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Abstract

With progressive image or scalable video encoders, as more bits are received, the source image
or video can be reconstructed with progressively better quality at the receiver. These progressive
codes have gradual differences of importance in their bitstreams, which necessitates multiple levels
of unequal error protection (UEP). One practical method of achieving UEP is based on a constellation
of nonuniformly spaced signal points, or hierarchical constellations. However, hierarchical modulation
can achieve only a limited number of UEP levels for a given constellation size. Though hierarchical
modulation has been intensively studied for digital broadcasting or multimedia transmission, most work
has considered only two layered source coding, and methods of achieving a large number of levels
of UEP for progressive transmission have rarely been studied. In this paper, we propose a multilevel
UEP system using multiplexed hierarchical quadrature amplitude modulation (QAM) for progressive
transmission over mobile radio channels. We show that multiple levels of UEP are achieved by the
proposed method. When the BER is dominated by the minimum Euclidian distance, we derive an
optimal multiplexing approach which minimizes both the average and peak powers. We next propose an
asymmetric hierarchical QAM which reduces the peak-to-average power ratio (PAPR) of the proposed
UEP system without any performance loss. Numerical results show that the performance of progressive
transmission over Rayleigh fading channels is significantly enhanced by the proposed multiplexing

methods.
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I. INTRODUCTION

When a communication system transmits messages over mobile radio channels, they are
subject to errors, in part because mobile channels typically exhibit time-variant channel-quality
fluctuations. For two-way communication links, these effects can be mitigated using adaptive
methods [1]-[3]. However, the adaptive schemes require a reliable feedback link from the receiver
to the transmitter. Moreover, for a one-way broadcast system, those schemes are not appropriate
because of the nature of broadcasting. When adaptive schemes cannot be used, the way to
ensure communications is to classify the data into multiple classes with unequal error protection
(UEP). The most important class should be recovered by the receiver even under poor receiving
conditions. Hence, strong error protection is used for the important data all of the time, even
though sometimes there is no need for it. Less important data is always protected less even
though sometimes it cannot be recovered successfully.

Theoretical investigation of efficient communication from a single source to multiple receivers
established the fundamental idea that optimal broadcast transmission could be achieved by a
superposition or hierarchical transmission scheme [4]-[6]. Since the theoretical and conceptual
basis for UEP was initiated by Cover [4], much of the work has shown that one practical
method of achieving UEP is based on a constellation of nonuniformly spaced signal points
[7]-[10], which is called a hierarchical, embedded, or multi-resolution constellation. In this
constellation, more important bits in a symbol have larger minimum Euclidian distance than less
important bits. Hierarchical constellations were previously considered in [11], and intensively
studied for digital broadcasting systems [7][9][10]. Ramchandran et al. [7] designed an overall
multiresolution digital HDTV broadcast system using hierarchical modulation under a joint
source-channel coding (JSCC) framework. Calderbank and Seshadri [9] considered the use of
hierarchical quadrature amplitude modulation (QAM) as the adaptive constellations for digital
video broadcasting. Moreover, the Digital Video Broadcasting (DVB-T) standard [12], which is
now commercially available, incorporated hierarchical QAM for layered video data transmis-

sion, since it provides enhanced system-level capacity and coverage in a wireless environment
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[13][14]. Pursley and Shea [15][16] also proposed communication systems based on hierarchical
modulation which support multimedia transmission by simultaneously delivering different types
of traffic, each with its own required quality of service.

Another well known and obvious method to achieve UEP is based on channel coding: more
powerful error-correction coding is applied to a more important data class. Block codes for
providing UEP were studied by Masnick and Wolf [17], and Suda and Miki [18]. The use of
rate-compatible punctured convolutional (RCPC) codes to achieve UEP was suggested by Cox et
al. [19]. These UEP methods based on error-correction coding have been widely used for layered
video or image transmission [20]-[23]. Sometimes, UEP approaches based on hierarchical mod-
ulation and error-correction coding were jointly employed in a system [8][9][12][15][23]. For
example, in the DVB-T standard [12], two different layers of video data are channel encoded
with corresponding coding rates, and then they are mapped to hierarchical 16 or 64 QAM
constellation. Pei and Modestino [23] showed that when error-correction coding approach for
UEP and hierarchical modulation are jointly used, more efficient and flexible UEP is achieved.
Hierarchical modulation has other desirable properties in addition to performance considerations.
The amount of UEP can be adjusted in a continuous manner by modifying the spacing between
signal points of the constellation [8], and different levels of protection are achieved without an
increase in bandwidth compared to channel coding [24].

Progressive image or scalable video encoders [25]-[30], which are expected to have more
prominence in the future, employ a mode of transmission such that as more bits are received,
the source can be reconstructed with better quality at the receiver. In other words, the decoder
can use each additional received bit to improve the quality of the previously reconstructed
images. Since these progressive transmissions have gradual differences of importance in their
bitstreams, multiple levels of error protection are required. However, unlike channel coding
for UEP, hierarchical modulation can achieve only a limited number of UEP levels for a
given constellation size. For example, hierarchical 16 QAM provides two levels of UEP, and
hierarchical 64 QAM yields at most three levels [31]. In the DVB-T standard, video data encoded
by MPEG-2 consists of two different layers, and thus the use of hierarchical 16 or 64 QAM
meets the required number of UEP levels. However, if scalable video is to be incorporated in a
digital video broadcasting system, hierarchical 16 or 64 QAM may not meet the system needs.

Most of the work about hierarchical modulation up to now has been restricted to consideration
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of two layered source coding, and methods of achieving a large number of levels of UEP for
progressive mode of transmission have rarely been studied.

In this paper, we propose a multilevel UEP system using multiplexed hierarchical modulation
for progressive transmission over mobile radio channels. We propose a way of multiplexing
hierarchical QAM constellations, and show that arbitrarily large number of UEP levels are
achieved by the proposed method. These results are presented in Section II. When the BER is
dominated by the minimum Euclidian distance, we derive an an optimal multiplexing approach
which minimizes both the average and peak powers, which is presented in Section III. While
the suggested methods achieve multilevel UEP, the PAPR typically will be increased when
constellations having distinct minimum distances are time-multiplexed. To mitigate this effect, an
asymmetric hierarchical QAM constellation, which reduces the PAPR without performance loss,
is designed in Section IV. In Section V, we consider the case where multiplexed constellations
need to have constant power, either due to the limited capability of a power amplifier, or for the
ease of cochannel interference control. In Section VI, the performance of the suggested UEP
system for the transmission of progressive images is analyzed in terms of the expected distortion,

and Section VII presents numerical results of performance analysis.

II. MULTILEVEL UEP BASED ON MULTIPLEXING HIERARCHICAL QAM CONSTELLATIONS
A. Hierarchical 16 QAM Constellation

First, we analyze hierarchical 16 QAM as a special case. Fig. 1 shows a hierarchical 16 QAM
constellation with Gray coded bit mapping [12]. The 16 signal points are divided into four
clusters and each cluster consists of four signal points. The two most significant bits (MSBs),
i1 and ¢y, determine one of the four clusters, and their minimum Euclidian distance is dj;.
The two least significant bits (LSBs), i and ¢2, determine which of the four signal points
within the cluster is chosen, and their minimum Euclidian distance is d;. The distance ratio
a = dp/dr, (> 1) determines how much more the MSBs are protected against errors than are
the LSBs. Hierarchical 16 QAM has one embedded QPSK subconstellation consisting of four
clusters, and thus is denoted by 4/16 QAM.

We consider multiplexing N hierarchical 16 QAM constellations, all of which have distinct

minimum distances. The average power per symbol of all the multiplexed constellations, S,
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Fig. 1. Hierarchical 16 QAM constellation.
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where Sg,,; 1s the average power per symbol of constellation . For hierarchical 16 QAM, S,

is given by

d ; 2 d ; 2 in
Savg,iz( A;) +( 3 +dL,Z-) = 5 daidp +di @

where dj;; and dj,; are minimum distances for the MSBs and LSBs of constellation ¢, respec-
tively. The BERs of the MSBs and LSBs of hierarchical 16 QAM constellation ¢, denoted by
Py and Py, respectively, are given by [31]

1 dari | 27s 1 dari 27
P P — = : - ’ d i
M 2Q< 2 Savg> +2Q<( 2 " Li) wag)
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where S,,, is given by (1) and (2), 75 is the signal-to-noise ratio (SNR) per symbol, and Q(x) =
1/V2m fxoo e V2 dy.

The following theorem states that 2NV levels of UEP can be achieved by multiplexing N
hierarchical 16 QAM constellations.

Theorem 1: For N hierarchical 16 QAM constellations, Py;; and Pr,;, given by (3), satisfy

PM71<PM72<"'<PM,N<PL71<PL’2<-"<PL7N (4)

for all SNR if

dMJ > dM’Q > > dM,N > dLJ > dL72 > > dL,N- (5)
Proof: We will first show that, for 1 <i,5 < N,
PMJ' < PLJ if dM,i > dLyj. (6)

Since ()(x) is a monotonically decreasing function, from (3), we have

dM i 273 dM i 273 sz 2’73
P < S = ’ : 7
M Q ( 2 Savg) Q ( S(I'Ug Q 2 S(I'Ug ( )
If dyr; > dp j, from (3) and (7), we have
dL j 2’78
Py < —L ) < P 8
M, Q ( 9 S(wg> L,j ( )
We next show that, for dMJ > dM72 > > dM,N and dL,l > dL72 > e > dL,N,
Py < Pya < - < Py 9

Consider two constellations ¢ and ¢ + 1 among N hierarchical constellations (1 <7 < N —1).
From (3), we have PMJ' < PM,i—‘rl if dM,i > dM,i—i—l and dL,i > dL,i—i—l-

Lastly, we show that for dy; 1 > dpro > -+ > dyy and dp 3 > dpo > -+ > dp N,
PLJ < PL’Q < e K PL,N- (10)
We define a function f(z,y) as

frn = (%) +,0 (s —)——Q( 32‘”). an

f(z,y) is a monotonically decreasing function of z > 0 and y > 0, since

8f(a:,y) _ —1 s(z+35 ) . 3 m—&-
o7 —2\/%[6 el em2( )]<0, and
ofz.y) _ 1 [—5(5)2_ b ) 4 L b o aery)
oy 2 | ‘ +31e ‘ b <o a
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Fig. 2. The multilevel UEP system using multiplexed hierarchical 16 QAM constellations. (a) The system based on Corollary

2: dashed lines

(b) The system based on Corollary 9: dotted lines

(note that solid lines are for both Corollaries 2 and 9).

From (3) and (11), it is seen that P, ; = f (dM,m/nys/swg, dL,m/z%/savg). Hence, from (12),

we have

Pri < Prit

Finally, (4) and (5) are derived from (6), (9) and (10).

if dM,i > dM,i—H and dL,i > dL,i—i—l'

(13)

O

Theorem 1 tells us that 2N levels of UEP are achieved by multiplexing /N hierarchical 16

QAM constellations having the minimum distances satisfying (5).

Corollary 2: Suppose that there are 2N unequally important data classes to be transmitted,

and class ¢ is more important than class ¢ + 1 for 1 < ¢ < 2N — 1. Let P, denote the BER of
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data class 7. Then,

P<P < < Py (14)

is satisfied for all SNR if the following conditions hold:
1) Class ¢ and class /N 4 ¢ are mapped to the MSBs and LSBs of constellation ¢, respectively,
(1 <i<N).
i) The minimum Euclidian distances of the constellations satisfy (5).

Proof: 1f 1) is satisfied, F; is given by
P,=Py; and Pyy=P; (1<i<N). (15)

If 11) is satisfied, we have Py < Pyo < -+ < Pyn < Py < Ppo < -+ < Ppn from
Theorem 1.
0J
Fig. 2 (a) depicts the multilevel UEP system using multiplexed hierarchical 16 QAM constel-
lations based on Corollary 2 for eight data classes (/N = 4).

B. Hierarchical 2°% (K > 3) QAM Constellation

Next, we consider multiplexing hierarchical 225 (K > 3) QAM constellations. As an example,
Fig. 3 depicts a hierarchical 64 QAM constellation (KX = 3). The two MSBs 4; and ¢; determine
the quadrant of the first cluster, and their minimum Euclidian distance is dj;;. The second two
MSBs i3 and ¢, determine the quadrant within the first cluster, and their minimum distance is d 5.
Lastly, the third two MSBs (or LSBs) 73 and g3 determine the symbol within the second cluster,
and their minimum distance is d,,3. Hierarchical 64 QAM has two embedded subconstellations,
and thus is denoted by 4/16/64 QAM. The hierarchical 64 QAM operates as QPSK when channel
conditions are poor, and it operates as 16 or 64 QAM when channel quality gets better. The
BER of hierarchical 22X QAM, Py, is given by a recursive expression in [31].

In the following lemma, the BERSs of hierarchical 22X QAM are derived under some assump-
tion based on the fact that for hierarchical constellations, minimum distance for more important
bits is greater than that for less important bits.

Lemma 3: Let d);, denote the minimum distance for the nth MSBs (1 < n < K). Note that

the distance ratio of the hierarchical constellation, dy;, , /dyy, , is greater than unity (2 < n < K).
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Fig. 3. Hierarchical 64 QAM constellation.

If the SNR of interest for the nth MSBs is sufficiently large so that the probability of the noise
exceeding the Euclidian distance of dy;, , + %d M, 1s insignificant compared to that of the noise

exceeding %dMn, the BER of the nth MSBs (2 < n < K), Py, becomes

(
2K-n_1 dn K pt2i—a 27s
Zp:(] 2K —n << 2n _'_ Zq:n+1 2K —q+1 dMq 9

Savg

for2<n<K-1
PP = (16)

n d d
@ (“3y/3) i@ (e + %) 32).

forn=K

\
where |z | denotes the largest integer less than or equal to =, and Suy = Soh | SN yiudar, das,
is the average power of a hierarchical 2% QAM, where the i, are constants. Note that for the
MSBs (i.e., n = 1), the top line of (16) is the exact BER expression when n is set to unity (i.e.,
Pyi? = Papy).

Proof: See Appendix A.
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10

O

Py” is numerically evaluated for hierarchical 64 and 256 QAM in Appendix B as an example.

For both constellations, Pfj’f (2 <n < K) is shown to be close to the exact BER within 0.001

dB for BER < 0.1 even at the lower bound of the distance ratio (i.e., dy, ,/dy, = 1). Note

that for reference, the distance ratio of hierarchial 16 and 64 QAM in the DVB-T standard [12]
is 2 or 4.

22K

For N multiplexed hierarchical QAM constellations, the average power per symbol of

constellation ¢ is given by

K K
Savgi = Y Y Huvar, idlas, i (17)

u=1 v=u
where dp,; (1 < n < K) is the minimum distance for the nth MSBs of constellation ¢
(1 <% < N), and the pu,, are constants. When the condition of Lemma 3 is satisfied, from

(1), (16) and (17), the BER of the nth MSBs (2 < n < K) of a hierarchical 22 QAM

constellation 7, Py, ;, becomes

2K-n_1 Ay, i K p+2K—a 2v,
ZP:O 2K7nQ << 2 + Zq:n—i-l oK —q+1 dMq,'i Savg )

for 2<n<K-1
Py, = (18)

dny i 275 1 g i 275
Q( 5\ By ) T 2@ ((dhgeri + =3 Savg )

for n= K.

;

\

Note that the top line of (18) is the exact BER expression when n is set to unity (i.e., P]‘\lﬂf . =
PM1 ,i)'
Theorem 4: For N hierarchical 2% QAM constellations, Pfj:f” ;» given by (18), satisfy

Pjﬁ}'ﬁl<---<P§£’fN<P]‘C4”21fl<---<P§;;’fN<---<P§f}f71<---<Pff£7N (19)
if dM1,1 > e >dM1,N>dM2,1 > e >CZM27N> >dMK,1 > e >dMK,N- (20)

Proof: We will first show that, for 1 <i,5 < N,

app app app app app app
PMM' < PM27j’ PMM' < PM37J" e ’PMKAJ < PMKJ
it dani > dagy datsi > A gy s Aaage_y i > g - (21)
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From (18), P]‘\‘ﬁi (1 £n < K —2) can be expressed as

2K-n-1_1 K
“ 1 dar, i 2 + 2K-a 25
PZ\/Ipﬁi - Z (( + Z { 9K —g+1 J dMqﬂ) Suvg

2K n
r=0 g=n+1
S d K 1op 414 2K 2y
My i ‘ s
+ 2K—nQ (( 5 + Z \‘WJ dMq,z> Savg> . (22)
r=0 g=n+1
Eq. (22) can be rewritten as
2K7n—1_1 K
1 dar, i r+ 28—t 2y
app __ n,? . 5
- X e ( (M > [P ) 2
r=0 g=n+1
SN d Ko |p 421 4 oK 2y
M, i s
— dar. i . (23
+ Z 2K n (( 2 + Z \‘ 9K—q J Mq,> Savg) (23)
g=n+1
From (23), since r + 25~97! and 25~ are integers for ¢ < K — 1, we have
r4 271 2Kt r4 2Kt
\‘ 2K—q = W for q S K —1. (24)
From (23), for ¢ = K, we have
r+ 2K-a-l r+ 271 4 2Kt
le =7r and \‘ 5K—g =r+1. (25)

From (24) and (25), (23) can be rewritten as

oK —n—1_17 K-1
o 1 dur,, i 2K q-1 275
A= 2 (( p> L it i [\ 5

- 2K n
r=0 qg=n+1

2K-n-1_1
1 dag, +2K a-1 27,
+ Z T (( + Z { JdMq,i+(T+1)dMK,i> o)

q=n—+1
(26)

Setting t = ¢ + 1, Py;”, (1 <n < K — 2), given by (26), can be expressed as

2K-n-1_1 K
a 1 dei r -+ 2K_t 2’75

r=0 t=n-2

2K n—1 —1 d K ’r‘—'—QK*t 27
Mii ]

+ Z <( + Z { 9K —t+1 J Ay + (r + 1)dMK,i> 5 )
avg

t=n-+2
(27)

DRAFT
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From (18), P]‘\‘}’f+1

12

; (1 <n < K —2)can be rewritten as

9K—n—1_1 1 dM K p+ 2K—q 27
a; _ n+1,] S
Tom X e (M 3 |5 ) 3
p=0 q=n-+2 - - avg
2K n—1__ K
dMn 1,7 p + 2K_q 275
+ Z 2K _ (( e vl KAVRN RY bl BRI L)
qg=n+2 - - avg
From (27) and (28), for 1 <n < K — 2, we have
P](\l/ﬁil < P](\l/})f+1,j if dei > dMn+17j’ dMn+1,i > dMn-&-QJ’ s >dMK_1,i > dMK,j- 29)
From (18), Py;” ; is given by
app  _ K-1, S - K—1, d ; s ' 30
Mr—1,4 QQ ( 2 Savg) - QQ (( 2 e Savg G0
From (18) and (30), we have
PJ(\I/});Z; 1,0 PJ(\I/}Jpj if dMK 1Z>dMKJ (31)
From (29) and (31), (21) is derived.
We next show that
Pyl <o <Pty Prpy <o <Pyt S PypE <o < PP
it dyya > >duN, Ay > > daN, A > < dge N (32)
We define a function f(x,, .41, -+ ,Tk) as
2K-n_1 K
1 Tn p+ 2K-a
f(mn’mn+17... ,fEK) — Z 2K7nQ <<?—|— Z LwJ l’q)) . (33)
p=0 g=n+1
The f(xp, Tni1, - ,Tx) is @ monotonically decreasing function of x,, > 0,x,11 > 0, , x5 >
0, since
Of(p, Tpi1, -+, Tk) -1 S 1 l( n K { J )2
m Lot ) Z A\ [T g and
Oxy, 2V/2m 2K
K—n 2
af(xn7 Tpy1, T ? Z - %(771-’_ f:n+1 \‘%J ) p + 2K—n—m
8xn+m 2K ” 9K —n—m+1
<0 (34)
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form=1,--- , K —n (ie., for z,,1, -+ ,2x). From (18) and (33), it is seen that for 1 < n <

K —1,
| 27 | 27s | 27s
Py o= f | dunin | o> datosrin o—> > daiein | o— | - 35
Moy i f( Muig g Dy [ g Mg, Swg> (35)

From (34) and (35), for 1 <n < K — 1, we have
Pyt < Pyt i da i > daggivrs Aoy > Aoy e s A > Ao i (36)
From (18), for n = K, we have
Py < Py o if dage i > dare i and dage i > dagg i 37)

From (36) and (37), the following is derived.

app app app app app app
Py < Pupivrs Pani < Punivrs s Pagei < Pare i
1f dMl,i > dM1,i+17 sz,i > d]\/]z,i+17 e 7dMK,i > d]\/]K,i+1' (38)

With?=1,--- | N—1, (38) leads to (32). Finally, from (21) and (32), (19) and (20) are derived.
UJ

Theorem 4 tells us that, by multiplexing N hierarchical 22X (K > 3) QAM constellations
having the minimum distances satisfying (20), KN levels of UEP are achieved under the
assumption that the SNR of interest for the nth MSBs (2 < n < K) is reasonably large so
that the condition of Lemma 3 is satisfied. We note that there are counter examples showing
that K’V levels of UEP is not achieved for a very low SNR, even when the minimum distances

satisfy (20).

III. OPTIMAL MULTIPLEXING OF HIERARCHICAL QAM CONSTELLATIONS FOR HIGH SNR

In this section, we define high SNR as an SNR which is sufficiently large so that the BER is

dominated by the Q-function term having the minimum Euclidian distance.

A. Hierarchical 2%’ /2?5 (K > J > 1) QAM Constellation

Hierarchical 227/225 QAM refers to a specific kind of hierarchical constellations which
provide two levels of UEP. Typical examples are hierarchical 4/16 QAM (i.e., hierarchical 16
QAM) and 4/64 QAM which are employed in DVB-T standard. Similar to Section II, we first
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analyze a hierarchical 16 QAM as a simple example. For high SNR, from (3), the BERs of a
hierarchical 16 QAM constellation ¢ (1 < ¢ < N) are given by

1 sz 2’)/5 dL % 275
Py~ =Q : d Pr,~Q ’ .
M NG < 5 Saug> an Ly ( 5 Snee (39)

Theorem 5: Suppose that there are N multiplexed hierarchical 16 QAM constellations, and
the minimum distances satisfying (5) are given. Also suppose the given minimum distances can be
permuted such that dj; 1, - - - , dps v for the MSBs can be arbitrarily combined with dy 1, - ,dp N
for the LSBs. After the distances are permuted, the resultant minimum distances for the MSBs

and LSBs of constellation ¢, denoted by JMJ- and JLJ, respectively, can be expressed as
dyy = dag and  dp ) = dig (40)

where 7 (i) is the index of the constellation to which dj, ; is permuted. Then, with the permuted

distances given by (40), the BERs of the data classes satisfy
P1<P2<"'<P2N (41)

for high SNR if class ¢ and class /V +: are mapped to the MSBs of constellation ¢ and the LSBs
of constellation 7(7), respectively (1 <i < N).

Proof: After distances are permuted, from (39), (40) and the mapping condition below (41),
the BERs of data classes are given by

1 dyi |2 dr; |2
R%§Q< M,i 75) and PN-H‘%Q< L,i 78) (1§Z§N) (42)

2 Savg 2 Scwg
Since dy;n > dp 1 from (5), and from (42), we have Py < Ppy.q. Since dpr; > dprip1 and

dr; > drt1 (1 <7< N —1) from (5), and from (42), we have
P, <Py and Py < Pypipi (1<i<N-1). (43)

Since Py < Ppyy1, and from (43), it follows that P} < --- < Py < Pyy1 < -+ < Poy.
0J
In contrast to Theorem 1 and Corollary 2, Theorem 5 tells us that 2NV levels of UEP are
achieved for high SNR even after the minimum distances satisfying (5) are arbitrarily permuted.
Corollary 6: From Theorem 5, when the minimum distances das1, -+, dy,v and dp, g, - -,

dr, n are permuted for high SNR, the BERs of the data classes, P, - - -, Poy, are unchanged.
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Proof: From (42), it is seen that P; (1 < ¢ < 2N) is not dependent on the choice of (7).
O
Theorem 7: After the distances are permuted as described in Theorem 5, the average power
of all the multiplexed hierarchical 16 QAM constellations, S,,4, given by

N 72
- PP
avg Z Scwg i a7 Z < J;’ ,'dL,i + d%,z> (44)

ifl

is minimized if and only if distances are permuted such that dj;; is combined with d; n41—; in

the same constellation. That is,
dM,i = dyr; and JL,Z‘ =dinyi-i (1 <@ <N). (45)

Proof: We will prove the following by induction on the number of hierarchical constellations:

For given distances dy;3 > -+ > dy n and dpg > --- > dp n,

N
d? ;
fn = Z ( A24 Gdr N41—i + di,NH_i) (46)

i=1
is the minimum of fy = SN, (d?m/Q + dpradp; + CZ%Z)

Consider two constellations (i.e., N = 2). For given dj;; > d2 and dy, 1 > dy, o, the distances
can be permuted such that dj;; is combined with either d; or dr 2. The two possible values

of f, are given by

disa TR
d? al2
Jogo = A;’l I; +dy2drpy + dL 1- (47)
The difference between f> and fo4 is given by
fon — foge = (dvn — da2)(dpy — dpo) >0 (48)

because dys1 > dy and dpy > dy 2. From (48), it is seen that f5 4o is the minimum. For N = 2,
f5 given by (46) is equal to f 4.

Suppose that (46) holds when there are [ constellations (i.e., N = [). In other words, for given
dyg > - > dygand dpy > oo > dpg, ff= S0 (d2,/2 + dyradpin—i + d2 ) is the
minimum of f;. Consider [ 4 1 constellations (i.e., N = [ 4 1). For given dj;1 > -+ > dpi41
and dy,; > --- > dp 41, we will prove that if f;;; is minimized, d,;; should be combined with

dr+1 in the same constellation by contradicting the following assumption: f;.; is minimized
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with dys1 and dy ;41 not being combined. By the assumption, djs; and dy, ; (for some j in the
range of 1 < j < [+ 1) are combined in some specific constellation, and dj;; and dr, ;41 (for
some £ in the range of 1 < £ < [+ 1) are combined in another constellation. The corresponding

fi+1, denoted by f;11 41, is given by

d?, . d2
S = <T +dapadr; + d%,j) + < 5 )
I+1 CZ?V[ ' ~ ~ ~
+> (T +dygdy + dQLﬂ) (49)

where the other minimum distances, except das,1, dark, dr j, and dr, 41, are arbitrarily combined.

We modify f;11 4 such that dj;; and dy, ;41 are combined, and d;;; and dy, ; are combined. The

modified f;; is denoted by fi 1 so:
2
[+1 ~2
+Z( dpg+dj ) (50)
1#k

The difference between fi,141 and fi1 4 is given by

d? d2
Jivipe = (ﬂ +daridp g + d%,l-i—l) + (% + darrdr; + d%,y‘)

fivrn — fivrge = (dyg — dyg)(dp; — dpgs) >0 (51)

because dys1 > dary and dy, j > dp41. From (51), fi11.41, given by (49), cannot be the minimum
of f;11, and thus the above assumption is false. We have thus showed that the largest distance
for the MSBs, d;;; should be combined with the smallest distance for the LSBs, dr,;1;. The

other minimum distances, except dys; and dy ;1, are given by
dMQ > dM73 > > dM,l—I—l and dLJ > dL72 > > dL,l' (52)

By the induction hypothesis, the following is the minimum for 2/ distances given by (52):

l 2
d %
> (% + dariprdp i + di,m_i) . (53)

i=1
Thus, the minimum of f;,; is given by

a2 dir;
% + dyadr i + 7 Q41T Z (M T dypirdiie-i d%’lﬂi)
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Setting N = [ + 1 in (46), we obtain f;,; = 051 (d3,./2 + dyridpso—i +d2 14, ;), and this is
identical to (54). Hence, (46) holds for N =1 + 1.
O
Corollary 6 and Theorem 7 indicate that the average power of all the multiplexed constellations
is minimized by permuting distances according to (45), while the BERs are unchanged for high
SNR.
Next, we consider the peak signal power of the multiplexed hierarchical constellations. If we
assume that all the hierarchical constellations are time-multiplexed, the peak power of all the

multiplexed constellations, Speq, is given by

Speak = max [{Speak,i

1<i< N}] (55)

where max[X] denotes the maximum element of the set X, and Sy, is the peak power of a

hierarchical constellation 7. For hierarchical 16 QAM, Sp.q; is given by

dM' 2 d2 )
Speak,i = 2 ( 272 + dL,i) = ]\2/[’1 + 2dpidy ;i + Zd%,i- (56)

Theorem 8: After the distances are permuted as described in Theorem 5, the peak power of

all the multiplexed hierarchical 16 QAM constellations, Speq, given by

Speak = Inax [{Speak,i

2, .. .
1<i< NH — max H% + 2dyridy + 2di,i‘1 <i< N}] (57)

is minimized if the distances are permuted according to (45) of Theorem 7.

Proof: When (45) is satisfied, the corresponding Spcqk, denoted by Speqr 41, iS given by

d3;.
Speak,ﬁl = max [{% + 2dM,idL,N+1fi + Qd%,N—i-l—i 1 < [ < N}‘|

2
— AQM + 2djdp N1 + 2d7 N (58)

for some j in the range of 1 < j < N. We will contradict the following assumption: When
distances are permuted in some way other than (45), the corresponding Syqr, denoted by Spear #2,
is smaller than Speq 1. Let dy ; be the distance with which d,;; is combined (for some £ in
the range of 1 < k < N) when the distances are permuted in a different manner from (45). The

possible values of £ can be classified into

1<k<N+1—j, k=N+1-—j, and N+1—j<k<N. (59)
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i) For 1 <k <N +1—7, Speakp2 > Speak,g1- To see this, note that
1 1
Speak,t2 = 50@\” + 2djdp g + 2d7 5, > §d?vﬂj + 2y jdp Na1—j + 2d7 yo1_j = Speanzt (60)

where the strict inequality follows from dy . > dy ny1—; (since K < N + 1 — 7).

ii) For k = N +1—j, Spearz2 > Speak,g1 SINCE Speargo > 33, + 2dnrjdp np1—j +2d] yyy_j =
Speak,§1-

iii) For N +1 —j < k < N, Speakp2 > Speakg1- This is proved as follows: Since dj; is
combined with dj j, other distances {dy ;|1 < ¢ < N, i # j} should be combined with
{dri|]1 <i <N, i# k}. Note that

‘ {d]VI,i

where | X| denotes the cardinality of the set X, and the equality of the second expression follows

1§i<j}‘:j—1 and Hdw

N+1-j<i<N, z’;«ék}‘:j—Q 61)

from N+1—j <k < N.Since j—1> j—2in (61), at least one element of {dy;|1 <i < j}
should be combined with one element of {d; ;|1 < i < N + 1 — j}. Suppose that dy,, is
combined with dy , for some p € {1,---,j—1}and g € {1,--- ,N + 1 — j}. Then, we have

1

1
Speak,jﬂ > _d?\/[,p + QdM,PdL»q + Zd%ﬂ > 2

Z 5 d?w,j + 2dpjdp Ny1—j + Qd%,NH,j = Speak,g1 (62)

where the strict inequality follows from the fact that da;, > da; and dp 4 > dp n41—; (since

p<jand ¢ < N + 1 — j). From i), ii), and iii), it is seen that there is no possible way of

permuting distances which makes Spcqr g2 smaller than Spcqr ¢1. Therefore, the assumption below
(58) is false.

OJ

Theorems 7 and 8 tell us that the permutation of the distances that minimizes the average

power of all the multiplexed hierarchical constellations also, coincidentally, minimizes the peak

power. Note that from (5) and (45), these optimally permuted distances satisfy
(ZM,l > e >JM7N>CZL’N > e >CZL’1. (63)

Corollary 9: When the distances are optimally permuted according to (45) of Theorem 7,
the BERs of the data classes satisfy P, < P, < --- < P,y for high SNR if class ¢ and class
2N + 1 — ¢ are mapped to the MSBs and LSBs of constellation 7, respectively (1 <7 < N).

Proof: The proof is similar to the proof of Corollary 2.
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Fig. 2 (b) depicts the multilevel UEP system using multiplexed hierarchical 16 QAM constel-
lations based on Corollary 9 for eight data classes (/N = 4).

Next, we generalize to hierarchical 227 /2*K (K > J > 1) QAM constellations. Recall that
dpr, ; denotes the minimum distance for the nth MSBs (1 < n < K) of a hierarchical 22K QAM
constellation 7. Hierarchical 227 /2% QAM has two distinct minimum Euclidian distances such

that [31]

dpy, iy for1<n<J
Ay, =

5

(64)
dpry i, for J+1<n < K.

The average power of a hierarchical 227 /22X QAM constellation i (1 < i < N) can be expressed,

from (17) and (64), as the following:

avg 7 Z Z ﬂuvd?\/jj 7 + Z Z NuvdMJ szK % + Z Z ﬂuvd?\/[K i (65)

u=1 v=u u=1 v=J+1 u=J+1 v=u
Lemma 10: For high SNR, the BERs of a hierarchical 22/ /22X QAM constellation i (1 <

1 < N) are given by

_2K1—nQ <dMJ’i 32% ) , forl1<n<J
avg (66)

PMn,i ~

anQ< ;Z;), for J+1<n<K

where Sg,, is given by (1) and (65).
Proof: The BERs of a hierarchical 22X QAM constellation i, Py’ (1 <n <K —1), given

by (18), can be rewritten as

K
1 das, i 2K—q 27,
app  __ n,
Fani = 5re (( :Z {2K a1 dM“) Savg>
2K n_1q K—
p+27e 275
* Z ( 1 QK—q—H JdMQ,i) Savg
dan
2K n

2K n_q K
p+2K_qJ 25
+ L+ el KLY : (67)
(( £ 5 2

From (67), we have

K K— K K- 0
p+ 2K 1 + 2K-a 1+2
> LWJ = 3 [ ez [ s o

g=n+1
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where the first inequality follows from p > 1 in (67). From (67) and (68), it is clear that the
first Q-function term of (67) is the only term having the minimum distance of d,,, ; for the nth
MSBs (1 <n < K —1). Also, for Py7” ; (i.e., n = K) given by (18), it is clear that the first
Q-function term is the only term having the minimum distance of dj;, ;. From the condition of
approximation described in Lemma 3, it follows that the Q-function term having the minimum
distance in Py” ;, given by (18), is the same as that in Py, ;, the exact BER. Therefore, from

(64) and (67), (66) is derived.

O
From (66), the average BER forn = 1, -- - Jth MSBs of constellation 7 , denoted by (P, ;) avgs
is given by
dMJ i 2’75
(PMJ i)avg — Z PMn 7 AJQ ( Scwg) (69)

where A; = %ZZZI 1/2K-". Likewise, the average BER for n = J + 1,--- , Kth MSBs of

constellation ¢, denoted by (Pasy i )avg» 15 given by

1 dM A 273
P ; — P 1 A K>
( MK,z)avg K —J n;_I M i KQ ( w [ Scwg> (70)

where Ay = K;d ZnK: g L /25", Similar to the average power given by (65), the peak power

of a hierarchical 22/ / 22K QAM constellation 7 (1 < i < N) can be expressed as

peak i Z Z AuvdMu de

u=1 v=u

= ZZM%#Z Z Muwday idary i + Z ZAuvde (71)

u=1 v=J+1 u=J+1 v=u
where the \,, are constants.

Theorem 11: Theorems 5, 7 and 8, and Corollaries 6 and 9 hold for hierarchical 227 /22K
QAM when
1) dpr; and dy; are replaced by dys, ; and dyy, ;, respectively, and Py, and Pp,; are replaced
by (P .i)avg and (Phry.i)avg. Tespectively.
i1) Egs. (2) and (56) are replaced by (65) and (71), respectively.
Proof: From (69) and (70), A; < Ag, since

1N 1 1 1 o 1 1
Ay = j; 9K—n < 9K—J and  Ag = K — ‘]an;ﬂ 9K—n > 9K—J—1" (72)

July 21, 2011 DRAFT



21

Hence, Theorem 5 and Corollary 6 hold for hierarchical 227 /225 QAM.

Since Zi:1 Zi:u JTI 21{:1 Zf: J+1 Huv and ZUK: J+1 fo:u [y Of (65) are coefficients, just
as 1/2, 1, and 1 of (2) are coefficients, Theorem 7 holds for hierarchical 22/ /225 QAM. Likewise,
25:1 Z;f:u Auws 25:1 Zf:JH Auw, and Zf:JH Zf}iu Auw Of (71) are coefficients, just as 1/2,
2, and 2 of (56) are coefficients, and thus Theorem 8 holds for hierarchical 22/ /22X QAM.

[

IV. ASYMMETRIC HIERARCHICAL QAM CONSTELLATION

While the proposed methods provide a large number of levels of UEP, the peak-to-average
power ratio (PAPR) typically will be increased when hierarchical constellations having distinct
minimum distances are time-multiplexed. To mitigate this effect, we design an asymmetric
hierarchical QAM which reduces the PAPR without performance loss. From here onwards, we
refer to conventional hierarchical QAM, which has been presented in Sections II and III, as

symmetric hierarchical QAM, in order to distinguish it from asymmetric hierarchical QAM.

A. Asymmetric Hierarchical 2* (K > 2) QAM Constellation

For an asymmetric hierarchical 22%

QAM, the minimum distances for the inphase and quadra-
ture components are different from each other. Similar to the previous sections, we first present
asymmetric hierarchical 16 QAM, depicted in Fig. 4, as a simple example. The MSB i, for
the inphase component determines the first cluster, and its minimum distance is dfvll’l . The MSB
q1 for the quadrature component determines the second cluster within the first cluster that 7,
determined, and its minimum distance is dij. The LSB i, for the inphase component determines
the third cluster, and its minimum distance is df’l , and the LSB ¢, for the quadrature component
determines the specific signal point within the third cluster, and has minimum distance d’é’Q.
Asymmetric hierarchical 16 QAM has three embedded subconstellations, and it provides four
levels of UEP if df;' > dis? > d"' > d*?, which will be shown below in Corollary 13.

In order to provide 2V levels of UEP, we consider multiplexing N/2 (N is assumed to be even)

asymmetric hierarchical 16 QAM constellations instead of /N symmetric hierarchical 16 QAM

constellations. The average power per symbol of all the multiplexed asymmetric constellations,
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1 1
i 0 1 1 0 1st cluster

2nd cluster

3rd cluster
4,0
dL

diz®

A,1 A, 1
Fig. 4. Asymmetric hierarchical 16 QAM constellation.
A .
Savg 18 given by
N/2

avg N/2 Z avg,t (73)

where S4 . is the average power per symbol of asymmetric constellation ¢. For asymmetric

avg,t

hierarchical 16 QAM, S, is given by

avg i

SA . =Sk, SAQ

avg,i avg,i avg,t

dA’IA dA’I- 2 1 dA,Q 2 dA’Q 2

where S and S29 are the average powers per symbol for the inphase and quadrature

avg,i avg,i

1
2

components of asymmetric constellation ¢, respectively, and df\lj,[i, df;f , dﬁg, and d?:iQ are the
minimum distances for the inphase MSB and LSB, and quadrature MSB and LSB, respectively.
Note that the BERs of rectangular QAM are derived from those of the corresponding PAMs

since the inphase and quadrature components are separated at the demodulator [31][33]. Let
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Pﬁ’é, Pﬁ ;I, Pﬁ:?, and Pé ;Q denote the BERs for the inphase MSB and LSB, and quadrature
MSB and LSB of asymmetric hierarchical constellation i, respectively (1 < i < N/2). From (3),
(73), and (74), they are derived as

1 (it [2y 1 it 2,
PAI _ = s - K dAI s
M Q( 2 \/ sS4, ¢ > " Sa,
PA’.I _ 75 Lz Vs _
PA,Q . 1 dAQ 273 dAQ dA’Q 2’}/5
Mg — §Q 9 avg _Q Ly vag
pAQ _ Vs AQ Ts }
( ) *3¢ <<d : Sivg

Theorem 12: Suppose there are N multiplexed symmetric hierarchical 16 QAM constellations

3dMt 2
Al Ly Vs
Q<<dM“ 2 ) S)
A?
of [a%e+ SdL,iQ 275
M 2 Shy ]

(75)

DO | —

N | —

whose minimum distances are given by da 1, - ,dy, v and dy, 1, -+ ,d n. Also suppose there
are N/2 asymmetric hierarchical 16 QAM constellations, and the minimum distances for the
inphase and quadrature components of asymmetric hierarchical constellation 7 are the same as
those of two distinct symmetric hierarchical constellations x (i) and y(7), respectively (1 < i <

N/2). In other words,
dyiy = Ay, dpf = iy, dyj§ = dary, and dp? =dpye (1<i<N/2)  (76)
where x(i) and y(i) satisfy

With the minimum distances given by (76), the average power and BERs of N/2 multiplexed
asymmetric hierarchical 16 QAM constellations are the same as those of /N multiplexed sym-
metric hierarchical 16 QAM constellations, regardless of the choice of x(i) and y(i) satisfying
(77).

Proof: From (74) and (76), S can be expressed as

avgz
1 (duaw)\’ A a(i) ? 1 Aty \ Aty (i ?
S M) IO NN : My (i) OMy@) o g Z
avgi 2(( 2 T\ Thew) T3 2 T\ o duyio
1 1
= §Savg,x(i) + §Savg,y(i)7 (78)
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where the second equality follows from (2). From (73) and (78), Sgﬁjg is given by

N/2 N/2

1 1 1 1
Sing = 7P > (Qsavg,x(@-) + §Savg,y(i)) =5 > (SMW(Z-) + Savg,y(i)) (79)
i=1 i=1
From (77), (79) can be rewritten as
| N
Stvg = 7 D Sangi = Savg (80)
=1

where the second equality follows from (1). We next compare the BERs of asymmetric and

symmetric constellations. From (3), (75) and (76), we have
Piri = Pugas Py = Praws Pard = Pays and Ppi? = Pryq (1< < N/2). 8D
From (77) and (81), a set of 2N BERs for N/2 multiplexed asymmetric constellations satisfy

AT AT A,Q A,Q
{PM,wPL,z‘ 7PM,z‘ ’PL,z‘

1<i< N/Q} = {PM,w(i)y Pr 26y, Py, Pry)

= {PM,iaPL,i

1§i§N/2}

1<i< N}. (82)

Hence, a set of 2N BERs for N/2 multiplexed asymmetric constellations is the same as that for
N multiplexed symmetric constellations.
0

Corollary 13: Suppose that the minimum distances of the N multiplexed symmetric hier-
archical 16 QAM constellations satisfy (5) of Theorem 1. Then, with the minimum distances
given by (76), N/2 multiplexed asymmetric hierarchical 16 QAM constellations also provide
2N levels of UEP.

Proof: Since dy;; and dp,; satisfy (5), Py, and Pp; satisfy (4) by Theorem 1. From (82), it
follows that /NV/2 multiplexed asymmetric hierarchical 16 QAM constellations also provide 2N
levels of UEP.

O

As an example, suppose that there is single asymmetric hierarchical 16 QAM (i.e., N = 2),
and x(i) and y(¢) satisfying (77) are chosen as z(1) = 1 and y(1) = 2. From (76) and (81), (4)
and (5) of Theorem 1 lead to the following:

Pyt < Pd < P < PAR it d > dyd > db > dpy (83)
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Next, we consider the peak power of all the multiplexed asymmetric hierarchical constellations,

SA

peak>

which is given by

sA = max[{S

P peak,i

1<i< N/2H (84)

A
where S0 ;

hierarchical 16 QAM, S

is the peak power of an asymmetric hierarchical constellation . For asymmetric

peak ; 1s given by

dit L falke ’
Speaki = Speari + Spesks = ( o8 +d€:§> + (% +d£:?) (85)

and S

peak i

where S7

peakl are the peak powers of the inphase and quadrature components of

asymmetric hierarchical constellation 7, respectively.
Theorem 14: Suppose that the minimum distances of the N multiplexed symmetric hierar-
chical 16 QAM satisfy (5) of Theorem 1. With the minimum distances given by (76), the peak

power of all N/2 multiplexed asymmetric hierarchical 16 QAM constellations, S?! given by

peak °

(84) and (85), is less than that of all N multiplexed symmetric hierarchical 16 QAM, Spcqk,
given by (55) and (56), regardless of the choice of x(i) and y(¢) satisfying (77).

Proof: From (76) and (85), S pea,” is given by
dat i 2 [y !
Speak i = < M2 + dL (1) > + ( M2y( + dL (e ) - 2Speak: (1) + Speak’ y(i (86)

where the second equality follows from (56). From (84) and (86), S/ . is given by

<]

Speak z(j _'_ Speak y(4)» (87)

pea

Speak = max |:{;Speakx (%) + S

1

2

for some j in the range of 1 < j < N/2. Since z(i),y(i) € {1,---, N} from (77), we have

Speak‘ z(j) < max[{speak,i 1 S l S N}i| - Speak7 and Speak,y(j) S Speaka (88)

where the second equality of the first expression follows from (55). From (5) and (56), the peak

powers of each symmetric hierarchical 16 QAM constellation satisfy
Speak,1 > Speak,2 >+ > Speak,N- (89)
From (77), (88) and (89), Speak,x(j) and Speak,y(;) satisfy either of the following:
Speak,a(j) < Speaky(j) < Opeak OT  Speaky(j) < Speak,a(j) < Speak- (90)
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From (87) and (90), we have

Soeak = ;Speak,xu) + %Speak,y(j) < Speak- on

O

Theorems 12 and 14 tell us that when asymmetric hierarchical 16 QAM is used instead of
symmetric hierarchical 16 QAM, the PAPR is reduced without performance loss.

The following theorem states how to choose z(i) and y(i) (1 < i < N/2) satisfying (77) to
minimize the PAPR of all the multiplexed asymmetric hierarchical constellations.

Theorem 15: Suppose that the minimum distances of the N multiplexed symmetric hierarchi-

cal 16 QAM satisfy (5) of Theorem 1. Also suppose the minimum distances of N /2 multiplexed

asymmetric hierarchical 16 QAM are given by (76). Then, from (84) and (86), S peak is given by
A 1
Speak = max QSpeak (1) + Speak y(4 (92)
and this is minimized if x(i) and y(i) satisfying (77) are chosen as
z(i)=1 and y@lE)=N+1-—i (1<i<N/2). (93)

Proof: The proof is similar to the proof of Theorem 8.
0J
Next, we generalize to asymmetric hierarchical 22X (K > 2) QAM. Let dfjii and df\ljgi
denote the minimum distances of the nth MSB (1 < n < K) for the inphase and quadrature
components of asymmetric hierarchical 225 QAM constellation i (1 < i < N /2). From (17), the

average power of asymmetric hierarchical 22X QAM constellation 1, S(ﬁ)g i

S{ﬁ}gz - Savgz +Szwgz = ZZ uuvd]lalz Mv + ZZ uuvdfﬂ?z }\44621 (94)

u=1 v=u u=1 v=u

can be expressed as

where va;l and Sﬁjfz are the average powers for the inphase and quadrature components of
asymmetric constellation 1.

Let Pﬁ;{i and PAQ denote the BERs of the nth MSB (1 < n < K) for the inphase and
quadrature components of asymmetric hierarchical 22X QAM constellation i (1 < i < N/2).
Recall that P, ; denotes the BER of the nth MSBs (1 < n < K) of symmetric hierarchical

22K QAM constellation i (1 < i < N).
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Theorem 16: Suppose that there are N multiplexed symmetric hierarchical 22X QAM whose
minimum distances are given by dyy,, 1, -+, da, v (1 < n < K). Also suppose that the minimum

distances of N/2 multiplexed asymmetric hierarchical 2% QAM satisfy
dyi = d ey and dy =dy, e (1<n< K, 1<i<N/2) (95)

where z(7) and y(i) satisfy (77). Theorem 12 holds for asymmetric hierarchical 22X QAM when
1) dﬁfi and d;‘;{ are replaced by dﬁi . (1 <n < K); dﬁg and dff are replaced by dﬁgi
(1 <n < K); dyy; and dp; are replaced by dyy, ; (1 < n < K).
i1) P]@f and Pﬁ ;] are replaced by Pﬁ’ii (1 <n<K); Pﬁ? and Pﬁ ;Q are replaced by Pﬁ;%
(1 <n < K); Py, and Pr; are replaced by Py, ; (1 <n < K).
iii) Eq. (76) is replaced by (95).
Proof: We omit the proof for conciseness, but it can be found in [32].
O
We next consider the peak power for asymmetric hierarchical 225 QAM. In the following,
we rewrite the peak power of symmetric hierarchical 22X QAM constellation i (1 < i < N),

Speak,i» given by (71):
K K

Speaki = D > Auvdar, idas, ;- (96)

u=1 v=u

From (96), the peak power of asymmetric hierarchical 22X QAM constellation 4, S;j‘ can be

cak,i’

expressed as

K K K K
A A
A AT A, uwv AT AT uv A, A,
Speak,i = Speak,i + Spec?k,i = E E 9 dMu,idMU,z' + E E 2@ dM?,idMgi Ch)

u=1 v=u u=1 v=u

where Sﬁe’(fk,i and Sﬁe’ﬁ’i are the peak powers for the inphase and quadrature components of
asymmetric constellation <.

Theorem 17: Theorems 14 and 15 hold for asymmetric hierarchical 225 QAM when

i) dfj{i and df{ are replaced by dﬁ[’iyi (1< n<K) djvlj’? and déZQ are replaced by dﬁgi

(1 <n < K); dy,; and dy,; are replaced by dyy, ; (1 < n < K).

il) Speqr,i given by (56) is replaced by (96).

1ii) Sﬁak,i given by (85) is replaced by (97).

iv) Eq. (5) of Theorem 1 is replaced by (20) of Theorem 4.

v) Eq. (76) is replaced by (95).
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Proof: We omit the proof for conciseness, but it can be found in [32].
U
We note that, like other rectangular QAM constellations, the asymmetric hierarchical 22K
QAM can be easily generated as two PAM signals impressed on the inphase and quadrature
carriers, and possesses the distinct advantage of being easily demodulated. Hence, it does not
increase any decoding complexities, compared to conventional hierarchical or non-hierarchical

rectangular QAM constellations.

V. MULTILEVEL UEP BASED ON MULTIPLEXING HIERARCHICAL QAM CONSTELLATIONS

HAVING CONSTANT POWER
In this section, we consider the case where it is desirable for the multiplexed hierarchical

QAM constellations to have the same average power (i.e., constant power), either due to the

limited capability of a power amplifier, or for cochannel interference control.

A. Symmetric Hierarchical 2% /2?5 (K > J > 1) QAM Constellation

Theorem 18: When N multiplexed symmetric hierarchical 16 QAM constellations are re-

quired to have constant power, there exist minimum distances satisfying
dM,l > dM’Q > e > dM,N > dL,N > dL,N—l > e > dLJ. 98)

Proof: The proof of this theorem as well as the proofs of all other theorems in this section
are not included here for conciseness, but they can be found in [32].
OJ
From (63) and (98), it is seen that even if symmetric hierarchical 16 QAM constellations have
constant power, the suggested UEP system, depicted in Fig. 2 (b), can provide 2N levels of
UEP for high SNR.
Theorem 18 holds for symmetric hierarchical 2%/ /2?K (K > J > 1) QAM, when d,;; and

dr; are replaced by dys,; and dyy, ;, respectively.

B. Asymmetric Hierarchical 2*°% (K > 2) QAM Constellation

Theorem 19: Suppose that N/2 multiplexed asymmetric hierarchical 16 QAM constellations

are required to have constant power, and their minimum distances are given by (76). If x(i) and
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y(1) are chosen according to (93) of Theorem 15, there exist minimum distances satisfying both
(5) of Theorem 1 and (76).
0
From Corollary 13 and Theorem 19, it follows that even if asymmetric hierarchical 16 QAM
constellations have constant power, 2N levels of UEP can be achieved.
Theorem 19 holds for asymmetric hierarchical 22 (K > 3) QAM, when
1) dpr; and dp,; are replaced by dy, ; (1 < n < K).
i1) Eq. (76) is replaced by (95).
iii) Eq. (5) of Theorem 1 is replaced by (20) of Theorem 4.
Theorem 20: Suppose that N/2 multiplexed asymmetric hierarchical 22X (K > 2) QAM
constellations are required to have constant power. Then the performance of the system stays
the same or degrades compared to the case where multiplexed constellations are not required to

have constant power.

O

VI. THE PERFORMANCE OF THE PROPOSED UEP SYSTEM FOR PROGRESSIVE BITSTREAM

TRANSMISSION

In this section, we analyze the performance of the proposed UEP system for progressive image
source transmission over Rayleigh fading channels. We first consider the UEP system depicted
in Fig. 2 (a). The system takes successive blocks (data classes) of the compressed progressive
bitstream, and transforms them into a sequence of channel codewords of fixed length /. [22] with
error detection and correction capability. Then, the coded classes are mapped to the multiplexed
symmetric hierarchical 16 QAM constellations. At the receiver, if a received class is correctly
decoded, then the next class is considered by the decoder. Otherwise, the decoding is stopped
and the image is reconstructed from the correctly decoded classes. We assume that all decoding
errors can be detected.

Let r; be an error correction code rate for class i (1 <4 < 2N), and d; = (darc(i), dres)) be
a pair of minimum distances of some specific constellation c(i) (1 < ¢(i) < N) to which class
1 (1 <4 < 2N) is mapped. From Corollary 2, d, (1 <+¢ < 2N) is given by

(daris dry), for1<i< N

d = 99)
(dM,i—Na dL,i—N)y for N+ 1 S 1 S 2N
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where dps1,- - ,dyn and dp 1, - - -, dp y satisfy (5) of Theorem 1 to achieve 2N levels of UEP.
Let p(r;,d;,~s) denote the probability of a decoding error of class i. Then, the probability that

no decoding errors occur in the first 7 classes with an error in the next one, P, ; is given by
Pc,i :p(ri-s—l,C_al%)H(l_p(rjaf_ljy%)) for 1 S [ S 2N — 1. (100)
j=1
Note that P., = p(r1,d;,7s) is the probability of an error in the first class, and P.on =
H?i (1 —p(r, d;, %)) is the probability that all 2/V classes are correctly decoded. The end-to-

end performance can be measured by the expected distortion, E[D], given by
2N
E[D] =Y Pe:D; (101)
=0

where D; is the reconstruction error using the first ¢ classes (1 < ¢ < 2N), and Dy is a
constant. For the case of an uncoded system, D; is given by D; = V (il.), where V' (z) denotes
the operational rate-distortion function of the source coder. Also, for the uncoded system, the

probability of a decoding error of class ¢, p(r;,d;,vs) = p(d;,7s), can be obtained analytically:

p(d;7s) = 1 — {1 — Pi(d;,vs) }* . (102)

Recall that P;, a function of d, and ~,, is the BER of data class i. P; (1 < i < 2N) is given
by (3) and (15) of Corollary 2. We define a frame as a group of constellation symbols to which
one image bitstream is mapped. We assume the channel experiences slow Rayleigh fading such
that the fading coefficients are nearly constant over a frame. With this channel model, from

(100)—(102), the expected distortion for the uncoded system is given by

B = [ { (1= {1 Ry 10} ) V)

* 2 [<1 ~ (1= a0} ) TIHE = B 290} | Vit

2N
+]]{1- Pi(d;, *)}" V(QNZC)}f(h)dh (103)
j=1

where h is the Rayleigh-distributed envelope of complex channel coefficients and f(h) is the
Rayleigh-distributed probability density function of h. Note that for a given SNR of ~,, E[D] is
the conditional expected distortion. In situations when exact SNR information is not available

at the transmitter, one can find the minimum distances, d,,--- ,dyy (Or dar1,--- ,dy,n and
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- —+— Uniformly Spaced 16QAM
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—>— Multiplexed Symm. H-16QAM (16 UEP Levels)
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Fig. 5. PSNR performance of UEP system using multiplexed symmetric hierarchical 16 QAM (H-16QAM denotes hierarchical
16 QAM).

dr1,--- ,dr,n), which minimize the expected distortion over a range of expected SNRs using
the weighted cost function
_ Jo w(vs)E[D]dy,
arg min —
dlv“'deN fO W(’Ys)d’)/s

where w(7;) in [0, 1] is the weight function. For example, w(s) can be given by

(104)

1, for vy <75 <3
w(ys) = (105)
0, otherwise.
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TABLE I

PAPR OF MULTIPLEXED SYMMETRIC OR ASYMMETRIC HIERARCHICAL 16 QAM

] \ PAPR (dB) ‘

’ Number of UEP levels ‘ 4 ‘ 16 ‘ 64 ‘

Multiplexed symmetric

hierarchical 16 QAM

331 | 6.87 | 943

Multiplexed symmetric
hierarchical 16 QAM 2.82 | 5.84 | 8.32

with permuted min. distances

Multiplexed asymmetric

hierarchical 16 QAM

1.11 | 4.18 | 6.60

Multiplexed asymmetric

hierarchical 16 QAM 1.11 | 143 | 1.46

having constant power

TABLE I

PAPR OF UNIFORMLY SPACED 16 QAM AND SINGLE SYMMETRIC HIERARCHICAL 16 QAM

PAPR (dB)
Uniformly spaced 16 QAM 2.55
Single symmetric hierarchical 16 QAM 0.90

VII. NUMERICAL RESULTS

We evaluate the performance of the proposed UEP system using multiplexed hierarchical 16
QAM constellations for the progressive source coder SPIHT [26] as an example. We provide
the results for the standard 8 bits per pixel (bpp) 512x512 Lena image with a transmission rate
of 0.375 bpp. To compare the image quality, we use peak-signal-to-noise ratio (PSNR) defined
as

PSNR = 10l0g 22> (dB) (106)
~ °ED]

where 255 is due to the 8 bpp image, and E|[D] is given by (103).

We present the PSNR performance for the uncoded case by numerically evaluating (103)—(106)
as follows: We first compute (104) for the block Rayleigh fading channel using the expected
distortion, E[D], given by (103), and the weight function, w(s) , given by (105). Next, with

July 21, 2011 DRAFT



33

35 T T T T T T T T T T

34
33
32
31
2 30
o
Z 29
n
o
28
27 | —=&A— Single Symm. H-16QAM
__ Multiplexed Asym. H-16QAM (16 UEP Levels)
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24, | | | ——+— Multiplexed Symm. H-16QAM (64 UEP Levels)
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Fig. 6. PSNR performance of UEP system using multiplexed asymmetric hierarchical 16 QAM having constant power (H-
16QAM denotes hierarchical 16 QAM).

dy, -+ ,doy (or dpry, -+ ,dyn and dp g, -+ ,dp n) obtained from (104), we evaluate PSNR
using (103) and (106) over a range of expected SNRs given by (105).

Fig. 5 shows the PSNR performance of the multiplexed symmetric hierarchical 16 QAM
constellations. For reference, it also shows PSNRs for single symmetric hierarchical 16 QAM,
as well as uniformly spaced QPSK and 16 QAM constellations. The PSNR of single symmetric
hierarchical constellation is evaluated in the same way as that for multiplexed symmetric hierar-
chical constellations. From Fig. 5, it is seen that multiplexed symmetric hierarchical constellations
improve the performance more than does single symmetric hierarchical constellation. It is also

seen that 32 multiplexed symmetric hierarchical 16 QAM constellations, which provide 64 levels
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of UEP, have almost saturated performance in this evaluation. However, by optimally permuting
the minimum distances according to Theorem 7, an additional SNR gain of more than 0.5 dB is
achieved. Note that the performance of N/2 multiplexed asymmetric hierarchical constellations
is the same as that of N multiplexed symmetric hierarchical constellations (/N=8,16,32) as stated
by Theorem 12, though the former is not depicted here.

Table I shows the PAPRs of the multiplexed symmetric or asymmetric hierarchical 16 QAM
constellations. For reference, the PAPRs of single symmetric hierarchical 16 QAM and uniformly
spaced 16 QAM constellations are also listed in Table II. From Tables I and II, it is seen that when
symmetric hierarchical 16 QAM constellations are time-multiplexed, they have larger PAPR than
does uniformly spaced 16 QAM as well as single symmetric hierarchical 16 QAM constellation.
Table I also shows that PAPR is reduced when asymmetric hierarchical constellation is used, as
stated by Theorem 14.

Fig. 6 shows the PSNR performance of the multiplexed asymmetric hierarchical 16 QAM
constellations having constant power. It is shown that the performance is degraded when con-
stellations are required to have constant power, which is consistent with Theorem 20. However,
as seen from Table I, this scheme provides PAPR smaller than uniformly-spaced QAM, and a

high PAPR problem is solved.

VIII. CONCLUSION

Progressive image or scalable video encoders employ progressive transmission, so that encoded
data have gradual differences of importance in their bitstreams, which necessitates multiple levels
of UEP. Though hierarchical modulation has been intensively studied for digital broadcasting or
multimedia transmission, methods of achieving a large number of levels of UEP for progressive
mode of transmission have rarely been studied.

In this paper, we proposed a multilevel UEP system using multiplexed hierarchical modulation
for progressive transmission over mobile radio channels. Specifically, we proposed a way of
multiplexing N hierarchical 225 QAM constellations (K > 2) and proved that KN levels of
UEP are achieved, under the assumption that the SNR of interest for the nth most important
bits is reasonably large so that the probability of noise exceeding the Euclidian distance of
dm, , + %d M, 1s insignificant compared to that of noise exceeding %d u,, where dy, and dy,

are the minimum distances for the nth and n — 1th important bits, respectively (2 < n < K).
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This assumption is based on the fact that for hierarchical constellations, the minimum distance
for more important bits is greater than that for less important bits (i.e., dy;,, , > dps,). As a
special case, for hierarchical 16 QAM (K = 2), we showed that 2V levels of UEP are achieved
without the assumption.

When the BER is dominated by the Q-function term having the minimum Euclidian distance,
we derived an optimal multiplexing approach which minimizes both the average and peak powers
for hierarchical 2%/ /225 QAM (K > J > 1) constellations (typical examples are 4/16 QAM and
4/64 QAM which are employed in the DVB-T standard). While the suggested methods achieve
multiple levels of UEP, the PAPR typically will be increased when constellations having distinct
minimum distances are time-multiplexed. To mitigate this effect, an asymmetric hierarchical
QAM constellation, which reduces the PAPR without performance loss, was proposed. We also
considered the case where multiplexed constellations need to have constant power, and showed
that multilevel UEP can be achieved while the performance stays the same or degrades in this
case. Numerical results showed that the proposed multilevel UEP system based on multiplexed
modulation significantly enhances the performance for progressive transmission over Rayleigh

fading channels without any additional system bandwidth or transmit power.

APPENDIX A

PROOF OF LEMMA 3
A. Gray coded bit mapping vector for hierarchical 2% PAM

For a hierarchical 2% PAM constellation, let gn,; denote the Gray code for the nth MSB
(1 £ n < K) assigned to the sth signal point (1 <7 < 25 from the left. Then, it can be shown
that the 2% -tuple Gray coded bit mapping vector, g,, = [gn,l Jn2- - gn’2K:| , for the nth MSB is
given by

|:02K—1 12K71:|, forn=1

gn =
[095—n Lox—n Lpk—n Ogi—n -+ Ogx—n lyx—n lox—n Ogx—n], for2<n <K

107)

where 0; is a [-tuple all zero vector, and 1, is a [-tuple all one vector.
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25K PAM

(K) (K)
Si Si+1
& &
- —— e e >
A 4% A
/N M, /N
/ \ / \
/ \ / \
K+1 / N\ / AN
2 PAM ’ \ /,
¥ | ¥ X
(K+1) (K+1) (K+1) (K+1)
S2i—] SZi S2i+1 S2i+2
G B i &
- ————— >—————————— >—————— -
(K+1) (K+1) (K+1)
Mg dMn dMK+1

Fig. 7. The construction of hierarchical 2% ! PAM from hierarchical 2 PAM.

B. Euclidian distance between adjacent signal points for hierarchical 2% PAM

Let Si(K) (1 <i<2%)and SZ-(KH) (1 < i < 2K+1) denote the ith signal point from the left
for hierarchical 2% and 25+! PAM constellations, respectively. Also, let dg\fn) (1<n<K)and
dﬁf“ (1 <n < K + 1) denote minimum distances for the nth MSB of hierarchical 2% and
2K+1 PAM constellations, respectively. Fig. 7 shows how hierarchical 25+ PAM is constructed
from hierarchical 2% PAM. There are two rules with regard to the construction of hierarchical
2K+1 PAM from hierarchical 2% PAM:

i) The ith signal point for 2% PAM, Si(K), is replaced by the 2¢ — 1th and 2:th signal points

for 261 PAM, StV and STV, which satisfy

d(SED, SED) = dif Y for 1< i < 2K (108)

+1
where d(X,Y’) is the Euclidian distance between two signal points, X and Y.

ii) If the distance between S (K) and Sffl) for 25 PAM is dg\fn), then the distance between

(2

SUD and SSETY for 25+ PAM s dy V. That is, for 1 <i < 2K —1and 1 <n < K,

As an example, Fig. 8 depicts hierarchical 4 and 8 PAM constellations.
We will prove the following by induction: For hierarchical 2% PAM (K > 2), the Euclidian

distance between adjacent signal points is given by

(S 1yans Sigs) 1ygrnsy) = dyg, for 1<i <2 and 1<n < K. (110)
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g1 = [ 0 0 1 1 |
g:=[ 0 1 1 0 1
(2 (2) 4 PAM (2 (2)
! s§ | s s¢
@& @ B
-——— e e r———————— -I— ——————— P —— >
A (2) A (2) (2) A
/// \\\ sz /// \\\ dMl /// \\\ sz /// \\\
// \\ // \\ // \\ // \\

“/ \M K/ \\ ‘/ \x K/ \X
g1=10 0 0 0 1 1 1 1]
% =10 0 1 1 1 1 0 0]
9s=[0 1 1 0 0 1 1 0]

(3) (3) (3) (3 8 PAM 3) 3 (3) (3)
S s§ s® s | s¢ s¢ ot !
—& & & & B B B—
-——————————— —><—————><—————-|-————-><—————><— ————— > w—————
(3) (3) (3) (3) (3) (3) (3)
ds) ds) ds) ds ds) ag  df)

Fig. 8. Hierarchical 4 and 8 PAM constellations.

Consider hierarchical 4 PAM. From Fig. 8, it is seen that
d(S5?, 85 = df) and d(SP,S5) = d(SS,87) = di. (111)
If we let K = 2 in (110), we have

d(S) S5

o1y St ygragy) =iy, for1<i<2land1<n<2. (112)

From (112), for n = 1, we have
(S 12 Stat1y21) = dip, fori=1 & d(S?,S57) = dfj) (113)

2i—1)27 2 (2i—1)2+1
where A < B denotes A and B are identical. From (112), for n = 2, we have
d(S) 1,88 =df) fori=1,2 & d(5P,5%) =d(s,5%)) = df). (114)
It is seen that (113) and (114) are identical to (111). Suppose that (110) holds for 2! PAM. That
18,

d(s(l) S(l)

_ 40 ; n—1
i1y Sginyptnyy) = day, for 1<i <2 and 1<n <L (115)

Consider hierarchical 2/*! PAM. Eq. (109) can be rewritten as

d(SSHD, 88ty = diiY it d(s?,s0)) =dl) (116)
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Sl S2 S2K—1_1 Sszl SZK—I 1 S2K71+2 SzK71 S2K
—& @ I @ L H—
Fig. 9. Hierarchical 2% PAM constellation with the bit mapping vector g; for the MSB.
for 1 <i<2'—1and 1<n <! From (115) and (116), it can be shown that
1+1 I+1 I+1 . e
(S pinns S gsrnyy) = dyg) for 1<i<2land 1<n <l (117)
Eq. (108) can be rewritten as
(S5t S5y =aff) for1<i< 2 (118)
From (118), (117) can be extended to the case n = [ + 1. That is,
I+1 I+1 1+1 ‘ e
(S i Sy hgisrnyy) = dyg) for1<i<2land 1<n<l+1. (119

If we let K =1+ 1 in (110), it is identical to (119). Hence, (110) holds for hierarchical 2!*!
PAM.

For convenience, from here onwards, we use S; and dj;, instead of SZ(K and d ) for
hierarchical 2% PAM. For integers j,n in the range of 1 < j < 2K — 1 and 1 < n g K,

we define a function f,(j) as

‘ 1, for j=(2-1—1)25" (2.2 -1)2K" ... (2.2n"1 —1)2Kn
falg) = (120)

0, otherwise.

From (120), it can be shown that (110) is expressed as

d(S;, Sj+1) an dy, for1<j<2K—1, (121)

C. BER of the MSB for hierarchical 2% PAM

Fig. 9 depicts a hierarchical 2% PAM constellation with the bit mapping vector g; for the
MSB given by (107). The system model for hierarchical 2X PAM is shown in Fig. 10. The
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s(t)=x(t)\/5cosoat —»@T%—N?—» IOT' dt —» X + N

n(t) V2 cosot

Fig. 10. System model for hierarchical PAM.

transmitted signal is given by
s(t) = z(t)V/2 coswt
= sgn(i — 2571 — 0.5)d(0, S;) Pr(t)V2coswt  for 1 <i < 2K (122)

where sgn(-) denotes the sign of the real number, d (0, Si) is the Euclidian distance between the

origin and ith signal point S; (1 <17 < 25, and Pr(t) is the transmit pulse defined as

1, 0<t<T
Pr(t) = (123)

0, elsewhere

where T is the symbol duration. n() is zero-mean additive white Gaussian noise having a power
spectral density of Ny/2. At the receiver, the decision statistic is given by
T
X =sgn(i — 2871 — O.S)d(O, Si)T and N = / n(t)\/icos wt dt (124)
0

where the standard deviation of N is /N7 /2. From Fig. 9, since the decision boundary for
bits 0 and 1 is the origin, the probability of correct decision for a signal point assigned for bit

1, S; (i > 2571 + 1), is given by
)T
Pos, = Prl0<d(0,8)T+ N < oo =1-Q <d((j\}5})/2> _1-0 (d<0 5) /_?\7T>
0 0
(125)

From (125), the probability of correct decision for the MSB is given by

1 & 2T
Po=ges D, Pus= Z Q( No> (126)

§=2K-111 §=2K-111
and the BER for the MSB, P,,,, is given by

Pu, =1-P.= 3

Z Q ( ?\Z) . (127)
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From (110), for n = 1, we have
d(S(Qi_l)QKfl, S(Qi—l)QK*1+1) = dM1 fori=1 < d(SQKfl, SQKfl_;'_l) == dMl' (128)

Since the hierarchical PAM constellation is symmetric with respect to the origin, from (128),

we have
1 dr,
d(0, Sar-141) = §d(52K_1,52K_1+1) =5 (129)
For i > 2K-1 4+ 2, d(O, Sl-) can be expressed as
i-1 i—1
d
d(0,8;) = d(0,Spx—10) + Y d(S;,8541) = M1 + Y d(S,854)
j=2K-141 j=2K-141
(130)

where the second equality follows from (129). From (129) and (130), the BER of the MSB,

given by (127), can be rewritten as

K i—1
1 d, [2T 1 < dar 2T
Py, = 2K_1Q ( 9 M) + oK-1 Z <( - Z Sjvsj—i-l ) N0)~

1=2K-142 j=2K-141
(131)
From (121), Z] o141 d(S;, Sj41) in (131) can be rewritten as
i—1 -1 K
MINCEEND SID WALTUED SYND DRUIUNNNIES
j=2K-141 j=2K-141n=1 j=2K-141
From (120), it can be shown that Z 1 fn(j) is expressed as
‘ l+ 2K—n K
an(j): SR for 1 <1<2® —land1<n<K. (133)

From (133), (132) can be rewritten as

i—1

’i—1+2K_n 2K—1+2K—n
> d(S585) ZdMn QwJ - LwD (134)

j:2K—1+1

From (134), the second term of P, given by (131) can be expressed as

2 dor, i 142K 2Kl oK 9T
>, @ (( ) ZdMnﬂwJ - le}) \/m) - (135)

=2K-142
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Letp=1— 2K*1 — 1. Then (135) can be rewritten as

- K—-n
({5 o [ | ) )

For n > 2, we have

2K—n 2K—n
{p—;{nﬂ +2HJ = {p—;};nﬂ J +277% and 2" 4270 =272 (137)

For n = 1, we have

{p+2K_”

n—2 p n—2 1
WH J:b—KHJ:1 and [2"? 4271 =1 (138)

where the second equality of the first expression follows from 1 < p < 25! —1 in (136). From

(137) and (138), the second term of Py, given by (136), can be rewritten as

2K 1_1 K—n
Z o <<dM1 ZdM" {%D ,/%) . (139)

Since S°K, duy, {f;{%—K;J — 0 for p = 0, from (139), the BER of the MSB given by (131) can

2L dor, & p+2K-n T
Z Q(( A; +;dMn LWJ ’/Fo . (140)

Note that (140) is the exact BER expression for the MSB of hierarchical 2% PAM.

be expressed as

D. BER of the noth MSB (2 < ny < K — 1) for hierarchical 2% PAM

D-1. Classification of 2% signal points into 2"°~' mutually exclusive groups
We first find every pair of adjacent signal points which are separated by a Euclidian distance
greater than dMno (.e., dMn0717dMn0_27 -+ ,dp): For given ng in the range of 2 <ny < K —1,
letn=ng—m (1 <m <ng—1) in (110). Then, we have
d(S(Qz‘—1)2K*"o+Ma S(zi—1)2K*no+’n+1) = dMnO_m
for 1 <i<2" ™ 'and1<m<ng— 1. (141)
It can be shown that {(2i — 1)2m71 | 1 <4 <2~ ™1 and 1 <m < ng— 1} is identical to

{7 11<j<2m 11} Hence, every pair of adjacent signal points which are separated by

a Euclidian distance greater than dy, , given by (141), can be expressed as
Sjok+1-ng, Sjor+1-ngyy  for 1< j<2m -1, (142)
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Next, we classify 2% signal points into 2"°~! mutually exclusive groups such that the Euclidian
distance between adjacent signal points of the same group is smaller than or equal to dy, . From

(142), the signal points of the jth group can be derived as
S(j_1)2K+1—n0+1, S(j_1)2K+1—n0+2, A 7Sj,2K+1—n0 fOI" 1 S j S 277,071' (143)

We rewrite (110) in the following: For hierarchical 2K PAM (K > 2), the Euclidian distance

between adjacent signal points is given by

d(S(i—1y2x-n, S@i—1yax-ni1) =dy, for1<i<2" and1<n<K. (144)
From (143) and (144), it can be shown that the Euclidian distance between adjacent signal points
of the jth group is given by

d(S(ai-1)26-n, Szi-1yax-n41) = d,

for (j —1)2"™ +1<i<j-2"™ ng<n<K, and 1 <j <2t (145)

Let p=1i— (j — 1)2"~". Then, (145) can be rewritten as
d(S(Qp_1)2K7n+(j_1)2K+1—n0, S(Qp—l)QK*”-l—(j—lﬂK‘H—"OJ,-1) = dMn
for 1 <p<2"™ ng<n<K, and 1< j<2m 1 (146)

Notation change: Let Si(j ) denote S(j—1)2K+1-no4; for convenience. Then, every pair of adjacent
signal points which are separated by a Euclidian distance greater than dyy,  (i.e., da,, ,, du,, 2,

-+, dpy), given by (142), can be rewritten as
SO gy SYTY for 1< <omt o1 (147)
The signal points of the jth group, given by (143), can be expressed as
S S, S, for 1< j<2mt (148)

Lastly, the Euclidian distance between adjacent signal points of the jth group, given by (146),
can be rewritten as
() () _
d(s(;p—mem S(;p—1)2K7"+1> = d,

for 1 <p<2"™ ng<n<K,and1<j<2m ! (149)

D-2. Probability of correct decision for signal points of the jth group

July 21, 2011 DRAFT



43

D(j D D(j) D(j+1)
| | |
[ 1 110 0 0 0, 1 1 1 1170 0]
| | |
- .. -1 (J Do - [0 (0) RN IE)) i+1) ... gU+D | (1+1) (J+D)
Sl SZK nQ : ZK ne 1 ) o K+1=ng Sl SQK*"O :Szll(—no 1 S({()Jrl no Sl(j+) SZK no | 2K no 4 S2K+1 )
@ o——@ @ —e @ ® — @
| | |
| | |
J-1 th group J th group Jj+1 th group

Fig. 11. The 5 — 1, j and j + 1th groups with the bit mapping vector for 7 = odd.

From (148), for 2 < j < 2"0~! — 1, the signal points of the j — 1, j, and j + 1th groups are
given by

:99'—1)7 SU L. ,Séﬁiﬁ),ng, S SP ... s4), e SUTD gty L S;i(ﬂlng.

v ' 2V

7 — 1th group 7th group 7 + 1th group (150)

From (107), the bit mapping vector for the noth MSB (2 < ng < K — 1) of the j — 1, j and
J + 1th groups is derived as

|:02K7’n0 12K7n0 12K7n0 O2K77’L0 02K7n0 12K7n0i|, fOI‘ ] = even

(151)
|:12K7n0 O2K77’LO O2K7n0 12K7n0 12K7n0 O2K7n0i|, fOI' ] - Odd

From (150) and (151), j — 1, 7, and j + 1th groups with the bit mapping vector for ; = odd
are shown in Fig. 11, where DU=Y, DU and DU+ denote the decision boundaries for bits
0 and 1 in the 5 — 1, j, and j + 1th groups, respectively. In the following, we will derive the
probability of correct decision for signal points of the jth group (1 < j < 2mo—1):
i) Signal points assigned for bit 0 when j is odd in the range of 2 < j < 2™~1 —1

We here assume that for Si(j) (1 <4 < 2K-m0), a signal point of the jth group which is
assigned for bit 0, the probability of correct decision can be calculated without considering the
other groups except for the 7 — 1, 7, and j 4 1 th groups (we will later show that the assumption
is correct if the SNR condition of this lemma is satisfied). Fig. 12 shows the correct decision
area for Si(j ) (1 < i < 2K-m0) under the above assumption. From Fig. 12, it follows that the

probability of correct decision for Si(j ) (1 < i < 2K-m0) based on the system model depicted in
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Fig. 10 1s given by
PP — Pr| —d(DYY, S)T < N < (Y, DU)T|

+Pr[a(sY, DU)T < N < a(s?, SGE, )T

= Pr| = (a(DU,57) +d(57,59)) T < N < (a(8P, 84,) +d(SH.,, D9)) T|

(2

+Pr| (d(SY), SE.) +d(SHL,,, DI) ) T < N < (89, SU5H,) 7| (152)

where the first and second terms follow from the correct decision areas #1 and #2 shown in Fig.
12, respectively. Eq. (152) can be rewritten as
PP =1 = Pr|[N > (d(s9, S%,,) +d(SE-..,, DD)) 7]
~Pr|[N > (a(DUY, 5P) + d(59, s9)) 7
+Pr| (d(SY), SE.) + (S5, DI) ) T < N < (89, S30.,)T]. (153)
From Fig. 12, d(DU=Y S(j ) in the second term of (153) can be expressed as

d(DYD, 89) = d(DYUY YT Y 4 d(SUT) L SUA L) Fd(SSa L, S (154)

9K no 41 2K — no 41’
From (149), for n = ny, we have
. , ' .
d(S9 .y, S8 ) = da,, for 1< j<2m7h, (155)
From the fact that d( DU-D SéJK 1n0+1) = %d(S;Z(__l,BO, Séi‘_ljoﬂ) and (155), (154) can be rewritten
as
(-1 oWy _ ) (-1 ) ()
d(D 751 ) - §dMn0 +d(52K n0+17SQK+1—n0> +d<52K+1 n0751 ) (156)
Dl(jil) Area #1 Dl(j) Dl(j+1) Area #2
[ 1 1 0 0 0 0 1 1 1 1 0 0 ]
- - . o , "
S S (S Skl S SRl o S SO S IS S
J-1 th group J th group Jj+1 th group

Fig. 12. The correct decision area for Sfj) (1 <4< 2K~m0) when j = odd.
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From (147), we have
d(SYer g, SYY) > day,, ., for1<j<2m7 -1 (157)
From (157), d(DV~Y, Sfj)), given by (156), satisfies

+d(SST) LSS ). (158)

no—1 2K=no 41>

. ‘ 1
d(D(J_l),Sfj)) > §dMn0 +dy

Since d(SQfK 1730+17 S;Z;ll),no) > (0 for nyg < K — 1, we have

. , 1
d(DU=Y, 89 > 5dan,, + das

ng—1°

(159)

Likewise, from Fig. 12, d(S

2K ng

DU*D) in the third term of (153) can be expressed as

d(Séi()—no ’ D(j+1 ) - d(SZK ng) SSK ”0+1) + d(S2K no 417 S§Q+1—no) + d(Sg()H—no’ S§j+1))
(8P, SU Y + d(SUE,, DUTY). (160)
Since d(S;,QLln)O,D(jJrl ) = ld(SQEIT?O,ng,?OH) and from (155), (160) can be rewritten as
d S(j) D(j+1) _ 3d d S S(j) d S S(j+1)
( 2K —nqg) ) - 5 + ( oK —-ng417 2K+17n0) + ( 9K+1-ngr ™1 )
+d(5§7+ DUy, (161)
From (157), d( - nO,D(j“)) satisfies
. , 3 . )
d(SéjK)—”o7D(J+1)) - §dMno + dMno 1 (Sg’{ n0+1’? SéjK)-H—"o) + d(S pHy Ségj—l?go) (162)

We have d(S(]

2K — no417
d(SéjK_nO, D(J“)) satisfies

S;QH,%) > 0 and d(SJle Su+h ) > 0 for np < K — 1. Hence,

2K nQ

d(S9 ...

. 3
DU > Sy + ity (163)

From (159) and (163), it follows that the second and third terms of PP0, given by (153), are
and DY) belong
to the jth group, (S(j SQK w) + d(SQK vy, DY) in the first term of PP is the combination

insignificant when the condition of this lemma is satisfied. Since SZ-(j ), S;jK),nO,

of da, s dntyirs e+ 5 darye from (149), and thus the first term is not affected by the condition of

this lemma. Hence, if the condition of this lemma is satisfied, Pfito, given by (153), becomes
Pht0 ~ 1~ Pr [N > (d(sfj) S Y +d(sul,, D(j))> T}, (164)

which is identical to the probability of correct decision calculated only by considering 2%+1="0

signal points of the isolated jth group. Since the 7 — 1 and j + 1th groups have no effect on
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the correct decision probability for signal points of the jth group due to the condition of this
lemma, the other groups (ie., 1,---,5 — 2,5 +2,---,2"% 'th groups), which are separated by
larger Euclidian distances from the jth group than are the j — 1 and j + 1th groups, also have

no effect. Hence, the assumption above (152) is correct.

ii) Signal points assigned for bit 1 when j is odd in the range of 2 < j < 2™~1 1
It can be shown that the probability of correct decision for Si(j ) (2K—mo 1 < ¢ < 2K+1-n0)

based on the system model depicted in Fig. 10 is given by

PO _ 1 Py [N - (d(m) SY )+ d(s9 s§j>>> T}

) 2K7n0+1 2K7n0+17

—Pe[¥ > (4[58 + (55 D)) 7]

1

+Pr[ (d( DU gv)

2K7n0+1

)+ (SR S)) T < N < (8P, s9)1], 165)

2K7'n0+17 )

where d(SéQH,nO, DU*D)in the second term of (165) satisfies '
1
2
) in the third term of (165) satisfies

d(S%r g, DY) > —duy, +dus, (166)

and d(D(j_l) , SéQ,,LOH

d(DU=Y, 89 ) > §dMn0 +dy,

9 2K—n0+1 2 ng—1°

From (165)—(167), if the condition of this lemma is satisfied, Pcbi“, given by (165), becomes

(167)

PP a1 Pr|N > (d(DY), 5

2K7n0 +1

)+ (S50 S)) T, (168)
which is identical to the probability of correct decision calculated only by considering 2%+1="0
signal points of the isolated jth group.

iii) Signal points assigned for bit 0/1 when j is even in the range of 2 < j < 2m~1 — ]
From (151), the bit mapping vector for 7 = even is just the complement of that for ;7 = odd.
Hence, for j = even, P"*0 and P! are given by (165) and (153), respectively, and the results

of 1) and ii) hold for the case j is even.

iv) Signal points assigned for bit 0/1 when j =1 (odd)

! Since the analysis of ii) is similar to that of i), we omit the detailed steps.
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From Fig. 12, it follows that P"? for j = 1 is given by

PP — 1 - Pr|N > (d(S", S3,) +d(Sh,,, DY) T|

)

7

+Pr| (d(S, 85,,) + d(SH-, DP)) T < N < d(5, S300,)T]. (169)

The only difference between (153) and (169) is that (169) does not have the second term of
(153), and thus the result of i) holds for the case j = 1. In a similar way, it can be shown that
for bit 1, the result of ii) holds for the case j = 1.
v) Signal points assigned for bit 0/ when j = 2"~ (even)
In a similar way to iv), it can be shown that the result of iii) holds for the case j = 2"0~1 |
From i)-v), it is seen that if the SNR condition of this lemma is satisfied, the BER of the
noth MSB can be calculated only by considering 25+~ signal points of the isolated jth group
given by (148).

D-3. BER of the noth MSB (2 < ny < K — 1) for the isolated jth group

We derive the BER of the ngth MSB for the isolated jth group of 2% PAM from that of the
MSB for 2K+1=m0 PAM.
i) For hierarchical 25+1~"0 PAM, from (144), the Euclidian distance between adjacent signal

points is given by
d(5(2¢—1)2K+1*n0*na 5(21'—1)2K+1*”0*n+1) =dwm,
for 1 <i<2"'and1<n<K+1—n,. (170)
Let r =n+ng— 1 and p = ¢. Then, (170) can be rewritten as
d(Seap-1)25-r, Sop-1y2x-r41) = dagy 1y, for 1<p < 277" and ng <r < K. (171)

From (149) and (171), it is seen that, if aerH%0 in (171) is set equal to d,;., the Euclidian
distance between adjacent signal points for 2+1="0 PAM is the same as that for the jth group
of 2K PAM.

ii) For hierarchical 25+1="0 PAM, from (107), the bit mapping vector for the MSB is given by

g1 = [Ogixr1-ng)-1 Lytcsiong-1] = [Ogr—ng Lor—n,]. (172)
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For the jth group of hierarchical 2% PAM, from (151), the bit mapping vector for the nyth MSB

is given by

|:]_2K—n0 02K—n0:|, fOI‘ j = even (173)

[OQK_nO 12K—n0:|, for j = odd.
It is seen that (173) is the same as or the complement of (172).

From i) and ii), it follows that the BER of the MSB for 2X+1="0 PAM is the same as that of
the noth MSB for the isolated jth group of 25 PAM, if d, t1n, fOr 2K+1=no PAM is set equal
to dy, (ie., d, is set equal to dyy,,, ). From (140), the BER of the MSB for hierarchical
2K+1=m0 PAM (2 < ng < K — 1) is derived as

2K —ng_1 K+1—ng K+l-ng—n
dMl P+ 2K+ o

Let » =ng — 1 + n. Then (174) can be rewritten as

oK —-ng_q d K p+2K*7" 5T
M1
2K no Z @ (( + ) {WJ ernW) \/m) - (175)

r=ng+1

As stated above (174), by setting dj;, equal to dy,

z+n0 —

, 1n (175), the BER for the nyth MSB
(2 <nyg < K —1) of the isolated jth group can be derived as

2K—mo—1
Mn, p+ 2K 2T
2K no Z Q(( T Z {QK 1 Jer) \/Fo) (176)

r=ng+1

Note that the BER expression for the ngth MSB (2 < ng < K — 1) of hierarchial 25 PAM,
given by (176), holds if the condition of this lemma is satisfied.

E. BER of the Kth MSB (or LSB) for hierarchical 2% PAM

For the K'th MSB (or LSB), we define the signal points of the jth group as
SP, 89,89, 87 for 1 <j <2872 (177)

which is identical to (148) with ng = K — 1. If we let no = K — 1 in (147), every pair of
adjacent signal points which are separated by Euclidian distances greater than d,; , is given

by

S gUt for 1< j< 2K 2 (178)
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Also let ng = K — 1 in (149). Then, for 1 < j < 252, the Euclidian distance between adjacent

signal points of the jth group can be derived as

(S, 58)) = dagye, and d(SY),8)) = d(SY, 7)) = du

K

179)

From (107) and (177) — (179), it can be shown that if the condition of this lemma is satisfied,
the BER of the Kth MSB becomes 2

dye 12T 1 Ay 12T
Q ( 5 E) + 5@ ((dMK_l + 5 ) E) . (180)

From (140), (176), and (180), the BER of the nyth MSB (1 < ny < K) for hierarchical 2%

PAM can be expressed as
2K-no_1 4 ANy, K p2K-T 2T
Do @ (2t X | B Ay ) (/R ) for 1<ng <K -1

Q(dgK\/%>+%Q <<dMK71_|_dA21K>‘/12V_’I;>, for ng = K.
Note that (181) is the exact BER expression for the MSB, but for 2 < ny < K th MSB,
(181) holds if the condition of this lemma is satisfied. Lastly, it can be shown that the BER

(181)

of the inphase or quadrature components for hierarchical 22X QAM is the same as that for
hierarchical 25 PAM. For hierarchical 22/ QAM, let £, = P,,,T denote the average energy of
the transmitted signal. Setting 27'/Ny = 2E,/No P,y = 275/ Pavg in (181), (16) is derived.

APPENDIX B

NUMERICAL EVALUATION OF THE BER EXPRESSION (16)

Figs. 13 and 14 show the numerical evaluation of the BER expression given by (16) for

hierarchical 64 and 256 QAM when the distance ratio is 1 or 2.
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