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ABSTRACT

We study the problem of low-rank and sparse decomposition
from possibly noisy observations. We propose a novel objec-
tive function with nuclear norm on the low-rank term and `0-
’norm’ on the sparse term, as well as `1-norm on the additive
noise term. When there is no dense inlier noise, the proposed
method shares the same theoretical guarantee as the Principal
Component Pursuit (PCP), i.e., it can recover the low-rank
component and sparse component exactly with high probabil-
ity. Simulations in the noisy case demonstrate that the pro-
posed method outperforms existing state-of-the-art methods.
Results on a surveillance video application further verify the
effectiveness of the proposed method.

Index Terms— `0 regularization, low-rank matrix, sparse
matrix, Sparsity Regularized Principal Component Pursuit

1. INTRODUCTION

Recovering the low-rank matrix L0 and sparse matrix S0

from their composition M (possibly with additional dense
noise) has been extensively studied recently. This problem
was first studied in the noiseless case [1][2][3], known as
Robust PCA. The formulation of this problem is [2]:

min
L ,S

rank(L) + γ‖S‖0 s.t. M = L + S , (1)

which is known to be NP-hard. However, [1][2][3][4] show
that by relaxing rank to nuclear norm and `0-’norm’ to `1-
norm, i.e.,

min
L ,S
‖L‖∗ + λ‖S‖1 s.t. M = L + S , (2)

known as Principal Component Pursuit (PCP), one can re-
cover both L0 and S0 exactly with high probability under cer-
tain conditions by solving this convex problem. In real world
applications, besides the sparse ’corruptions’ S0, there is also
small magnitude dense inlier noise G . The model becomes:

M = L0 + S0 + G (3)
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Zhou et al. [5] solved the following relaxed version of (2),
known as Stable Principal Component Pursuit (SPCP):

min
L ,S
‖L‖∗ + λ‖S‖1 s.t. ‖M − L − S‖F ≤ δ. (4)

It was shown that the estimation error can be bounded. Hsu
et al. [6] proposed the Lagrange form of (4):

min
L ,S
‖L‖∗ + λ‖S‖1 +

1

2µ
‖M − L − S‖2F . (5)

In light of M-estimators, He et al. [7] proposed to replace
‖S‖1 with implicit regularizers of robust M-estimators, i.e.,
ϕ(S), then solving the following problem:

min
L ,S

µ‖L‖∗ + ϕ(S) +
1

2
‖M − L − S‖2F . (6)

In [8] and [9], the authors proposed the following greedy
approach, which was solved via alternating minimization.

min
L ,S
‖M − L − S‖2F s.t. rank(L) ≤ r, ‖S‖0 ≤ k. (7)

Recently, Netrapalli et al. [10] proposed a provable non-
convex approach that alternates between projecting appro-
priate residuals onto the set of rank-k matrices, and the set
of sparse matrices, where the rank k (as well as the sparsity
level) is gradually increased towards the target rank.

Also in a recent work [11], the authors proposed to use an
`0 penalty to enforce both sparsity and low rank:

min
A ,B ,S

‖M −ABT −S‖2F +h2‖S‖0 s.t. BTB = I r. (8)

However, these methods need to input rank (and sparsity),
which are usually unknown in practice and hard to specify.

In this paper, we propose a novel objective function and
the associated algorithm to recover the low-rank component
L0 and sparse component S0 of a matrix, where we relax the
rank to nuclear norm, but use `0 regularization to directly en-
force the sparsity of S0 instead of relaxing it to the `1-norm.
We call our proposed algorithm Sparsity Regularized Princi-
pal Component Pursuit (SRPCP). Comparing with [8-11], our
method does not need any prior knowledge of rank and spar-
sity, which are recovered automatically.
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We will introduce our objective function and the associ-
ated algorithm in Section 2. Theoretical guarantees for the
proposed algorithm are studied in Section 3. Section 4 em-
pirically studies the performance of the proposed method and
demonstrates a real application. Conclusions and future work
are discussed in Section 5.

Notation: Throughout this paper, bold capital letters de-
note matrices, e.g., L , where L (k) denotes the updated L in
the kth iteration. ‖L‖∞, ‖L‖1, and ‖L‖0 denote the `∞-
norm, `1-norm, and `0-’norm’ of L seen as a long vector, re-
spectively, while ‖L‖F and ‖L‖∗ denote the Frobenius norm
and nuclear norm of the matrix L , respectively.

2. SPARSITY REGULARIZED PRINCIPAL
COMPONENT PURSUIT

We propose minimizing the following objective function to
recover the low-rank component and sparse component:

J(L ,S) = ‖L‖∗ + β‖S‖0 + λ‖M − L − S‖1 (9)

We use the alternating minimization approach to mini-
mize the nonconvex objective function in (9), which directly
operates on the `0-’norm’ and alternates between the follow-
ing two steps. The procedure is summarized in Table 1.

Step 1: Fix S (k), update

L (k+1) = argmin
L
‖L‖∗ + λ‖M − S (k) − L‖1

Step 2: Fix L (k+1), update

S (k+1) = argmin
S

β‖S‖0 + λ‖M − L (k+1) − S‖1

At first glance, it seems more reasonable to use the Frobe-
nius norm rather than the `1-norm in the third term of the
objective function (9) and in Step 1, especially for Gaussian
noise. We want to point out that, in Step 1 of each iteration,
we do not expect that all the outliers are identified by the pre-
vious iteration. It is likely some outliers are not identified.
Even for the identified outliers, their magnitudes are usually
not correct before the algorithm converges. So it is safer to
use the `1-norm in Step 1 than the Frobenius norm, which is
very sensitive to large residuals. A similar spirit can be found
in our robust linear regression work.

At the beginning, we have no information about outliers
except sparsity, so we simply initialize S (0) = 0 . Then in
Step 1 of the first iteration, SRPCP solves the following:

min
L
‖L‖∗ + λ‖M − L‖1, (10)

which is equivalent to PCP in (2).
Solutions for Each Step:

In Step 1, the subproblem is convex and can be recast as
PCP with the data matrix (M − S (k)). Various algorithms

have been proposed to solve that, e.g., Augmented Lagrange
Multiplier (ALM) Method [12], Accelerated Proximal Gradi-
ent [13], and Singular Value Thresholding [14].

In Step 2, though the subproblem is not convex, we can
directly derive its global solution through entrywise thresh-
olding, which is detailed in Table 1.

Table 1. Sparsity Regularized Principal Component Pursuit

Input: M, β, λ
Initialization: k = 0, S (0) = 0
While J(L ,S ) not converged DO:

Iteration k + 1

Step 1: fix S (k), update
L (k+1) = argminL ‖L‖∗ + λ‖M − S (k) − L‖1

Step 2: fix L (k+1), update

S (k+1)
i,j =

{ 0, |(M − L (k+1))i,j | ≤
β
λ

(M − L (k+1))i,j , otherwise
End While
Output: L̂ and Ŝ

From Step 2 of SRPCP, if any entry of |M − L (k+1)| is
larger than β

λ , this entry will be considered as an outlier cor-
rupted entry. In general, βλ should be set at least larger than
the inlier noise level, e.g., could be set as several times the
standard deviation of inlier noise. In practice the parameter
λ is fixed, and adaptation to the noise level is transferred to
parameter β.

3. THEORETICAL ANALYSIS

In this section, we study the main properties of SRPCP. It
is shown to share the same exact recovery guarantee as PCP
when there is no dense inlier noise. The analysis benefits
greatly from the analysis of PCP [3]. We first quote the in-
coherence condition with parameter µ from [3]:

The singular value decomposition of L0 ∈ Rn1×n2 is

L0 = Udiag(σ1, ..., σr)V∗ =

r∑
i=1

σiuiv
∗
i ,

where r is the rank of L0, σ1, ..., σr are the positive singular
values, and U = [u1, ..., ur],V = [v1, ..., vr] are the matri-
ces of left- and right-singular vectors. Then, the incoherence
condition with parameter µ states that

max
i
‖U∗ei‖2 ≤

µr

n1
, max

i
‖V∗ei‖2 ≤

µr

n2
(11)

and

‖UV∗‖∞ ≤
√

µr

n1n2
. (12)

Theorem 1. (Exact recovery in noiseless case) Suppose
L0 ∈ Rn×n obeys the incoherence condition with parameter
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µ. Fix any n × n matrix Σ of signs. Suppose that the sup-
port set Ω of S0 is uniformly distributed among all sets of
cardinality m, and that sgn((S0)i,j) = Σi,j for all (i, j) ∈ Ω.
If

rank(L0) ≤ ρrnµ−1(log n)−2 and m ≤ ρsn2, (13)

where ρr and ρs are positive numerical constants, then there
is a numerical constant c such that with probability at least
1 − cn−10 (over the choice of support of S0), SRPCP with
λ = 1√

n
and any β > 0 recovers L0 exactly in two iterations.

If additionally β < 1√
n

min {|(S0)i,j | : (S0)i,j 6= 0},
then SRPCP recovers both L0 and S0 exactly.

In the general rectangular case, where L0 is n1 × n2, de-
fine n(1) = max(n1, n2), n(2) = min(n1, n2). SRPCP with
λ = 1√

n(1)
and 0 < β < 1√

n(1)
min {|(S0)i,j | : (S0)i,j 6= 0}

recovers both L0 and S0 exactly with probability at least
1−cn−10(1) , provided that rank(L0) ≤ ρrn(2)µ−1 (log n(1))

−2

and m ≤ ρsn1n2.

Proof. In Step 1 of the first iteration, SRPCP solves the Ro-
bust PCA problem via (10) with λ = 1/

√
n. From Theorem

1.1 of [3], we know there is a numerical constant c such that
with probability at least 1− cn−10, L (1) = L0.

In the following, we prove that if L (1) = L0, we must
have L (2) = L0, thus SRPCP converges. Then with proba-
bility at least 1− cn−10, SRPCP recovers L0 exactly.

In Step 2 of the first iteration, as L (1) = L0, for any
β > 0, S (1) will be a trimmed version 1 of S0.

In Step 1 of the second iteration, SRPCP solves

L (2) = argmin
L
‖L‖∗ + λ‖M − S (1) − L‖1 (14)

= argmin
L
‖L‖∗ + λ‖(L0 + S0)− S (1) − L‖1 (15)

= argmin
L
‖L‖∗ + λ‖L0 + (S0 − S (1))− L‖1 (16)

As S (1) is a trimmed version of S0, (S0 − S (1)) must also be
a trimmed version of S0. From Theorem 2.2 of [3], we know
that Robust PCA with data matrix L0 + (S0 − S (1)) is exact
as well, i.e., L (2) = L0.

L (2) = L (1) implies S (2) = S (1), so SRPCP converges
in two iterations and recovers L0 exactly. If additionally
β < 1√

n
min {|(S0)i,j | : (S0)i,j 6= 0}, we must have S (2) =

S (1) = S0 according to Step 2 in Table 1. Thus SRPCP re-
covers both L0 and S0 exactly.

1S
′

is said [3] to be a trimmed version of S if supp(S
′
) ⊂ supp(S) and

S
′
i,j = S i,j whenever S

′
i,j 6= 0.

4. EMPIRICAL STUDIES

In this section, we first empirically study and compare the
proposed method with SPCP and He’s implicit regularizer
(GAPG Welsch) [7] that corresponds to Welsch M-estimation
on the noisy simulated data. Then we demonstrate the effec-
tiveness of the proposed method on a real application.
Comparison on simulated data: For SPCP, it is solved via
Alternating Direction Method with Increasing Penalty (AD-
MIP) [15]. For GAPG Welsch, we use the author’s algorithm,
where the parameter is tuned as the author did to give better
results. For our Step 1, we use Augmented Lagrange Mul-
tipliers (ALM) [12] to solve it. Our experimental setup is
similar to [15], which is as follows:

1. Given the rank r, the low-rank component L0 is built as
L0 = ABT , where A and B are randomly generated
n× r standard Gaussian matrices;

2. Given the fraction ρ (corruption rate) of non-zero en-
tries in S0, the support of S0 is chosen uniformly at
random with size k = round(ρn2), and the value of
each non-zero entry is independently drawn from a uni-

form distribution over the interval [−
√

8r
π ,

√
8r
π ];

3. Each entry of the noise G is independently drawn from
a Gaussian distribution with mean 0 and variance σ2.

4. Finally, generate M = L0 + S0 + G . Estimate L0 and
S0 from M using different methods.

We set n = 50, σ = 0.01, λ = 1/
√
n, and β = 5σ ×

λ in the experiment. For each r ∈ {10%n, 16%n}, and
each ρ ∈ {0.01 : 0.01 : 0.20}, we repeat the above proce-
dure 100 times. For evaluation, the estimated L̂ and Ŝ are
compared with ground truth. Besides measuring the Relative
Error ‖L̂−L0‖F

‖L0‖F and ‖Ŝ−S0‖F
‖S0‖F , we also compute the distance

between the supports of Ŝ and S0. Denoting the two supports
as Ω̂ and Ω, the distance is defined as follows [16]:

dist(Ω̂,Ω) =
max{|Ω̂|, |Ω|} − |Ω̂ ∩ Ω|

max{|Ω̂|, |Ω|}
(17)

We denote the average of dist(Ω̂,Ω) over Monte Carlo
runs as the Probability of Error in Support.

We also compare the rank of L̂ with the ground truth,
where we automatically truncate the rank of L̂ before com-
parison. More specifically, denoting the singular values of
L̂ as σ1, σ2, ..., σn in descending order, for this experimental
setup, we find the minimal j such that σj/σj+1 > 2.5 and set
it as the truncated rank of L̂ . We denote the empirical prob-
ability of not recovering the true rank over Monte Carlo runs
as the Probability of Error in Rank.

Fig. 1 shows the comparison between SPCP, GAPG Welsch
and SRPCP. SRPCP, the proposed method, often achieves the
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best results in terms of Relative Error, support recovery,
and rank recovery. GAPG Welsch fails to recover the rank
at higher corruption rates, while SPCP and SRPCP always
recover the rank correctly in the experiments.

Fig. 1. Average Relative Error of L̂ (top) and Probability of
Error in Support (bottom).

Parameter sensitivity: Both SPCP and SRPCP need the
knowledge of inlier noise level. In the above experiments, we
assume we know the standard deviation σ of the inlier noise,
and set β = 5σ × λ for SRPCP. However, in practice, the
estimated σ̂ may be slightly greater or less than the true σ,
which is equivalent to setting β slightly greater or less than
5σλ. We repeat the above experiments with rank r = 10%n,
setting β to values ranging from 2σλ to 8σλ for SRPCP.
Fig. 2 shows the Relative Error in L̂ for different values of
β. SRPCP performance is not sensitive to small variations of
β, and is better than SPCP. SRPCP with different β always
recovers the true rank in the experiments.
Experiments on real data: We now demonstrate SRPCP on
a restaurant surveillance video2, where each frame is con-
verted to a column vector. The background over the frames
is the low-rank component and the moving objects over the
frames can be considered to be the sparse component. We

2http://perception.i2r.a-star.edu.sg/bk_model/
bk_index.html

run our algorithm with the inexact ALM [12] on the first 200
frames. The recovered rank is one (after truncation), which is
reasonable. Fig. 3 shows the recovered background and mov-
ing objects as well as noise in a frame. We can see that SRPCP
successfully separated the foreground from the background.

Fig. 2. Average Relative Error of L̂ .

(a) Original frame (b) Recovered background

(c) Recovered foreground (d) Noise

Fig. 3. SRPCP background and foreground recovery.

5. CONCLUSIONS AND FUTURE WORK

A novel objective function is proposed to recover the low-rank
component and sparse component of a possibly noisy matrix.
For the case of no dense inlier noise, the proposed method
can guarantee the exact recovery with high probability under
certain conditions. For the noisy case, simulations and results
on real data demonstrate the advantage and effectiveness of
the proposed method. The theoretical guarantee for the noisy
case is our ongoing work. By analogy with our robust linear
regression work, it may be possible to show that SRPCP can
handle more non-zero entries in the sparse matrix S0 and have
a smaller error bound than SPCP.
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