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ABSTRACT

We present a novel algorithmic approach to track multiple cell

junctions automatically in the developing epidermis of the C.

elegans embryo. 3D cell boundaries are projected into 2D for

segmentation using active contours with a non-intersection

force, and subsequently tracked using SIFT (Scale-Invariant

Feature Transform) flow. Our method achieves MAD (Mean

Absolute Distance) less than 3 pixels between all tracked cell

contours and ground truth data. Using this method we have

generated a quantitative description of epidermal cell move-

ments and shape changes during the process of epidermal en-

closure.

Index Terms— C. elegans, cell tracking, SIFT flow

1. INTRODUCTION

Quantitative analysis of cell shape in live samples is an im-

portant goal in developmental biology. The nematode worm

Caenorhabditis elegans is an excellent organism for analyz-

ing fundamental aspects of development because it is simple,

easy to grow in bulk populations, and convenient for genetic

analysis. C. elegans has a fixed number of cells in early em-

bryogenesis, all of which have been individually identified

and characterized. We are interested in epidermal develop-

ment as a model for epithelial morphogenesis.

Tracking cells or subcellular structures in developing em-

bryos is important to understand developmental processes.

Computer aided tracking allows quantitative analysis of large

numbers of cells or objects. Recently, several automated or

semi-automated nuclei tracking algorithms [1][2][3][4] that

allow quantitative analysis of nuclear positions in C elegans

have been developed. However, nuclear positions do not pro-

vide direct information on cell shape, size, or cellular con-

tacts. A major remaining challenge is to segment and track

cell surfaces or contacts in complex 4D data (Figure 1). The

difficulty of tracking cells on surfaces lies in lack of image

texture or color information. The recorded data only contains

cell boundaries along the surface.

In this paper, we present a new method to automatically

segment and track epithelial junctions in 4D data that only re-

Fig. 1: Dataset snapshots. Columns 1 to 6 show Z-stack im-

ages for slices 1,7,13,19,25, and 31. Last column shows max-

imum projection images. Each row represents acquired data

at one time point. Images are inverted for display.

quires cell contour signals on the embryo surface. Active con-

tours (also called snakes) [5] with a proposed non-intersection

force can precisely segment all epidermal cells in 2D maxi-

mum projection images. To handle large displacement of cell

movement, we conduct experiments using conventional opti-

cal flow and SIFT (Scale-Invariant Feature Transform) flow

[6]. Experimental results show our modified active contours

with SIFT flow can accurately track epithelial junctions. Our

methods yield a quantitative description of the dynamics of

epithelial shape changes during epidermal enclosure.

2. DATA ACQUISITION

The C. elegans embryo consists of 24 epidermal cells on the

surface. We use a Zeiss LSM700 to acquire Confocal Laser

Scanning Microscope (CLSM) cell images over 20 minutes

to capture the closing of the epidermal cells. Epidermal junc-

tions visualized with DLG-1::GFP form lines at the subapical

circumference of differentiated epidermal cells. By changing

the focal length, our dataset contains 35 Z-stack image slices

that cover the whole C. elegans embryo. Columns 1 to 6 in

Figure 1 show the Z-stack snapshots for slices 1, 7, 13, 19, 25,

and 31. However, Z-stack images are not informative for visu-

alizing and tracking cell contours. We use a maximum projec-

tion image as our input data. The pixel intensity value of each

pixel is selected from the maximum pixel value through all

Z-stack images. The maximum projection image can better

visualize epidermal cells of the C. elegans embryo as shown

in the last column of Figure 1.
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3. PROPOSED FRAMEWORK

We propose a new cell contour tracking algorithm to handle

4D CLSM data. The following sections describe each step.

3.1. Initial Cell Boundary Collection

To track cell boundaries, we first need to acquire initial lo-

cations and shapes of each cell. At the initial time point, we

manually collect key points (around 7 to 10 points) along the

boundary for a cell, and then apply lowpass interpolation to

connect those key points into a closed contour. Finally we

refine the interpolated cell boundary using snakes [5]. This

procedure can generate initial cell boundaries at the first time

point quickly with light human effort as shown in Figure 2.

3.2. Tracking

Optical flow is a popular feature matching technique that

computes motion patterns of two consecutive images. The

Lucas-Kanade version of optical flow did not work consis-

tently for our dataset because cells sometimes move rapidly.

To handle large displacements for outlier cells, we use a more

distinctive image feature representation instead of raw pixel

values. SIFT (Scale-invariant Feature Transform) is a robust

image feature representation [7]. SIFT image descriptors can

encode a histogram of gradient orientations around each in-

terest point, providing more details of image structure around

the local area. In 2008, Liu et al. proposed SIFT flow [6]

to overcome the disadvantages of traditional optical flow by

replacing raw pixel values with SIFT feature descriptors,

and then performing a modified optical flow algorithm based

on those SIFT features. We use the flow vectors computed

from SIFT flow to estimate cell contour movement. The

advantages will be demonstrated in Section 4.

3.3. Boundary Refinement

SIFT flow can provide reasonable tracking results between

consecutive frames. However, tracked contours might miss

subtle details of certain curves. We apply snakes to align the

tracked contours with true cell boundaries.

In addition, cell contours in the middle of the embryo

present narrow width and therefore can cause contour self-

intersection during the iterative snakes algorithm as shown

in the left picture in Figure 3. We add a Non-intersection

Force (NIF) to the snake objective function [5] to prevent self-

intersection:

E∗

snake =

∫

(Esnake(v(s)) + ENIF (v(s)))ds (1)

where v(s) = (x(s), y(s)) is the parametrical position of a

snake. Figure 3 illustrates the procedure of ENIF genera-

tion. We first extract the cell contour mask, and then generate

a skeleton using thinning. The skeleton is used as the seed

Fig. 2: Procedure of initial contour collection. Left: key

points. Middle: interpolated contour. Right: refined contour

Fig. 3: Illustration of non-intersection force generation.

location to generate the non-intersection force. The mag-

nitude of NIF is determined by a smoothed skeleton image

(Gaussian smooth filter). Pixels close to the center line have

stronger NIF while pixels far from the center line have weaker

NIF. Snakes with NIF can successfully prevent contour self-

intersection as shown in Section 4.

4. TRACKING EVALUATION

The proposed cell contour tracking system can produce closed

curves for each cell at each time point. To evaluate our track-

ing results, we use Mean Absolute Distance (MAD) as our

metric [8]. MAD measures the distance e(A,B) between two

contours A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm},

where ai and bi are points sampled from curves A and B. In

[8] MAD is defined as:

e(A,B) =
1

2

{

1

n

n
∑

i=1

d(ai, B) +
1

m

m
∑

i=1

d(bi, A)

}

where

d(ai, B) = min
j

‖bj − ai‖

is the distance between point ai and the closest point bj on

curve B. Here we assign A as any tracked cell contour and

B as the corresponding ground truth contour, and this metric

computes the average deviation of pixels of the tracked cell

contour from the ground truth.

In this experiment we record a 4D CLSM live cell imag-

ing dataset of C. elegans embryos for 20 minutes. Each Z-

stack has the size of 275× 512. We track 24 epidermal cells,

and also manually generate corresponding ground truth con-

tours in order to compute MAD. Figure 4 shows the spatial

layout of all 24 cells with names. Figure 5 shows the MAD

for tracked cells over 20 minutes in projected 2D space. Our

system can track all cell contours with MAD less than 3, and

achieves MAD less than 2 for the anterior area of the embryo.
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Fig. 4: Illustration of individual cell names.

Optical flow can track most of the cell contours reason-

ably. However, our approach aims at performing accurate and

reliable automatic cell contour tracking for all cells over the

whole video dataset. Table 1 illustrates the importance of

the proposed SIFT flow tracking and non-intersection force

for outlier cells. The top half of the table clearly shows that

SIFT flow tracking outperforms traditional optical flow for

cells hyp6(VI) and hyp6(V), which present rapid movement

during the closing operation. The bottom half of the table

compares MAD between SIFT flow tracking with and with-

out the non-intersection force (NIF). Tracking with NIF sig-

nificantly reduces MAD for outlier cells (P9/10R, P9/10L and

P7/8L ) due to the narrow width of the cell. SIFT flow tracking

with NIF can not only capture fast moving cells but prevents

self-intersection for narrow cells. Figure 6 shows examples

of tracked cells with ground truth at different time points.

Table 1: MAD for Outliers in Pixel Unit

Method hyp6(VI) hyp6(V) P9/10R P9/10L P7/8L

Optical Flow 3.57 4.52 - - -

SIFT Flow 0.71 0.65 - - -

SIFT Flow - - 1.95 3.12 2.18

SIFT Flow+NIF - - 1.22 1.51 0.69

5. BIOLOGICAL FEATURE EXTRACTION

The proposed cell contour tracking method can estimate ac-

curate and reliable cell contour locations and shapes, and the

tracking result can also be used to compute biological fea-

tures. We focus on cell contour lengths computation and cell

motility visualization.
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Fig. 5: MAD for tracked cell contours.

5.1. Cell Contour Length

Epidermal cell contour length provides one way to analyze the

cell activities. Figure 7 shows contour lengths of all tracked

cells over 20 minutes. In this figure we discover that cells TL,

TR and hyp11 have obvious contour length increases because

these cells demonstrate a closing activity toward the center of

the embryo while other cells have decreasing contour lengths

because they transform into narrower shapes along the time

sequence. In addition, we find a larger variation for cells

G2, W, hyp7(21), hyp7(20) over time because these cells un-

dergo an extreme shape transformation (from wide to narrow

shape).

Fig. 6: Example of tracked cell contours and corresponding

ground truth at time points 1,7,14, and 20 from left to right.

Blue: tracked cells. Red: ground truth.
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Fig. 7: Normalized cell contour lengths.

5.2. Motility Map

Cell motility patterns can give essential understanding of cell

dynamics. We generate an average motility map using SIFT

flow velocity computed during the cell tracking step. Figure

8 demonstrates the average velocity of pixel movement in 2D

space. We can see active area in the anterior which matches

the closing behavior in the anterior cells.

6. CONCLUSIONS

In this paper, we proposed an automated cell contour tracking

method for developing epidermis of the C. elegans embryo

and generate a quantitative analysis of cell contour lengths

over time, and a visualization of cell motility. Future work

includes more biological feature extraction and comparison

of mutant and wild type worms.
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