−1
p=0

1
2K−n0

Q
((

dMn0

2
+

∑K
r=n0+1

⌊
p+2K−r

2K−r+1

⌋
dMr

) √
2T
N0

)
, for 1 ≤ n0 ≤ K − 1

Q
(

dMK

2

√
2T
N0

)
+ 1

2
Q

((
dMK−1

+
dMK

2

)√
2T
N0

)
, for n0 = K.

(181)

Note that (181) is the exact BER expression for the MSB, but for 2 ≤ n0 ≤ K th MSB,

(181) holds if the condition of this lemma is satisfied. Lastly, it can be shown that the BER

of the inphase or quadrature components for hierarchical 22K QAM is the same as that for

hierarchical 2K PAM. For hierarchical 22K QAM, let Es = PavgT denote the average energy of

the transmitted signal. Setting 2T/N0 = 2Es/N0Pavg = 2γs/Pavg in (181), (16) is derived.

APPENDIX B

NUMERICAL EVALUATION OF THE BER EXPRESSION (16)

Figs. 13 and 14 show the numerical evaluation of the BER expression given by (16) for

hierarchical 64 and 256 QAM when the distance ratio is 1 or 2.
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