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Abstract— Registration is difficult when images to be 

registered contain sparse but large-valued differences. We 

present a method for robust registration that ignores some 

fraction of large differences, while constraining the sparseness 

of these errors.  We apply the method to stabilize microscopy 

videos of C. elegans tissues, in which bright moving filaments 

and tissue wounding appear as sparse large-valued 

differences.  We demonstrate the advantage of the method on 

both synthetic and real data compared to state-of-the-art 

methods. 

I. INTRODUCTION 

We consider the problem of image registration or video 
stabilization where the images to be registered have sparse but 
large-valued differences. Such differences arise in various 
ways, for example, registering face images where one image 
includes sunglasses, or registering images of blood vessels 
before and after administration of a contrast agent. In our 
experiments, we use the nematode Caenorhabditis elegans (C. 
elegans), focusing on subcellular dynamics in skin tissues 
during wound repair in vivo. A common problem with 
acquiring live images of C. elegans, and other living genetic 
model organisms, is the inability to completely immobilize the 
animal. This problem is further pronounced when we use a 
laser to wound the epidermis to visualize subcellular dynamics 
after injury, which often provokes sudden animal movement. 
To analyze subcellular processes such as microtubule 
dynamics or vesicle transport, we first need to robustly 
stabilize the video. Bright moving filaments and the wounding 
process can all be viewed as large-valued but sparse 
differences between frames. 

Many robust image registration methods have been 
developed to handle outliers (e.g. occlusion, shadows). Rather 
than examining the similarity of actual intensity values, 
Kaneko et al. [1] proposed checking the consistency of 
intensity changes between two images. This was extended in 
[2] by using consistent pixels as a mask to calculate a selective 
correlation coefficient. However, many outliers are still used 
to compute the correlation coefficient.  Also, these methods 
are not robust to relatively large noise. 

Kim et al.  [3] proposed the Robust Correlation 
Coefficients, and Arya et al. [4] proposed the M-estimator 
Correlation Coefficient. These aim to use some robust function 
as the weight to compute correlation coefficients. Similarly, 
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robust error functions such as the Geman-McLure function [5-
7] and Huber function [5, 8] are often used in intensity distance 
measures to cope with outliers. Ishikawa et al. [9] proposed a 
robust version of the Inverse Compositional (IC [10]) method; 
in each iteration, it ignores a fixed percentage of pixels that 
have relatively large errors, although it still uses the sum of 
squared differences (SSD) as the distance function.  

The recent advances in sparse recovery and rank 
minimization inspired the work of robust alignment by sparse 
and low-rank decomposition (RASL [11]). They assume the 
matrix of transformed batch images (each column is a 
vectorized transformed image) can be decomposed as a low 
rank matrix and a sparse error matrix to handle corruption, 
occlusion, shadows, etc. However, they need the initial 
misalignment to be small, a problematic requirement for real 
applications. Also, their method cannot handle well additive 
noise that is not sparse.  

Bernard et al. [12] also model the sparse errors (e.g. pixels 
belonging to moving players in field-sports video) in their 
frame-by-frame based Robust Video Registration (RVR) 
framework. However, their framework also lacks the 
consideration of noise. Also, the updating step of 
transformation parameters in both RASL and RVR is still 
influenced by the value of estimated sparse error pixels.  

Our method also assumes sparse large-valued differences 
between the images. Our framework explicitly minimizes the 
L0-norm and can handle various additive noises as well as 
relatively large initial misalignment. We introduce our general 
framework and give a case study in Section II. In Section III, 
we focus on our particular application and demonstrate the 
value of our method. Discussion and conclusions are in 
Section IV. 

II. METHODS 

A. Problem Formulation 

Let us denote the first image as a fixed image 𝑇 ∈ 𝑅𝑚×𝑛, 
and the second image (which will be registered to the first) is 
denoted 𝐼 ∈ 𝑅𝑚×𝑛 .  We assume that these images differ in 
three ways:  (1) an underlying 2D parametric transformation 
𝑤  between 𝐼  and 𝑇 , (2) some relatively small magnitude 
additive noise e, and (3) some sparse large magnitude 
differences 𝐸  (which may include spatially clustered 
differences such as in the sunglasses example, and which may 
include some isolated large magnitude noise) between 𝑇 and 
𝐼 ∘ 𝑤  (transform 𝐼  by 𝑤 ). More precisely, we model the 
relationship between 𝑇 and 𝐼 as 𝑇 = 𝐼 ∘ 𝑤+e+ 𝐸. The errors 𝐸 
are sparse; only a small percentage of its entries are non-zero, 
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but their magnitudes are large. The goal of the registration is 
to recover 𝑤. 

We want to solve the following problem to estimate 𝑤: 

                     𝑤̂, 𝐸̂ = argmin
𝑤,𝐸

𝑑𝑖𝑠𝑡(𝑇, 𝐼 ∘ 𝑤 + 𝐸)           (1) 

 𝑠. 𝑡.  ||𝐸||0 ≤ 𝑘                                                                                                                              
where || ⋅ ||0  denotes the cardinality (number of non-zero 
entries), 𝑘 specifies the sparsity level of 𝐸  (number of non-
zero entries), and 𝑑𝑖𝑠𝑡( , )  is a distance function. In our 
application, we use Mean of Absolute Difference (MAD): 

                    𝑑𝑖𝑠𝑡(𝐴, 𝐵) =
1

𝑚×𝑛
∑ |𝐴(𝒙) − 𝐵(𝒙)|𝒙           (2) 

We express the problem (1) in a Lagrangian form: 

                   𝑤̂, 𝐸̂ = argmin
𝑤,𝐸

𝐽(𝑤, 𝐸) 

                           = argmin
       𝑤,𝐸

 𝑑𝑖𝑠𝑡(𝑇, 𝐼 ∘ 𝑤 + 𝐸) + 𝛼||𝐸||0   (3) 

where the parameter 𝛼  depends on the sparsity level 𝑘 , 
distance function, and the data, as we will see below. 

B. General Solution  

The objective function in (3) is non-convex. For the second 
term in (3), most previous work relaxes the L0-norm to its 
convex surrogate (L1-norm of 𝑣𝑒𝑐(𝐸)), but we explicitly deal 
with the L0-norm. We use the coordinate gradient descent 
approach to minimize the cost function in (3). The overall 
procedure is summarized in Algorithm 1. 

Algorithm 1 (General Solution) 

  Input: image 𝑇, image 𝐼, 𝛼 

  Initialization: 𝑤(0) as the solution of  min 
𝑤

𝑑𝑖𝑠𝑡0(𝑇, 𝐼 ∘ 𝑤);  

     𝐸(0) = argmin
𝐸

𝑑𝑖𝑠𝑡(𝑇, 𝐼 ∘ 𝑤(0) + 𝐸) + 𝛼||𝐸||0  

  While 𝐽(𝑤, 𝐸) not converged DO: 

  Step 1: fix 𝐸, update 𝑤 by ∆𝑤, where 

   𝑑𝑖𝑠𝑡(𝑇𝛿(𝐸), (𝐼 ∘ 𝑤)𝛿(𝐸) ∘ ∆𝑤) ≤ 𝑑𝑖𝑠𝑡(𝑇𝛿(𝐸), (𝐼 ∘ 𝑤)𝛿(𝐸)) 

  Step 2: fix 𝑤, update 𝐸 = argmin
𝐸

𝑑𝑖𝑠𝑡(𝑇, 𝐼 ∘ 𝑤 + 𝐸) +

                                                          𝛼||𝐸||0 

  End While 

Output: solution 𝒘̂, 𝑬̂ to problem (3) 

In Algorithm 1,  𝛿(𝐸) (𝒙) = {
1, 𝐸(𝒙) = 0

  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . 𝛿(𝐸)  is 

used as a binary mask for valid pixels. 𝑇𝛿(𝐸) denotes the set of 

valid pixels obtained by applying the mask 𝛿(𝐸) to image 𝑇. 
The basic intuition in Step 1 is that, after we estimate the large 
magnitude sparse differences 𝐸, we should not consider the 
corresponding pixels when we update 𝑤. 

In the initialization step, we use some distance function 
𝑑𝑖𝑠𝑡0( , ) which is relatively robust to sparse large errors (e.g. 
L1-norm). One may choose 𝑑𝑖𝑠𝑡0( , )  to be different from 
𝑑𝑖𝑠𝑡( , ). 

C. Determination of 𝛼  

The parameter 𝛼 balances between the value of 𝑑𝑖𝑠𝑡(𝑇, 𝐼 ∘
𝑤 + 𝐸) and the sparsity level of the large errors 𝐸. If 𝛼  is too 
large, no pixels will be considered as large sparse errors. If 𝛼 
is too small, many pixels will be considered as large “sparse” 
errors.  The parameter 𝛼 should depend on the sparsity level 𝑘 
and the data. The sparsity level 𝑘 is equal to the percentage d% 
of non-zero entries in 𝐸 times the total number of pixels. The 
parameter d% could be specified by the user or set to a nominal 
value (e.g. 0.1%). 

From Step 2 of Algorithm 1, if the contribution of some 
pixel 𝒙 to the overall distance 𝑑𝑖𝑠𝑡(𝑇, 𝐼 ∘ 𝑤) is larger than 𝛼, 
this pixel will be considered as a sparse large error. 

From the analysis above, based on the initial transformation 

𝑤(0), we order the distance value contributed by each pixel in 

𝑑𝑖𝑠𝑡(𝑇, 𝐼 ∘ 𝑤(0)). Then we set 𝛼0 as the d%th largest distance 

value. We set  𝛼 = max (𝛼0, 𝑐) (c depends on the distance 
function we use) to ensure 𝛼 is not too small. This will also 
improve the robustness of our method in case there is no large 
sparse error at all. 

Hence, no more than d% pixels will be considered as large 
sparse errors at the beginning. During the iteration, some other 
pixels may be reconsidered as sparse large errors, while some 
sparse large error pixels may be reconsidered as normal pixels. 

D. Case Study  

For the intensity-based image registration, one could use 
the common Lucas-Kanade algorithm [10, 13]. In [10], the 
transformation is modeled as a parameterized set of allowed 

warps 𝑊(𝒙; 𝒑) , where  𝒑 = (𝑝1, … , 𝑝𝑛)𝑻  is a vector of 
transformation parameters. The warping function 𝑊(𝒙; 𝒑) 
warps pixel location 𝒙 in the fixed image 𝑇 to the sub-pixel 
location 𝑊(𝒙; 𝒑) in the moving image 𝐼. 

Combining with the MAD distance function, the objective 
function in (3) now becomes: 

𝐽(𝒑, 𝐸) =
1

𝑚×𝑛
∑ |𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑)) − 𝐸(𝒙)|𝒙 + 𝛼||𝐸||

0
    (4) 

This specific objective function is still non-convex. The 
distance function here is not differentiable for the gradient 
descent approach. We approximate the absolute value |𝑡| by 

√𝑡2 + 𝜖  as in [14], where 𝜖 is set to 10−5. 

The overall procedure to minimize this objective function 
is summarized in Algorithm 2. Please refer to the Appendix 
for the derivation of Step 1. 

Algorithm 2 (Case Solution) 

  Input: image 𝑇, image 𝐼, 𝛼 

  Initialization: 

  𝒑(0) as the solution of min
𝒑

1

𝑚×𝑛
∑ |𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑))|𝒙 ; 

 𝐸(0) = argmin
𝐸

1

𝑚×𝑛
∑ |𝑇(𝒙) −  𝐼 (𝑊(𝒙; 𝒑(0))) −𝒙

                  𝐸(𝒙)| + 𝛼||𝐸||0  

   While 𝐽(𝒑, 𝐸) not converged DO: 
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Step   1:  fix 𝐸, update 𝒑 ← 𝒑 + ∆𝒑, where 

         ∆𝒑 = 𝐻−1 ∑ 𝑅′(𝐹(𝒙)2)∇𝐼
𝜕𝑊

𝜕𝒑
𝐹(𝒙)𝒙∈{𝒙|𝑬(𝒙)=𝟎}  

         𝐹(𝒙) = 𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑)) 

          𝐻 = ∑ 𝑅′(𝐹(𝒙)2) [𝛻𝐼
𝜕𝑊

𝜕𝒑
]

𝑇

𝒙∈{𝒙|𝑬(𝒙)=𝟎} [𝛻𝐼
𝜕𝑊

𝜕𝒑
] 

         𝑅′(𝐹(𝒙)2) =
1

2
(𝜖 + 𝐹(𝒙)2)−

1

2 

Step 2: fix 𝒑 , update 𝐸 = argmin
𝐸

1

𝑚×𝑛
∑ |𝑇(𝒙) −𝒙

                        𝐼(𝑊(𝒙; 𝒑)) − 𝐸(𝒙)| + 𝛼||𝐸||0  

  End While 

Output: solution 𝒑̂, 𝑬̂ that minimize (4) 

Setting 𝛼  for this objective function is straightforward. 

Based on the initial transformation 𝑊(𝒙; 𝒑(0)), we order the 

distance value contributed by each pixel 𝒙:   
1

𝑚×𝑛
|𝑇(𝒙) −

𝐼 (𝑊(𝒙; 𝒑(0)))| . Then we set 𝛼0  as d%th largest distance 

value. We set 𝛼 = max(𝛼0 , 𝑐) to ensure 𝛼 is not too small. If 
we have normalized the intensity value of the image to [0,1], 
the maximum distance value one pixel can contribute to 

1

𝑚×𝑛
∑ |𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑))|𝒙  is 

1

𝑚×𝑛
. We set  𝑐 = 0.1 ×

1

𝑚×𝑛
 . 

After 𝛼  is set, it will be fixed. In the iteration process, 

updating 𝐸 in Step 2 is also straightforward. If 
1

𝑚×𝑛
|𝑇(𝒙) −

𝐼(𝑊(𝒙; 𝒑))|  (the contribution of pixel 𝒙) is larger than 𝛼, this 

pixel will be considered as a sparse large error, and we set 

𝐸(𝒙) = 𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑)). 

III. APPLICATION & EVALUATION 

In this section, we apply the proposed method to stabilize 
time-lapse imaging videos of subcellular dynamics in the C. 
elegans epidermis in vivo. C. elegans is a genetic model 
organism widely used by biologists to investigate questions in 
numerous fields, including development, cell biology, 
neurobiology, immunity, and other aspects of basic science 
and disease. Because of the large genetic toolkit available to 
manipulate gene expression and function, and the transparency 
of the animal, C. elegans has provided a great opportunity for 
scientists to study cell biological processes in a multicellular 
organism in vivo. The continual advancement in live 
microscopy techniques and development of fluorescent 
proteins have further enhanced the popularity to use C. elegans 
to study subcellular components and their dynamics, such as 
chromatin structure, organization of organelles, intracellular 
transport, and the cytoskeleton. The nematode epidermis is a 
multinucleate syncytium, making it amenable for imaging 3D 
and 4D dynamics of various organelles and macromolecules. 
We expressed different proteins tagged to green fluorescent 
protein GFP exclusively in the epidermis, and visualized their 
localization and dynamics using a spinning disk confocal 
microscope. There are various kinds of sparse large errors 
inside the video, such as the very bright but small moving 
puncta (spots) in the epidermal cytoplasm, and the changes due 
to wounding.   

In Section III.A, we introduce the strategy to pre-initialize 
the transformation before the gradient descent based image 
registration. In Section III.B, we do simulations and 
comparisons to show the advantage of our approach. In 
Section III.C, we demonstrate the effectiveness of our method 
on real data, comparing with some state-of-the-art methods. 

A. Pre-initialization of the Transformation 

In every video, certain regions of the epidermis (e.g. 
organelles and other cell types not expressing the fluorescent 
proteins and thus appearing as silhouettes in the bright 
epidermal background, see red arrows in Fig.1) are relatively 
stable in both position and appearance for short periods of time 
(e.g. few seconds). The pixel intensities inside these regions 
are nearly uniform and different from that of the background. 
We use MSER (Maximally Stable Extremal Regions, [15]) to 
extract this kind of region. Then we adopt commonly used 
point-matching procedures to compute SURF [16] descriptors 
at these regions, and match them between the fixed and 
moving images. Finally, the initial transformation is estimated 
by MSAC [17] based on these matched feature points. 

B. Simulation 

In this section, we simulate the bright moving puncta as 
well as the wounding process on real images. The first image 
is the fixed image with some simulated bright puncta. To 
generate the moving image, we simulate some arbitrary 
Brownian motion (with a radius of 3 pixels) of the puncta as 
well as the wounding (white rectangle), and then apply a 
global rigid transformation with rotation angle θ and 
translation Tx and Ty. See Fig.1 for example.  

 

Figure 1.  Example of organelles (red arrows) and simulated puncta, 

wounding and transformation. (left) fixed image; (right) moving image 

(θ=30°, Tx=40 pixels) 

We simulate the above process with rotation angle θ 
varying from -30° to 30° (with  a step size of 10°), Tx varying 
from -120 to 120 pixel (with a step size of 40 pixels) and Ty 
varying from -80 to 80 pixel (with a step size of 40 pixels). We 
repeat the above process on 44 different images. 

We use the Inverse Compositional (IC) algorithm [10] for 
efficiency, which is a variant of the Lucas-Kanade algorithm 
[13]. We also combine it with different distance functions for 
comparison: 

 Original distance function SSD used in IC. 

 The approximated MAD. 

 Geman-McLure (GM) function [5] (a robust error 

function):      𝜌(𝑥) =
𝑥2

𝑥2+𝜎1
2 

For the GM function, we set 𝜎1 = 0.2 instead of 1.4826 ×
𝑚𝑒𝑑𝑖𝑎𝑛(𝒙) [5] to get better results in this simulation. 
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We also compare with RIC [9]. For fair comparison, we do 
not estimate α from the data (otherwise our method will likely 
have a perfect estimation). We set α = 0.5/(m × n)  for our 
method. We set the equivalent threshold for RIC. The RIC 
method now ignores pixels with squared difference value 
greater than a certain threshold (set to 0.52) during the 
gradient descent. We also implement a variant of RIC for 
comparison, which uses MAD instead of the original SSD 
(called RIC-MAD). For RIC-MAD, we ignore pixels whose 
absolute difference value is greater than a certain threshold 
(set to 0.5) during the gradient descent.  

As RASL [11] and RVR [12] require relative good initial 
transformation, we give them the pre-initial transformation 
estimated in III.A. We also compare the results of other 
methods by using that pre-initial transformation. The 
estimated angle and translation are compared with ground 
truth. Table 1 summarizes the average absolute angle error 
and translation error by each method.  

Clearly, although the pre-initial transformation is not 
perfect, it does benefit the later method in most cases. We can 
also see the L1-norm based distance function (MAD) 
outperforms the traditional L2-norm based distance function 
(SSD) in our simulation. It is more robust to the sparse large 
errors in our simulated data. 

TABLE I.  AVERAGE ABSOLUTE ANGLE ERROR AND TRANSLATION 

ERROR OF EACH METHOD 

Method 
Average Angle 

Error (degrees) 

Average Translation 

Error (pixel) 

IC (SSD) [10] 3.31 11.1 

RIC (SSD) [9] 3.11 27.5 

IC-MAD 1.74 8.4 

RIC-MAD 1.74 8.4 

GM [10] 1.92 13.5 

Pre-initial 9.73 51.7 

Pre-initial →IC (SSD) 1.71 21.6 

Pre-initial →RIC (SSD) 1.47 20.4 

Pre-initial →IC-MAD 0.34 2.1 

Pre-initial →RIC-MAD 0.34 2.1 

Pre-initial →GM 0.57 8.3 

Pre-initial →RASL [11] 8.75 48.6 

Pre-initial →RVR [12] 8.85 49.8 

Proposed (MAD) 0.30 1.8 

The RIC seems slightly better than IC when using their 
original distance function (SSD). While using MAD, the RIC-
MAD performs nearly the same as IC-MAD. GM performs 
better than original RIC, while worse than RIC-MAD. 

The performances of RASL and RVR are worse than 
others. As the misalignment of the estimated pre-initial 
transformation is usually not very small, RASL and RVR often 
converge to some local minima very close to that initial point. 
Finally they are only slightly better than the initial 
transformation. 

C. Results on Real Data 

In this section, we test our method on 5 different videos 
with 25~400 frames. The first two videos (EBP-2-GFP1&2) 
have many bright puncta moving in the epidermal cytoplasm. 
EBP-2 is a worm homolog of the mammalian End Binding 
proteins, which bind to growing microtubule plus ends and 
give the appearance of flying comets in our video. The third 

video (GFP-Utrophin(CH)) contains images of the worm 
epidermis pre- and post- wounding. Utrophin is a protein 
which binds to the filaments of actin. We express a fragment 
of the protein, the calponin homology (CH) domain sufficient 
for actin binding, to visualize actin dynamics. The Utrophin-
actin filaments can grow over time. After wounding, there is 
a gradual breakdown of filaments around the wound site, 
leaving an expanding hole in the epidermis empty of 
fluorescent protein. The fourth video (GFP-RAB-5) displays 
transport of endosomes in the epidermis. RAB-5 associates 
with early endosomes and is an accepted marker for these 
vesicles. GFP-RAB-5 forms small moving puncta, large 
stationary aggregates, and sometimes filaments. This video 
also has some artifacts during imaging. The fifth video (IRIS) 
is taken from [18], and shows severe eye jitter and pupil 
deformation. The motion blur and compression of this video 
make the problem even harder. 

We stabilize these video sequences through frame-by-
frame registration for our method, RIC [9], GM [10], and 
RVR [12], while RASL [11] simultaneously registers all the 
frames. For fair comparison, we use pre-initialization for all 
methods. For RIC and our method, we set the percentage of 
large sparse errors as 0.1% for all videos without fine tuning.  

For visual comparison, we show the fixed image, registered 
image, and the difference between them. Table 2 has the 
average MSE and MAD of the residuals in overlapped regions 
in each video by the different methods.  

TABLE II.  AVERAGE MSE/MAD OF RESIDUALS IN EACH VIDEO BY 

DIFFERENT METHODS 

Video RIC[9] GM[10] RASL[11] RVR[12] Ours 

1 
0.0061 

/0.0600 

0.0055    

/0.0576 

0.0059 

/0.0600 

0.0059  

/0.0596 
0.0055 

/0.0575 

2 
0.0099 

/0.0780 

0.0094 

/0.0760 

0.0094 

/0.0760 

0.0098 

/0.0777 
0.0094 

/0.0759 

3 
0.0377 

/0.1175 

0.0394 

/0.1210 

0.0435 

/0.1284 

0.0558 

/0.1517 

0.0372 

/0.1163 

4 
0.0029   

/0.0290 

0.0040 

/0.0324 

0.0053 

/0.0367 

0.0181 

/0.0770 

0.0030 

/0.0294 

5 
0.0617 

/0.1926 

0.0576 

/0.1856 

0.0705 

/0.2073 

0.0846 

/0.2305 
0.0523 

/0.1762 

Fig. 2 shows the 1st frame and 301st frame of the GFP-
Utrophin(CH) video before and after registration by different 
methods. The worm is wounded during this sequence and the 
appearance of the wound continues to change. Besides that, the 
filaments also have some complicated movements. Although 
the residuals of different methods are still high, they are often 
smaller than the original residual without registration. Our 
method robustly corrects the global movement of the worm 
body and achieves the smallest residual.  

Fig. 3 shows the 1st frame and 101st frame of the GFP-
RAB-5 video before and after registration by different 
methods. There are some artifacts (horizontal lines) at the top 
of the image. The bottom of Fig. 3c~g shows the residual of 
the registered 101st frame with respect to the 1st frame by 
different methods. We can see both RIC and our method 
significantly reduce the residuals on the worm body compared 
to other methods (the overlapped region to compute the 
residual includes the artifacts). 
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From Fig.2-Fig.3 and Table 2, we can see our method 
outperforms others both visually and in terms of MSE and 
MAD in most videos. The fifth video (results in Table 2) is a 
microscopic iris video, which shows the generality of our 
proposed method. 

 

Figure 2.  Example (GFP-Utrophin(CH)) registration results by different 

methods. (a) 1st frame; (b)~(g) 301st frame (top) and its residual (bottom) 

with respect to 1st frame: (b) original image (c) RIC (d) GM (e) RASL     
(f) RVR (g) Ours. 

IV. DISCUSSION & CONCLUSION 

Although RIC [9] also ignores outliers (here we assume 

outliers are equivalent to sparse large errors) during gradient 

descent, it is different from ours in several aspects. First, the 

RIC ignores outliers in every step from the beginning. As the 

images may not be well aligned at the beginning, many inliers 

may also be considered as outliers by RIC. On the contrary, 

we do not reject outliers until our initialization step is done. 

Second, RIC always rejects a fixed percentage of pixels as 

outliers. Our method rejects a certain percentage of pixels at 

the beginning, but then the percentage of outliers will be 

automatically adjusted in the following steps (some former 

outliers may be reconsidered as inliers, and vice versa). Third, 

when there are no outliers, RIC will still reject a fixed 

percentage of pixels, so it loses information. Our method can 

still work well when there are no outliers (owing to the max 

function on 𝛼).  

 

Figure 3.  Example (GFP-RAB-5) registration results by different methods. 

(a) 1st frame; (b)~(g) 101st frame (top) and its residual (bottom) with respect 

to 1st frame: (b) original image (c) RIC (d) GM (e) RASL (f) RVR (g) Ours. 

While we utilize the same concept of sparse errors as RASL 

and RVR, the registration framework and overall formulation 

are quite different. Our framework can better handle various 

kinds of additive noise in real data and can deal with much 

larger misalignment.  

Also, we explicitly minimize the L0-norm of the sparsity 

term instead of the extensively used L1-norm (e.g. [19] 

directly uses the L1-norm to constrain the sparsity of the 

boundary outside the template during image segmentation). 

              

 

              

 

10µm 

 

MSE:0.0542  MAD:0.1475 
 (b)  Original  

 

MSE:0.0446  MAD:0.1308 
 (c)  RIC 

 

 

MSE:0.0448  MAD:0.1315 
 (d)  GM 

 

MSE:0.0464 MAD:0.1355 
 (e)  RASL 

 

MSE:0.0596 MAD:0.1591 
 (f)  RVR 

 

MSE:0.0440 MAD:0.1292 
 (g)  Ours 

 

(a) 1st frame and scale bar (red) 
 

10µm 

 

MSE:0.0059  MAD:0.0391 
 (b)  Original  

 

MSE:0.0029  MAD:0.0292 
 (c)  RIC 

 

 

MSE:0.0047  MAD:0.0354 
 (d)  GM 

 

MSE:0.0054 MAD:0.0371 
 (e)  RASL 

 

MSE:0.0150 MAD:0.0722 
 (f)  RVR 

 

MSE:0.0030 MAD:0.0299 
 (g)  Ours 

 

(a) 1st frame and scale bar (red) 
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With the objective function in (4), where the distance function 

is based on the L1-norm, if we also use the L1-norm for sparse 

large errors 𝐸, all pixels will be considered as 𝐸 in the optimal 

solution (as long as noise exists and 𝛼 <
1

𝑚×𝑛
) ! This shows 

the advantage of using the original L0-norm in the objective 

function. 

Section II.D shows a special case of our framework. Our 

framework could incorporate other deformable 

transformations (e.g. Free-Form Deformations [20]) as well 

as other distance functions/ similarity measures. Our method 

is not limited to biomedical images/video. It can be applied to 

various kinds of images/video with sparse large errors, such 

as field-sports video with moving players as in [12]. 

APPENDIX 

Derivation [10, 21] of Step 1 in Algorithm 2: In Step 1 we 

want to minimize the following (ignore the constant) with 

respect to 𝒑: 

   ∑  |𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑))|

𝒙∈{𝒙|𝑬(𝒙) = 𝟎}

                                  

                        ≈ ∑ 𝑅 ((𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑)))
2

)                                   (5)

𝒙∈{𝒙|𝑬(𝒙) = 𝟎}

 

where 𝑅(𝑡) = √𝑡 + 𝜖. To minimize the expression in (5), the 

Lucas-Kanade algorithm assumes that a current estimate of 𝒑 

is known and solves for update ∆𝒑. Thus the algorithm tries 

to minimize the following expression with respect to ∆𝒑:   

                                  ∑ 𝑅 ((𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑 + ∆𝒑)))
2

)                         (6)

𝒙∈{𝒙|𝑬(𝒙) = 𝟎}

 

Approximating 𝐼(𝑊(𝒙; 𝒑 + ∆𝒑))  by first order Taylor 

expansion gives: 

                                   ∑ 𝑅 ((𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑)) − ∇𝐼
𝜕𝑊

𝜕𝒑
∆𝒑)

2

)           (7)

𝒙∈{𝒙|𝑬(𝒙) = 𝟎}

 

where ∇𝐼 is the gradient of image 𝐼 evaluated at 𝑊(𝒙; 𝒑). 
𝜕𝑊

𝜕𝒑
 

is the Jacobian of the warp.  

Let 𝐹(𝒙) = 𝑇(𝒙) − 𝐼(𝑊(𝒙; 𝒑)), expanding (7) gives: 

∑ 𝑅 (𝐹(𝒙)2 − 2𝐹(𝒙)∇𝐼
𝜕𝑊

𝜕𝒑
∆𝒑 + ∆𝒑𝑇 [∇𝐼

𝜕𝑊

𝜕𝒑
]

𝑻

[∇𝐼
𝜕𝑊

𝜕𝒑
] ∆𝒑)    (8)

𝒙∈{𝒙|𝑬(𝒙) = 𝟎}

 

Performing a first order Taylor expansion gives: 

∑ {𝑅(𝐹(𝒙)2)  

𝒙∈{𝒙|𝑬(𝒙) = 𝟎}

+ 𝑅′(𝐹(𝒙)2) (−2𝐹(𝒙)∇𝐼
𝜕𝑊

𝜕𝒑
∆𝒑 + ∆𝒑𝑇 [∇𝐼

𝜕𝑊

𝜕𝒑
]

𝑻

[∇𝐼
𝜕𝑊

𝜕𝒑
] ∆𝒑)}               (9) 

The closed-form solution is: 

        ∆𝒑 = 𝐻−1 ∑ 𝑅′(𝐹(𝒙)2)∇𝐼
𝜕𝑊

𝜕𝒑
𝐹(𝒙)𝒙∈{𝒙|𝑬(𝒙)=𝟎}              (10)        

where:   𝐻 = ∑ 𝑅′(𝐹(𝒙)2) [𝛻𝐼
𝜕𝑊

𝜕𝒑
]

𝑇

𝒙∈{𝒙|𝑬(𝒙)=𝟎} [𝛻𝐼
𝜕𝑊

𝜕𝒑
]             (11) 

          𝑅′(𝐹(𝒙)𝟐) =
1

2
(𝜖 + 𝐹(𝒙)2)−

1

2                                        (12) 
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