
ECE 253a Handout #14 11/11/10

LEMPEL-ZIV CODING

Flavors of LZ coding:
Most adaptive-dictionary-based techniques have
their roots in two landmark papers by Jacob Ziv and
Abraham Lempel in 1977 and 1978.
In the LZ77 paper, the approach was to encode
the next string by using the recently encoded past.
Within the search buffer, the encoder would search
for the longest match to the next string. The encoder
would encode the position of the longest match in
the search window (called the offset) and the length
of the match. Several methods have been proposed
for handling the situation where the next symbol to
be encoded does not occur at all in the recent past.
The offset and the length can themselves be variable-
length coded or fixed-length coded.
The type discussed in this handout is from the LZ78
family, in which an explicit dictionary is created
identically at encoder and decoder.

• An input sequence is recursively parsed into
nonoverlapping blocks of variable size while
constructing a dictionary of blocks seen so far

• The dictionary is initialized with the available
single symbols, 0 and 1 for a binary source

• Each successive block in the parsing (encoding)
is chosen to be the longest wordw that has ap-
peared in the dictionary

• If the next symbol afterw is a, the wordwa

formed by concatenatingw anda is not in the
dictionary. We add it to the dictionary and go
on, witha becoming the first symbol in the next
block to be coded.

Example of encoding: We wish to encode the fol-
lowing binary string: 01100110010110000100110
We begin with the table

Input string Entry # Dictionary Index
0 0 00000000
1 1 00000001

Step 1: Longest string in Table = 0
Output entry # = 0
Add to table: 01
pointer = 2. The pointer indicates which symbol will
start the next block to be encoded. New table is:

Input string Entry # Dictionary Index
0 0 00000000
1 1 00000001
01 2 00000010

Step 2: Longest string in Table = 1
Output entry #= 1
Add to table: 11
pointer = 3.

Input string Entry # Dictionary Index
0 0 00000000
1 1 00000001
01 2 00000010
11 3 00000011

Step 3: Longest string in Table = 1
Output entry # = 1
Add to table: 10
pointer = 4.

Input string Entry # Dictionary Index
0 0 00000000
1 1 00000001
01 2 00000010
11 3 00000011
10 4 00000100

Step 4: Longest string in Table = 0
Output entry # = 0
Add to table: 00
pointer = 5.

Input string Entry # Dictionary Index
0 0 00000000
1 1 00000001
01 2 00000010
11 3 00000011
10 4 00000100
00 5 00000101

Step 5: Longest string in Table = 01
Output entry # = 2
Add to table: 011
pointer = 7.

1



Input string Entry # Dictionary Index
0 0 00000000
1 1 00000001
01 2 00000010
11 3 00000011
10 4 00000100
00 5 00000101
011 6 00000110

Step 6: Longest string in Table = 10
Output entry # = 4
Add to table: 100
pointer = 9.

Input string Entry # Dictionary Index
0 0 00000000
1 1 00000001
01 2 00000010
11 3 00000011
10 4 00000100
00 5 00000101
011 6 00000110
100 7 00000111

Step 7: Longest string in Table = 01
Output entry # = 2
Add to table: 010
pointer = 11. And so forth.

Decoder operation:

The decoder starts with the same table and hence im-
mediately decodes the first symbol as a 0 and the sec-
ond as 1. The decoder recognizes the new string 01
and adds it to its table as entry # 2. The next sym-
bol is a 1, which means that an input of 1 was seen
by the encoder. The decoder sees the string 11 ter-
minating with the current symbol and adds it to its
table as entry # 3. On seeing the fourth symbol 0, the
decoder again knows that the encoder saw a 0, and it
recognizes the sequence 10 terminating with the cur-
rent symbol as a new one for its table with index 4.
etc.

A fix to this basic LZ algorithm:
The algorithm as described can have a problem, in
that the encoder can add an entry to its dictionary and
then use it immediately, before the decoder seem-
ingly knows what it is. But there is a way the decoder
can figure out this type of case. Here is an example of
the problem with a ternary alphabet{0,a,b}. Initial
table:

Input string Entry #
0 0
a 1
b 2

The input sequence is a000ba0a...
The encoder will take the following actions:

Step Send New Entry Entry #
1 1 (for a) a0 3
2 0 (for 0) 00 4
3 4 (for 00) 00b 5
4 2 (for b) b0 6
5 3 (for a0) a0a 7

The decoder will receive the index for entry 1 and
will decode the “a”. Then it will receive the index
for entry 0 and decode a “0” and additionally will be
able to add the word a0 to its dictionary with index
3. But then the decoder receives the index for entry
4! And it doesn’t yet have entry 4 in its dictionary!
But the decoder is able to figure this out. It knows
that entry 4 (the current block) must have the form x?
where x is the previously encoded block, and ? is a
single letter. Since the previously encoded block was
a 0, entry 4 must be of the form 0?. But the decoder
also knows that the last letter of the last block (the
last letter is the ?) is the first letter of the current
block (the current block is 0?) so ? is 0. Thus entry
4 is 00, and the decoder can go on.

2


