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Abstract

This paper is about techniques for clustering sequences such as nucleic or amino acids. Our ap-
plication is to defining viral subtypes of HIV on the basis of similarities of V3 loop region amino
acids of the envelope (env) gene. The techniques introduced here could apply with virtually no change
to other HIV genes as well as to other problems and data not necessarily of viral origin. These al-
gorithms as they apply to quantitative data have found much application in engineering contexts to
compressing images and speech. They are calledvector quantizationand involve a mapping from a
large number of possible inputs into a much smaller number of outputs. Many implementations, in
particular those that go by the name generalized Lloyd or k-means, exist for choosing sets of possible
outputs and mappings. With each there is an attempt to maximize similarities among inputs that map
to any single output, or, alternatively, to minimize some measure ofdistortion between input and
output. Here, two standard types of vector quantization are brought to bear upon the cited problem
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of clustering V3 loop amino acid sequences. Results of this clustering are compared to those of the
well known UPGMA algorithms, the unweighted pair group method in which arithmetic averages are
employed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In electrical engineering, algorithms for clustering quantitative data known asvector
quantization, or VQ, have been applied for the most part to compressing images and
speech. Vectors of data that correspond to image pixels or sampled speech are clustered
into groups, and a centroid is chosen to represent each group. Regardless of the par-
ticular area of application, always subsequent vectors are “quantized” into a more com-
pact set by being mapped to one of the allowed group of representatives. Here we adapt
VQ to qualitative data, with particular application being made to sequences of amino
acids of the V3 loop region of the HIVenv gene. The purpose of clustering is not to
compress data, but rather to explore the covariation of amino acids at different sites.
Insights gained thereby may help with understanding: the epidemiology of the disease,
the interactions between the human immune system and virus that result in
genetic diversity, and possibly even the relationships between genomic structure and
function.
Because of its critical functionality and high variability (Wain-Hobson, 1994), the en-

velope gene has been studied intensively. It harbors variable and conserved regions. The
variable regions include many sites of antibody or cytotoxic T-lymphocyte recognition; in
addition, sequence variation in some regions correlates with phenotypic variation of the
virus (Hoffman et al., 2002). In particular, the third variable region, or V3 loop, has been
shown to be the principal neutralizing domain of the envelope gene in T-cell line adapted
viruses. (Hwang et al., 1992); and differences in the V3 loop are the primary determinants
of cell tropism and cytopathicity. Each of these properties is now understood to result from
the ability of the virus to use alternate co-receptors for cell entry (Bjorndal et al., 1997).
Amino acids from sequences of the V3 loop region have been examined for covariation in
several different ways. Korber et al. analyzed a set of 308 sequences of the first 32 V3 loop
amino acids from the 1991 AIDS database (Korber et al., 1993). Their goal was to identify
pairs of sites where mutations would “with high confidence be identified as covarying.”
Using a statistic with an information theoretic basis, they advanced a set of seven pairs of
covarying sites that seemed to merit further analysis. This work was extended in several
ways in (Bickel et al., 1996), in which the 308 sequences and a set of 440 sequences from
the 1993 AIDS database were examined with the statistic of (Korber et al., 1993), as well
as with two other related measures of covariability. This later work also approached co-
variation primarily in a pair-wise fashion, but it included some results on the existence of
cliques (sets of more than two sites that appear to act in concert) and on the extent to which
some particular sites are critical to interactions. For example, an apparently strong pairwise
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interaction between sites 13(H)1 and 25(D) in the 308 data set was found to be likely due
to the two interactions between 11 and 13 and 11 and 25.
Themethodology and results of this paper continue the study of variation and covariation

of theV3 loop region residues, but they are not based upon pairs of sites. Our new methods
attempt to cluster sequences usingall sites. Unlike methods based on phylogenetic trees,
our algorithms are concerned with maximizing similarity rather than reconstructing evolu-
tionary relationships. While the final results may be similar, our methods do not explicitly
take into account differential rates of evolutionary change (or substitution) across sites, the
possibility ofmultiple substitutions thatmask changes, etc. In designingmicrobial vaccines,
it is common practice to use antigens derived from a single laboratory strain of the agent.
If such a vaccine is to work well, it is likely that the antibodies it raises would be effective
against viral variants that are structurally similar to the original strain. Classification by
evolutionary relationships does not a priori guarantee that members of the same group will
share a high degree of structural identity. The methods by which we cluster are chosen
explicitly to maximize a particular measure of similarity; of course, other such measures
could be employed. If a particular measure of similarity entails also similarity of efficacy
for a vaccine, then, presumably, when a vaccine works well against one member of a group
it is likely to do the same against other members of the same group. In view of these consid-
erations, it seems better here to cluster without regard to the known phylogenetic subtypes
of HIV-1 (Korber et al., 1997). Though we are unable to claim that our simple measure of
similarity for sequences necessarily reflects their structural closeness, it is probably still best
if our methods are used incorporating ameasure of similarity but without being confounded
with cladistic similarity.
Phylogenetic trees were used by Korber, Myers and others to subdivide the data sets

(Myers et al., 1991; Seiller-Moiseiwitsch et al., 1994), because it was recognized that the
covariation that was observed statistically could be the result not of the constraints of
protein structure or functional relation driven by selection but rather of “an evolutionary
heritage from distinct founder viruses.” A phylogenetic analysis based on long (883) site
stretches of theenvgene produced largely consistent trees ending in seven clades whose
geographical clustering is consistent with the history of the epidemic. The same caveat of
“founder viruses” applies to this study. However, the purpose of themethods described here
is simply to achieve a classification based on similarity, and not to attempt to explain the
“why” or “how” underlying the clusters. This goal is also seen in (Korber et al., 1994),
where sequences of amino acids from the V3 loop were clustered by a phenetic principle
whereby amino acid identities and similarities are evaluated without regard to evolutionary
relationships. Various trends in V3 loop protein sequences were revealed by carrying out
the phenetic clustering in conjunction with phylogenetic classifications of subtypes.
The set of 440 sequences from 1993 and the 308 sequences studied in (Korber et al.,

1993) had 152 sequences in common (identical for the 32 residues considered). However,
the two sets differ in many ways, which is not surprising. The epidemic is dynamic; and
neither set can be viewed as a random sample from the populations of HIV viruses as they
existed on or before 1991 and 1993, respectively. Biases from epidemiological clustering,

1Our numbering adds one to that ofKorber et al. (1993)andBickel et al. (1996). The letter following the
number gives the consensus value at the site for their set of 308 sequences.
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differential sampling of patient populations, and variability of viruses within patients are
undoubtedly substantial. Thus, covariability can be an artifact of sampling. This places
severe limitations on any conclusions that we or earlier investigators can draw from these
data. We consider here the 440 sequence data set (Korber et al., 1993), reduced to 434
sequences by elimination of six sequences for which some values were missing. Our goal
in this work is only partly to providemeaningful analyses of covariation within theV3 loop;
one major goal is to introduce novel statistical techniques that may prove useful in other
applications.

2. Methodology

In this paper, we develop tools to explore interactions among groups of sites. Rather than
examining pairs or triples of sites, we take an approach in which all the sites are considered
together. The algorithms are our adaptations of what in the electrical engineering literature
is calledpruned tree-structured vector quantization(PTSVQ or TSVQ) (Riskin and Gray,
1991; Gersho andGray, 1992) andfull search vector quantization(FVQ) (Gersho andGray,
1992). They have been applied with considerable success to the lossy (i.e., not invertible)
compression of radiographic and satellite images, as well as of digitized speech (Abut,
1990; Cosman et al., 1994, 1996). The algorithms require as their raw material Euclidean
vectors, that is, sequences of known, fixed length of ordinary numbers. Yet our amino acid
sequences are qualitative; there is no natural numeric ordering of amino acids. So we must
translate the sequences of residues to the requisite vectors. With each sitej we associate
an Euclidean vector of dimension #A(j), the number of different residues seen in the data
set at that site. Therefore, each sequence is associated with a point in the Euclidean space
R|A|, where

|A| =
32∑

j=1

#A(j).

For a particular amino acid sequence of length 32, the coordinates that correspond to site
j are coded to 0 or 1; 1 for the coordinate that corresponds to the residue that appears and
0 for all other coordinates associated with that site. (The order by which amino acids are
assigned to coordinates is immaterial because our algorithms and inferences do not change
if we permute that order in any fashion.)Fig. 1is an example of the translation process for
the first 4 residues of each of 5 sequences. In this example, site 1 (S1) occupies 3 coordinates
of the binary vector. In the 5 sequences shown, only two amino acids appear (C andY); but in
the full data set, S appears as well, and so all vectorsmust maintain a coordinate position for
this residue as well. Site 2 (S2) has 8 different residues appearing (T,I,S,M,A,V,E,L) in the
full data set and thus contributes 8 components to the binary vector, site 3 (S3) has 2 (R,S)
and site 4 (S4) has 3 (P,L,H). Thus for these 4 sites, the binary vector has 3+8+2+3=16
coordinates. For the 32 sites in our data, the numbers of different residues (the values of
#A(j)) ranged from 2 to 12, and the binary vector had a total length of 259 coordinates.
The distancedj (x, y) between two vectorsx and y at site j is simply the ordinary

Euclidean distance. Thus, ifxj andyj denote, respectively, the subvectors of length #A(j)
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Fig. 1. The translation process for the first 4 sites of 5 different sequences.

of x andy corresponding to the coordinate positions for sitej , then

dj (x, y) = {(xj − yj )
t(xj − yj )}1/2,

wherext denotes the transpose of a column vectorx. These differences between coordinates
are all equal to zero, or else at most two of them have magnitude one. In general, we have

dj (x, y) =
{
0 if x andy match at sitej,√
2 if x andy differ at sitej.

Any positive definite symmetric matrixBj of size #A(j) × #A(j) could give rise to a
distance measure for the subvectors:

�j (x, y) = {(xj − yj )
tBj (xj − yj )}1/2.

This formulation would allow one to incorporate refinements such as declaring that at site
j , amino acids R andD are farther apart than are R and K. This could be useful, for example,
to reflect the fact that R and K both have positively charged side chains, whereas D has a
negatively charged side chain. Suppose for the moment that there existed a sitej with only
3 different residues appearing (R,K,D). A sequence that had R at that site would have a
binary subvectorxj =100 for that site. Similarly, sequences with K or D there would have,
respectively, binary subvectorsyj =010 andzj =001. If we wished to incorporate the idea
that R and D are, say, 2 times farther apart than are R and K, we could use a positive definite
weighting matrix such as

Bj =
[ 3 2 −1

2 3 −1
−1 −1 3

]

in which case the distance between R and K at the site would be

dj (xj , yj ) = {(xj − yj )
tBj (xj − yj )}1/2 =√

2,

whereas the distance between R and D at the site would be

dj (xj , zj ) = {(xj − zj )tBj (xj − zj )}1/2 = 2
√
2.

In our work thus far we have used only the identitymatrix, which is to say that all differences
at a given site are consideredequivalent.Theyare characterizedby thedirectionsand relative
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lengths of their principal axes. The actual numerical values that appear inB depend upon
the base coordinitization of the underlying Euclidean space. In particular, that some values
may be negative in particular implementations is immaterial. The overall distanceD(x, y)
between vectorsx andy can be obtained as a weighted sum of the distances for the separate
sites. Highly variable regions of eukaryotic, prokaryotic, and presumably viral, genomes
are generally more susceptible to the accumulation of mutational noise that masks the
evolutionary or functional relationships with other such genomes. It is plausible to suggest
that a match between two sequences at a highly variable site would more likely be the result
of chance than would a match at a highly conserved site. This would suggest choosing
weights that vary inversely with the number of amino acids seen at the site. We propose
something very close. Ifp1, . . . , p#A(j) are the probabilities of the acids at sitej , the
probability of mismatch between two sequences at the site is

P(mismatch) = 1−
#A(j)∑
k=1

p2
k �1− 1

#A(j)
.

Thus, we focused on a weighting that was inversely proportional to 1− 1/#A(j), and

D(x, y) =

 32∑

j=1

d2
j (x, y)

1− 1/#A(j)




1/2

.

As it turned out, the weighting scheme was subtle enough that it had little impact on our
results.
In tracing evolutionary relationships, one would similarly advance the argument that a

match between two sequences at a highly variable site is not particularly indicative of a
common ancestor remaining unchanged. As two sequences diverge, increasing numbers
of changes are masked by multiple substitutions, so that it may appear that two taxa or
species are closely related when in fact they are truly distantly related. In phylogenetic
reconstruction, correction factors based on a Poisson model of substitution can be used
to correct the apparent distance between pairs of species. Our preliminary approach to
weighting is a crude attempt at accounting for the actual degrees of “similarity” represented
by matches between sequences at variable or conserved sites. But the framework is general.
More general weightings for combining distances from different sites, and potentially,
weightings for distances between residues at any given site, can be incorporated directly
into the algorithm.
Our clustering methods divide the sequences into subsets that provide an exhaustive

partition of “sequence space.” The goal is to describe the probability mechanism by which
the sequencesmight have been generatedwithout explicit regard for evolution, and to search
for a simple model. This model should approximate nature closely enough to lend insight,
on the one hand, but should allow for arbitrary covariation of sites on the other. Suppose that
for our distinct clusters of sequences, we could compute both a centroid for each cluster and
a probability weight associated with the cluster. (The weights would be non-negative and
sum to 1.)Wewould, thereby, have represented the joint distribution bywhich the sequences
were generated as a “mixture” of probability distributions, each a point mass concentrated
on its respective cluster centroid, with “mixing weights” the probability associated with
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the cluster. We do not pretend that these models are entirely accurate or descriptive; but
they, like others of our statistical approaches, are intended to simplify the difficult process
of summarizing the data, and to do the best we can given the sparseness of the available
observations and the highly multivariate nature of any “correct” model.
The empirical distribution of ourN = 434 vectors can be viewed as a histogram of the

sequences. If we want to summarize the histogram by one vector, an obvious choice is
the centroid, that is, the average. It has the well known property of minimizing over all
possible choices of a single vector the average over the sample of the squared distance
from it to points in the sample. This average squared distance is calleddistortion in the
engineering literature. In the language of the previous paragraphs, we are approximating
the probability mechanism by which the set of sequences was generated by a single point
mass at the centroid. If the|A|-dimensional Euclidean space is partitioned intom disjoint
regions which each contain some of theN sequences, one can calculate a centroid for each
component of the partition. Tree-structuredVQ is a hierarchical or nested series of partitions
in which we attempt to minimize the average distortion between the vectors in the data set
and their partition centroids. Full search VQ is an arbitrary (non-nested) partitioning of
the space. Both tree-structured and full search vector quantizers can be designed by the
generalized Lloyd algorithm(GLA), an iterative method for improving a set of clusters
(Linde et al., 1980; Gersho and Gray, 1992). It begins with a set ofN vectors andm cluster
centroids. The cluster centroids can be obtained in a variety of ways, which will be outlined
later. The GLA alternates between the two steps of assigning sequences from the sample to
the nearest cluster centroid, and relocating the old centroids to become the centroids of the
sequences that were most recently assigned to them.

2.1. Pruned tree-structured vector quantization

The output of these analyses are binary trees. Binary trees are familiar from other sta-
tistical scenarios and from phylogenetic analyses with PAUP and other software (Swofford
and Olsen, 1990). With the latter, one tries to describe the evolutionary history of a set of
sequences so that the branching that led to their observed distribution is summarized as par-
simoniously as possible. Our approach does not preclude trees with topologies like those of
cladistic origin, but the motivation for them and the algorithms by which they are produced
are based solely on empirical distributions—in this case of amino acid sequences—and how
they cluster.
The design of the tree-structured classifier begins with the global centroid, and we denote

by Droot the value of the distortion for the entire data. Now suppose that we partition the
|A|-dimensional Euclidean space of sequences in any fashion by a hyperplane, that is, by
whether a fixed linear combination of the coordinates of each vector is positive or negative.
(There is no loss in restricting ourselves to fixedlinear combinations of coordinates. If our
task is to assignpoints to cluster centers soas tominimizedistortion, then for anyassignment
of centers and fixed matricesBj and fixednonlinearboundaries to our partition, there will
always be a partition with hyperplane boundaries that has distortion at least as small as has
the partition with nonlinear boundaries.) On each side of the partition we find the centroid.
Eachsamplepoint is considered tobelong to thecentroid towhich it is closer.Thispartition is
called theVoronoipartition.We ascribe the empirical relative content of each component of



284 A.B. Olshen et al. / Journal of Statistical Planning and Inference 130 (2005) 277–298

Fig. 2. Successive binary partitioning of the sequence space.

the partition to its corresponding centroid. Thereby, wewill have represented the probability
mechanism that generated the sample by a two-component probability mixture of the two
centroids. We denote byDleft andDright the average squared distances from respective
centroid within each of the two subsets of the resulting partition. A simple argument based
on convexity shows that no matter what linear combination of coordinates we have taken,
the average over the sample of these new squared distances will be less thanDroot, the
average squared distance to the overall centroid. This observation leads us to attempt to find
the partition (the linear combination of coordinates) for which the reduction in distortion
is maximized. The linear combination given by the generalized Lloyd algorithm provides a
useful and computationally feasible approximation to the best partition (and sometimes to
the actual best partition). Note that while there will be a reduction in the average over the
sample of the squared distance to the closest centroid, it need not be the case that there is
a reduction within each of the two subsets. These algorithms were adaptations of methods
used in decision tree design; they are related to the CARTR algorithms for classification
and regression (Breiman et al., 1984).
The process of successive partitioning corresponds to the formation of a binary tree. The

first step is atwo-meansclustering of the data. Theroot nodeof the tree can be characterized
by its distortionDroot and by specification of the linear combination of coordinates that
determine its split into daughter nodes. The process continues by taking that daughter node
for which we can effect the maximal reduction in distortion by partitioning it and forming
new centroids for its two subsets. SeeFig. 2. The best partitioning of the left daughter node
results in an average distortionDL-split for those vectors that map into the left daughter
node, and similarly for the right daughter node. Of the two candidate splits depicted inFig.
2 by dashed lines, we make the split that gives the larger reduction in distortion. Thus, the
left daughter node is partitioned if

Dleft − DL-split�Dright − DR-split

and otherwise the right daughter node is split.
We now have a rooted binary tree with three terminal nodes (leaves). Next, recurse the

algorithm on the three current subsets by choosing the best of the candidate partitions of
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Fig. 3. Distortion vs. # terminal nodes for all possible subtrees of a large initial tree.

the current three leaves. Successive application of the algorithm results in “growing” a
successively larger binary tree. Stop when further partitioning reduces the distortion by less
thanapreassignedsmall amount.Typically, theprocessyieldsa tree larger thanwhatwewant
for further use. Even though the leaves of the tree might correspond to biologically relevant
groups of HIV variants, and although nature’s “best” clustering may be very complex,
any attempt to find all such groups would result in our having little possibility of useful
description. It follows thatwemust decidewhich subtrees of the large tree should be retained
for further investigation and summary.
Plot a graph in whichy is distortion andx is the number of terminal nodes of the tree.

The large tree corresponds to a particular point in the graph, in whichy is small andx is
big. (If all the sequences were identical, the root node alone would be enough; and it would
correspond to the point (1,0) on the graph.) Consider all subtrees of the large tree than
could be formed by “pruning off” branches at any internal node of that tree. The “subtrees”
obtained correspond to various points in the graph, one per subtree. SeeFig. 3, in which the
large tree hasN leaves and the tree that consists only of the root node has largest distortion.
The lower convex hull of the set of points is given inFig. 3 by connected straight line
segments. A subtree will be of special interest if it lies on this lower convex hull since there
will be no other subtree that has both smaller distortion and not more terminal nodes. These
“admissible” trees that comprise the convex hull are nested (Gersho andGray, 1992, Section
17.4;Breiman et al., 1984, Section 10.2). Obviously, there may be many such admissible
trees.
The two references cited make clear that one can give an algebraic interpretation to the

previous discussion andFig. 3. Thus, for some positive number� and candidate treeT,
one can form the criterion

D� = D(T) + �|T̃|,
whereD(T) is the distortion of the treeT and|T̃| is its number of terminal nodes. For
any fixed� we can find the subtree of the large tree for whichD� is maximized. For a
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graphical interpretation see Fig. 17.6 and its surrounding prose in the book byGersho and
Gray (1992, p. 649). The original large tree will be “best” for small but positive values of
�, and it will remain the best tree as� increases. But, as� increases, so, too, doesD�; and
at a certain value specific to the data at hand, the large tree will no longer minimizeD�;
instead, an optimally pruned, admissible subtree will. Ultimately, further increase of� will
entail another optimally pruned subtree of the previous subtree, and so on.
In an engineering context, the single tree of most interest is often chosen by itsbit rate,

that is, by itsdepthaveraged over the empirical distribution of the data to which it applies.
By depthis meant the number of steps from root node to terminal node. For (typically lossy,
that is, not invertible) data compression, each input vector is represented by the centroid of
the leaf in which it lies, and only the binary path map through the tree need be retained in
the compressed format. In our case of clustered amino acids, the choice among admissible
subtrees, that is, the choiceof best�, is difficult.Wewant a tree that leads to a simple partition
of feature space, one for which some biological meaning can be given to the terminal nodes.
Parsimony methods for inferring phylogenies select trees that minimize the total length of
the tree, that is, the number of evolutionary steps required to explain a given set of data. In
our context, choosing a real minimum for tree size would leave us only with the one cluster
at the root node.
One approach to finding a “best” tree is based on finding the break-points of a plot of

distortion versus number of terminal nodes, although by itself this approach may be naive
(Sugar and James, 2003). There can be large holes in the plot in the sense that trees of
many sizes may not be admissible. We chose instead to attempt to use thegap statistic
(Tibshirani et al., 2001). The technique was developed in ak-means context and chooses
the number of clusters for a set of data to maximize the difference (“the gap”) between the
observed distortion and the expected distortion. Specifically, if there arek clusters denoted
by C1, C2, . . . , Ck of respective sizesn1, n2, . . . , nk, then the measure of distortion used
in the gap statistic is

Wk =
k∑

i=1

1

2ni

Di,

whereDi is the sum of pairwise distances for all points in theith cluster. The statisticWk

is computed for a range ofks. Then thegap statisticis defined as

Gapn(k) = E∗
n(log(Wk)) − log(Wk),

whereE∗
n denotes the expectation based on a sample of sizen from an appropriate reference

distribution. For us,k is the number of terminal nodes, and the reference distribution is
the permutation distribution of independent permutations of amino acids within sites. The
uniform distribution over the range of the data, widely used and chosen for certain minimax
reasons, is patently inappropriate for our problem. The cited difficulty that owes to there
not being admissible trees for many values ofk leads to some difficulty in estimating
E∗

n(log(Wk)). Our current and not altogether satisfactory solution to this problem is to
impute the missing values of the log distortion statistic in every permutation via linear
interpolation. Another approach could be to base inference on the “penalty” term�. There
are difficulties, too, with this approach. They are not reported here.
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2.2. Full search vector quantization

The tree-structured quantizer is constructed by a constrained search process. Therefore,
the subset reached by a test vector as it traverses the tree may not be the best, that is to say
closest, one possible for any fixed number of subsets (leaves). To compute the distortion
between the test sequence and each one of the leaf centroids would be afull searchmethod.
Any given set of centroid locations could be improved by running the generalized Lloyd
algorithm on the entire data set simultaneously. That is, the final result of the tree-structured
clustering withm terminal nodes can itself be treated as the initial starting point for running
the generalized Lloyd algorithm, which can only improve the average distortion, but elimi-
nates the simple tree structured relationship among the nodes.A variety of other techniques
can also be used for generating an initial set ofm clusters (Gersho and Gray, 1992). As is
discussed in the next section, there were strong similarities found between the clusters of
the tree-structured and full search methods.
Given an initial tree with too many terminal nodes, there exist other ways for obtaining

candidate smaller trees, besides looking at the pruned subtrees. We note that one could
agglomerate nodes from disparate branches of the initial large tree; this ignores the hi-
erarchical aspect of our TSVQ approach, but much might be gained in parsimony and
biological plausibility. Such combining would amount to forming what are calledtrellis
codesby engineers andreticulated classificationsby systematic biologists. This approach
might be a post-processor, not only to the tree-structured vector quantizers, but also to the
full search quantizers whose descriptions follow. It may be that some systematic biologists
would prefer hierarchical to reticulated classifications.

3. Results

3.1. Tree-structured vector quantization

We first grew the tree as large as possible, with the only restriction being that overall
distortionmust be reducedbyat least 1% to continuesplittingand that splits thatwould result
in nodes with fewer than 10 sequences could not be made because such small subgroups
would be difficult to interpret. These small subgroups did not appear until late in the splitting
process. The fully grown tree consisted of 35 nodes, 18 of which were terminal nodes. The
leaves ranged in size from 13 to 51. After pruning, the admissible trees had 1, 4, or 10
through 17 terminal nodes. The lack of admissible trees of between 5 and 9 nodes made
difficult the task of finding a “best” tree. The plot of distortion vs. number of terminal nodes
was not informative for this reason.
The gap statistic, discussed in Methods, was used to help determine the optimal tree. One

thousand times, the data were permuted within each site, and the same growing and pruning
process utilized on the original data was repeated. For the trees based on permutation, the
smallest trees that contained more than one terminal node always contained 18, 19, or 20
terminal nodes; the smallest permutation trees were larger than the largest original trees. To
estimate the first term in the gap statistic, we linearly interpolated between the root node
tree and the second smallest tree. The gap statistic increased 40% between trees with 4 and
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Fig. 4. The 10-leaf tree for the 434 sequences: internal nodes are labeledA–I, and terminal nodes are labeled 1–10.
Numbers in parentheses indicate number of sequences belonging to a node. The number associated with a split of
the tree indicates the order in which that split was made.

10 terminal nodes. For the trees of 10–17 terminal nodes, the gap fluctuated up and down.
The largest gap was actually for the 17 terminal node tree, but we have chosen to report
the 10 terminal node tree. The gap is less than 10% smaller than that of the 17 node tree,
and the gap statistic is known, in some contexts, to overestimate the optimal cluster size
(Dudoit and Fridlyand, 2001).
Fig. 4contains a diagram of the 10 terminal node tree. Labeling isA–I for internal nodes

and 1–10 for terminal nodes. For each node, the number in parentheses indicates the number
of sequences that belong to that node.Each split of the tree is illustratedbyapair of diverging
arrows and has a number associated with it that indicates the order in which that split was
made. It can be seen that the tree is not completely balanced, with as few as two splits or as
many as four splits leading to a terminal node. The sizes of the terminal nodes range from
as few as 19 in cluster 4 to as many as 69 in cluster 9.Fig. 5shows the raw data organized
by site and the sequences randomly ordered, whileFig. 6 shows the same data with the
sequences sorted into clusters. Areas with vertical black lines are homogeneous. Note the
difference in homogeneity within sites 10, 22, 25 after clustering. Nevertheless, with this
number of terminal nodes, the clusters are not close to being homogeneous within every
site. One interesting example is site 6. For this site, 396 of the 434 residues are N. For all
but cluster 3, the site is almost homogeneous with just the N residue. For that cluster, the
site is very heterogeneous.
It is a difficult task to summarize the results of this clustering process. One way to begin

is to examine the consensus sequences for the nodes of the tree. The consensus sequence
for a node has as itsj th residue that with the largest value among the corresponding #A(j)

coordinates of the centroid for the node. These consensus sequences are presented inFig.
7. As in Fig. 4, the columns corresponding to internal nodes are labeled A–I, and those for
terminal nodes are labeled 1–10. Nodes are called “siblings” if they share the same parent
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Fig. 5. Heat map of unordered data. Rows are sequences and columns are residues within sites. Vertical gray
lines separate sites. Black corresponds to a residue being present and white to absent. Black vertical lines imply
homogeneity.

Fig. 6. Heat map of TSVQ ordered data. Details are the same as inFig. 5, except that sequences are ordered by
cluster and that horizontal gray lines separate clusters. Note the increased homogeneity at many sites.

node. Boxed entries indicate cases where the consensus amino acid at a site differs between
a pair of siblings. The first column shows the overall (root node) consensus sequence.
The next two columns contain data for internal nodes B and C, the two children of the
root node. As shown by the boxed entries, their consensus sequences differ in 5 places:
sites 5,10,12,18,22. On the simplest level, this suggests that these sites are of particular
importance in distinguishing possible biologically relevant groups of HIV variants, and
it also raises the possibility that these 5 sites, or some subset of them, vary together in
functional ways. Examining differences in other pairs of siblings reveals that sites 12 and
25 are also frequently involved in distinguishing clusters.
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Fig. 7. Consensus sequences for all nodes of the 10-leaf tree. The columns corresponding to internal nodes are
labeled A–I. The columns corresponding to terminal nodes are labeled 1–10. Boxed entries indicate cases where
the consensus amino acid at a site differs for two nodes that have the same parent.

In fact, having siblings that differ in their consensus sequences is not always of paramount
importance, since the consensus is sometimes determined by only a very small difference
between the most frequent and the next most frequent residues. Instead we can look at
which sites, as the result of a split in the tree, experience the greatest difference in their
proportions within the resulting two children nodes. These results are presented inTable 1.
The nine tree splits are numbered as inFig. 4. For each of the nine splits,Table 1shows
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Table 1
The 6 sites with the greatest absolute difference in proportions between left and right child as a result of a given
split for the 434 sequences

Sites with greatest “purification”

Split 1 2 3 4 5 6

1 10K 5N 22A 12I 18Q 12T
2 19A 19V 10T 20F 22T 32K
3 18Q 18R 13R 22A 22T 25D
4 22T 22A 25Q 20F 16W 13H
5 16P 29D 13H 31R 11R 31G
6 20F 25Q 14I 20W 14L 11R
7 13R 13H 19A 14I 19T 32K
8 25E 25D 13H 10K 24G 10R
9 25E 25D 11S 25Q 2I 25K

the six coordinates of the binary vector that result, in order of decreasing magnitude, in the
greatest difference in proportions between the children. Thus for the split of the root node,
the residue K appearing at site 10 experienced the greatest “purification” as a result of the
split of the root node. In actual numbers, 62.0% of the root’s sequences hadA at site 22. The
left and right children of the root node hadA appearing in, respectively, 81.1% and 1.9% of
their sequences. In this sensewe can say that the K residue has been somewhat “purified” by
this first split. Site 12 crops up twice for the root node split, since at site 18 both the residues
I and T (corresponding to distinct coordinates in the binary vector) become considerably
more pure as a result of the split. The root node has 74.0% of I’s at site 12, and 10.8% of
T’s. For the left child of the root node, those numbers become 86.3% and 0%, whereas for
the right child, they are 35.2% and 44.7%. Several sites, notably 13, 18, 22, and 25 figure
prominently in the table. There are numerous pairs of sites that appear to vary together
in that they both register sharp increases in purity for more than one split. For example,
(22,10), (22,18), (22,20), (25,23), (25,20), (25,22) and (32,19) are examples where pairs
of sites figure in more than one split.Table 1identifies one triple of sites (25,22,13) that
appeared twice.

3.2. Full search vector quantization

Table 2presents the consensus sequences for the 10 clusters of the FVQ. Here there is no
hierarchical relationship between different clusters, and the clusters could be indexed from
1 to 10 in an arbitrary manner. These 10 clusters were compared against those from the
tree-structured VQ, and so we chose to index the FVQ clusters to match the most similar
TSVQ clusters. For each of the TSVQ clusters(Ai, i = 1,2, . . . ,10), and for each of the
FVQ clusters(Bj , j = 1,2, . . . ,10) we counted the number of sequences belonging to
clusterAi which also appeared in clusterBj , and we denote this quantity #(Ai�Bj ). The
total number of sequences appearing in eitherAi or Bj is denoted #(Ai ∪ Bj ). Then a
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Table 2
Consensus sequences for the 10 partitions of the full search vector quantizer

1 2 3 4 5 6 7 8 9 10

# 32 29 29 26 75 10 75 48 19 91

1 C C C C C C C C C C
2 T T T T T T T T T T
3 R R R R R R R R R R
4 P P P P P P P P P P
5 S Y Y N N F N N N N
6 N N N N N K N N N N
7 N N N N N K N N N N
8 T T I T T T T T T T
9 R R R R R R R R R R

10 T Q Q K K T K K R K
11 S S R S S S S G R S
12 I T T I I V I I I I
13 T H P H R R H H S H
14 I I I L I I I I I I
15 G G G G G G G G G G
16 P P L P P P P P P P
17 G G G G G G G G G G
18 Q Q Q R Q R R R R R
19 V A A A A V A A A A
20 F L L W F F F F F F
21 Y Y Y Y Y Y Y Y Y Y
22 R T T T A K A A A T
23 T T T T T T T T T T
24 G G G G G G G G G G
25 D K R Q D t1 D E t2 E
26 I I I I I T I I I I
27 I I t3 I I I I I I I
28 G G G G G G G G G G
29 D D D D D D D D D D
30 I I I I I I I I I I
31 R R t4 R R R R R R R
32 K Q Q Q Q K Q Q Q Q

Thesymbolst1, t2, t3, t4 denote cases where the consensus amino acid at the site is a tie between E/S/A, G/Q, I/K/T, and R/G, respectively. The row labeled #
indicates the number of sequences that belong to the given partition.
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measure of closeness between two clusters is given by

�(Ai, Bj ) = #(Ai�Bj )

#(Ai ∪ Bj )
.

If two clustersA andB are identical, then�(A, B)=1. If they are disjoint, then�(A, B)=
0. The values for the various TSVQ and FVQ clusters are given inTable 3. The table also
shows the number of sequences in each TSVQ and FVQ cluster. For example, FVQ cluster
1 has 32 sequences, and so the (1,1) entry of32

44 indicates that FVQ cluster 1 is completely
contained in TSVQ cluster 1. Table entry (3,3) is2732, indicating that TSVQ cluster 3 and
FVQ cluster 3 are the two clusters that are closest together.

3.3. Agglomerative cluster analysis

Tree-structured clustering is familiar in a taxonomic context. We wished to compare
the tree topology produced by TSVQ against that produced by the UPGMA algorithm
(unweighted pair group method using arithmetic averages), which is also known as the
average linkagemethod.We used the implementation provided in thehclustfunction, which
is part of themva library in the statistical language R. The UPGMA method operates on
raw data provided as a table of distances between all pairs of sequences. We calculated the
distances in exactly the same way as for the vector quantization routines. After initializing
the process by considering each individual sequence to be a cluster, the UPGMA tree is
constructed by successively linking the two least distant clusters. When two clusters are
linked, they lose their individual identities and are subsequently referred to as a single
cluster. At each stage in the process, two clustersi and j are merged into one, and the
total number of clusters declines by one. The distance from the new merged cluster to
another clusterk (k �= i, j) is now the average of the distances fromi to k and fromj

to k, where the distances are weighted by the number of sequences contained ini and
j . The process is complete when the last two clusters are merged into a single cluster
that contains all sequences. Thus the TSVQ and UPGMA clustering methods have very
different philosophies. Tree-structured VQ is a divisive or “top-down” clustering method
which begins by viewing the entire data set as one cluster, and it successively partitions the
input space into smaller pieces. An agglomerative or “bottom-up” clustering method such
as UPGMA attempts to form clusters by successively merging together the least distant of
the clusters found up to that point.
A UPGMA tree was constructed for the complete data set of 434 sequences. The result

is shown inFig. 8.

4. Discussion

The threemethods (TSVQ, FVQ, andUPGMA) all provide a partitioning of the sequence
space. One would like to explore the degree of overlap between the sets of clusters. The
TSVQ and UPGMA methods both provide a hierarchical summary of sequence similarity,
whereas the FVQ does not. In principle, one would like to compare the tree topologies
produced by TSVQ and UPGMA as well.
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Table 3
Overlap between the FVQ and TSVQ clusters

TSVQ clusters
1 2 3 4 5 6 7 8 9 10

# 44 31 30 19 44 34 63 49 69 51

1 32 32
44 0 0 0 0 0 0 0 0 0

2 29 0 26
34 0 0 0 0 0 0 3

95 0

F 3 29 0 2
58

27
32 0 0 0 0 0 0 0

V 4 26 1
69 0 0 18

27 0 2
58

1
88

3
72 0 1

76

Q 5 75 2
117 0 0 0 44

75
29
80 0 0 0 0

6 10 9
45 0 1

31 0 0 0 0 0 0 0

7 75 0 0 0 0 0 2
107

40
98

33
91 0 0

8 48 0 0 0 0 0 1
81

13
98

13
84

14
103

7
92

9 19 0 3
47

2
47

1
37 0 0 9

73 0 4
84 0

10 91 0 0 0 0 0 0 0 0 48
112

43
99
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Fig. 8. The UPGMA tree.

Both the TSVQ and FVQ methods produced 10 clusters. The former was chosen, in
part, by the gap statistic, while the latter was chosen to be the same size as the former. At
one extreme, the UPGMA method can be considered to produceN = 434 clusters, where
each cluster consists of a single sequence. It is not meaningful to compare the degree of
overlap between this clustering and that provided by the VQ methods. In the process of
agglomerating, however, the UPGMA method progressively groups thoseN clusters to-
gether into fewer and larger clusters. For purposes of comparison, these clusters could be
used as the UPGMA output. This would correspond to a type of pruning on the UPGMA
tree. This type of reduction did not prove feasible in practice, given the highly unbalanced
nature of the UPGMA tree topology. For example, a reduction to two clusters would have
one cluster containing a single sequence, and the other containing 433 sequences. Sim-
ilarly, a reduction to three clusters would have two containing a single sequence each,
and a third containing 432 sequences. This type of tree shape is sometimes referred to as
“splintering” because, with a clustering method that uses splitting, it corresponds to repeat-
edly shaving off small splinters of data from the main group. The TSVQ tree “splinters”
much less; other than the first split into 105 and 329 sequences and the third into 78
and 251 sequences, the tree maintains somewhat balanced numbers on the two sides of
all splits. When the UPGMA output is pruned back from 434 to 5 clusters, a splinter of
30 sequences is found that has an overlap of 26 (86.7%) with TSVQ cluster 3 (which is
also of size 30). However, it proved infeasible to prune the UPGMA down to a reason-
able number of clusters without having the majority of them representing tiny splinters
(individual sequences, or groups of two). When reduced to 10 clusters, the UPGMA tree
had memberships of 399, 27, and 8 singletons. We note that in the analysis of (Korber
et al., 1994, involving maximum-linkage clustering on the 15 amino acids spanning the
crown of theV3 loop), the same phenomenon of splintering is also apparent in the resulting
tree.
The splintering, of course, makes it difficult to compare the UPGMA clusters against the

others in anymeaningful way.When reduced to 50 clusters, theUPGMA tree hadone cluster
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with 351 sequences (306 of which overlapped with node B ofFig. 4, the TSVQ tree), one
with 11 sequences, and 48 with fewer than 10 sequences, 37 of which were singletons.With
100 clusters, there were only four with more than 10 sequences. One had 71 sequences, 69
of which were in Node E of the TSVQ tree. Another had 177 sequences, all of which were
in node B. Another had 13 sequences, 10 of which overlapped with node 4. Another had 31
sequences, all of which were in node 1. Interestingly, they were the same 31 sequences that
were in a daughter node of 1, which was pruned from the 10 terminal node tree. Clearly,
there was some similarity between the UPGMA and TSVQ trees.
It is, of course, not strictly necessary to have a hierarchical summary of sequence simi-

larity. The type of clustering provided by the full search vector quantizer may be all that is
required.Table 3showing the symmetric differences between the TSVQ and FVQ clusters
indicates that there is, in any case, a strong similarity between the hierarchical and non-
hierarchical VQ summaries of sequence similarity. The first FVQ cluster with 32 sequences
is fully contained in a TSVQ cluster 44 sequences. The second and third TSVQ and FVQ
clusters are very similar, with overlaps of26

34 and
27
32. The third, as mentioned earlier, over-

laps strongly with the second biggest cluster of the 10 cluster UPGMA. TSVQ cluster 4,
has 19 sequences, 18 of which are contained in FVQ cluster 4, which is of size 26. TSVQ
cluster 5 has 44 sequences, all of them contained in FVQ cluster 5, which is of size 75. As
we go deeper into the TSVQ tree, the differences between the two are more substantial.
Nevertheless, many of the conclusions that could be drawn from the TSVQ tree clustering
could also be drawn from the FVQ clustering.
There should be some reconciliation between the paper by (Bickel et al., 1996) and this

one, as it involved many of the same co-authors. That paper even refers to covariation of
V3 loop amino acid sites in its title. In the cited paper several different statistics were used
to quantify covariation by pairs of sites. At one point we thought that lower within cluster
attained significance levels for such statistics would indicate “good” clustering. However, to
look for covariation between sites is to ignore invariant sites. One intuitive notion regarding
“good” clusters would be those with all invariant sites, that is to say, those that necessarily
lacksignificant covariation. While it remains a challenge to combine the two appealing but
rather opposing goals, some inferences can be drawn at this point. We compareFig. 5and
Table 1here with the previousTable 3(p. 1407), noting that our numbering scheme is not
the same (24 now was 23 in Bickel). Here, sites 3, 4, 6, 9, 15, 17, 21, 23, 24, 26, 28, and
30 have the same consensus amino acid at every node, internal or otherwise. Of these, only
site 6 (there 5) has any significant variation in the earlier list of pairs, and (like most other
pairs) it does not covary significantly with any other site by what is termed theP -statistic
for the set of data analyzed here. Note that here we can consider two amino acids to covary
if they figure inTable 1together at the same split or along any path from root to a terminal
node of our tree. Necessarily there are 10 paths. Some, like splits 1–3–7, are quite different
from, say, splits 1–2, while others are similar in pairs. Thus, 1–2–5 leads to terminal nodes
2 and 3.
Substitutions atwhat here are termedsites 11and13havebeen implicatedasdeterminants

of cell tropism, and this was one of the most important connections found before. See
Chesboro et al. (1992), Fouchier et al. (1992), Westervelt et al. (1992)andMilich et al.
(1993). In Table 1, sites 11 and 13 are listed at 8 of the 54 among those with “greatest
purification”.
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Chesboro et al. (1992)showed that a single change at site 13 from S to H created a non-
infectious virus. Note that S is not the consensus amino acid for any of our nodes, while H
is for nearly all. Chesebro et al. also say that altering site 13 in conjunction with sites 21–30
causes a phenotypic switch from T tropic to macrophage tropic. But now study bothFig. 4
andTable 1. Notice that site 13 covaries substantially with sites 21–30 at both splits 3 and
8, and also that split 3 precedes split 8 in a path from the root node to terminal nodes 7 and
8, the second and fourth largest of our terminal nodes. Split 3 is in the path from root node
to terminal nodes 9 and 10, respectively the largest and third largest of our terminal nodes.

5. Conclusions

There are many limitations to the analyses presented here. These include the prob-
lems associated with our data sets: haphazard rather than representative data (“founder
virus effects,” unknown epidemiological clustering, unrepresentive sampling from differ-
ent groups of individuals in terms of geography, disease status, treatment with antivirals,
etc., see (Korber et al., 1993)), and the sparseness of the data (because many sites in theV3
loop are not so variable, and the amino acids other than the consensus may appear rarely).
It is difficult in any case to summarize the results of the clustering methods in a simple and
meaningful way, and it would be difficult to establish significance levels for the various
assertions one can make. We also have little theoretical justification for our choice of the
10 terminal node tree. Nevertheless, we believe that the framework of vector quantization
is very general, and it is likely to prove a useful tool in the search for simple summaries of
genetic variability and covariability. There is flexibility in designing the measure of distor-
tion, in terms of weights at one site (that is, distortion as it applies to two amino acids at a
single site) and in terms of combining distortions fromdifferent sites. Because the algorithm
for design explicitly tries to minimize the distortion at each step, it will tend to maximize
the degree of similarity among the sequences in a cluster. If our data are typical, then the
algorithm also tends to produce fewer “splinters” than does UPGMA.
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