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Abstract—In this paper, we are concerned with the design
and analysis of joint source-channel coding schemes for block
fading channels with relay-assisted distributed spatial diversity.
Assuming a progressive image coder with a constraint on the
transmission bandwidth, we formulate a joint source-channel
rate allocation scheme that maximizes the expected source
throughput. Specifically, using Gaussian as well as BPSK inputs
on flat Rayleigh fading channels, we lower bound the average
packet error rate by the corresponding mutual information
outage probability, and derive the average throughput expression
as a function of channel code rates as well as channel SNR
for both a frequency-division multiplexing-based baseline system
without relaying, and a half-duplex relay system with a decode-
and-forward protocol. At high signal-to-noise ratio (SNR), for
the systems considered in this paper, we show that our rate
optimization problem is a convex function of the channel code
rates, and we show that a known recursive algorithm can be
used to predict the performance of both systems.

Index Terms—Joint source channel coding, progressive image
communication, unequal error protection, cooperative relaying.

I. INTRODUCTION

WHEN we transmit source bits through an unreliable
channel, we need channel bits to protect information

from channel noise. However, due to limited bandwidth, power
or delay constraints, channel resources should be shared by
source and channel bits optimally in the sense of distortion or
throughput. Therefore, the problem is how to decide the ratio
of source and channel bits under the system constraints. This
problem has been considered for progressive source coding
such as embedded zerotree wavelet (EZW) coding [1], set
partitioning in hierarchical trees (SPIHT) [2] and JPEG2000
[3], where the decoding of the progressive image stops at
the first packet error. Due to its progressive property, we
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need to push the first error event as far back as possible
in the packet stream for better performance. To do that,
earlier packets generally need more protection than others, and
therefore unequal error protection (UEP) outperforms equal
error protection (EEP).

Many studies have appeared on the design and analysis of
joint source-channel coding schemes for various channels of
both theoretical and practical interest. For example, in [4], the
progressive transmission of images jointly with rate compati-
ble punctured convolutional (RCPC) codes was proposed and
investigated for binary symmetric channels. Later, this was
extended to fading channels with a product code structure [5],
where the product codes consist of RCPC codes in a row and
Reed Solomon (RS) codes in a column. In [6], optimization
using dynamic programming was proposed to choose the block
length as well as the appropriate code rate. To do that, the
authors defined a general performance measure, where the
performance measure could be mean-squared error (MSE),
peak signal-to-noise ratio (PSNR), or the number of received
source bits. A more computationally efficient algorithm was
proposed by Chande and Farvardin in [7], where the optimal
UEP solution was computed recursively. Later, Stanković et
al. introduced a faster algorithm to find the rate-optimal UEP
solution by computing the run-length profile of the code
rates [8]. Nosratinia et al. proposed a parametric approach
for source-channel bit allocation, where the exact bit error
rate (BER) corresponding to each coding rate was modelled
empirically for certain channels [9]. An information-theoretic
approach for joint source-channel bit allocation was also
presented by Gunduz et al. [10] and Etemadi et al. [11], where
both considered layered transmission of successively refinable
Gaussian sources over quasi-static fading channels, and found
theoretical bounds for expected distortion using well-known
rate-distortion expressions for a Gaussian source. Recently,
joint source-channel coding was considered in cooperative
relaying systems, where cooperative relaying can improve
channel performance by providing additional diversity. Gun-
duz et al. [12] considered joint source-channel coding for
cooperative relaying systems when channel state information
is only known at the receiver (CSIR) and quasi-static channels
are assumed, and investigated the performance in terms of
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the distortion exponent. Shutoy et al. [13] proposed layered-
cooperative coding to exploit a relay’s diversity gain for a
video source. Finally, in [14], hybrid error protection was
proposed, where cooperative diversity was considered as an
additional protection tool beyond forward error correction.

In this paper, we use an information-theoretic framework
to analyze the source-channel rate allocation to maximize
the throughput of a progressive image in a system either
with or without a cooperative relay. This analysis provides an
approximate bound on the system performance at high SNR in
terms of average throughput, which may not be optimal in the
sense of distortion. However, the throughput-optimal approach
has some advantages over the distortion-optimal approach.
First, the throughput-optimal approach can be analyzed mathe-
matically without considering the source characteristics. And,
the UEP solution can be found at the transmitter and receiver
independently without any additional signaling between them,
since the average channel gain, which is needed in the
throughput-optimal approach, is known by both the transmitter
and the receiver. Moreover, the throughput-optimal approach
can allow one to find the distortion-optimal solution using
a local search algorithm and the source statistics in linear
time [28]. We study both Gaussian and symmetric BPSK
inputs over block fading channels, and obtain the mutual
information (MI) outage probability, which is a lower bound
on the actual packet error rate (PER) of a BPSK-based system
[15],[16]. Although there are well-known expressions for
mutual information and outage probability for Gaussian inputs,
a closed-form expression for the capacity when either PSK
or QAM inputs is used is not known. However, both bounds
and approximations have been widely studied (e.g.,[17]-[20]).
In this paper, we use [18] to find an approximation for the
MI outage probability for BPSK inputs. Then, we derive
an average source throughput expression using MI outage
probability and the progressive property of the source. We
prove that this rate-optimization problem is a convex function
of the channel code rates at high SNR, and the solution can be
found by using a recursive algorithm introduced in [8]. Our
predicted system performance and average channel code rates
upper bound the simulation results.

The rest of this paper is organized as follows. In Section II,
we introduce the system model for the transmission of pro-
gressive images. Using both Gaussian and BPSK inputs, in
Section III, we present expressions for the average source
throughput for the baseline as well as the relay-based systems.
In Section IV, we provide a simple algorithm to determine
the optimal channel code rates under a bandwidth constraint.
Numerical and simulation results are presented in Section V,
and we conclude this work in Section VI.

II. SYSTEM MODEL

We consider a general progressive image transmission sys-
tem consisting of a single source and destination either with
or without relays. The image source rate is denoted by ℛ𝑠

pixels/sec. If we assume 𝑟𝑠 bits-per-pixel (bpp), then the
total source rate is ℛ𝑠𝑟𝑠 bits/sec. The source bit stream is
packetized into 𝑀 packets, which are protected by suitable
channel codes. All the packets are assumed to have equal
channel codeword length, 𝑛. The total bandwidth available for

the source is 𝑊 Hz, whereas the duration of a code symbol
is denoted by 𝑇𝑠. Assuming a Nyquist pulse-shaping filter at
the transmitter, we have

𝑊 =
1 + 𝛽

𝑇𝑠
, (1)

where 𝛽 is the roll-off factor of the pulse-shaping filter.
We assume the channels between all the nodes are ran-

dom, independent, and constant over the packet duration.
The coherence bandwidth is assumed to be the same as the
bandwidth of a sub-channel, where the bandwidth of a sub-
channel is defined as 𝑊/𝑁 and 𝑁 is the number of relays.
We assume a Rayleigh fading channel, so the square of the
fading amplitude follows an exponential distribution, and the
additive noise is i.i.d. white Gaussian and independent for each
channel. We assume that the receivers of the relays and the
destination know the instantaneous channel realizations, and
the transmitters of the source and the relays know only the
mean channel gains.

The destination combines the received channel code sym-
bols on the 𝑁 sub-channels using maximal ratio combining
(MRC). We assume that the system is able to detect any
errors and halts decoding of subsequent packets following an
erroneous packet.

A. Baseline System

In the baseline system, the transmission bandwidth 𝑊 is
equally divided into 𝑁 uncorrelated sub-bands and the source
repeats each packet over the 𝑁 sub-channels. The bit duration
of each sub-channel is 𝑇𝑠1 = 𝑁𝑇𝑠. If 𝐾𝑗 denotes the number
of information bits in the 𝑗th packet, where 𝑗 = 1, . . . ,𝑀 ,
then the channel code rate of the 𝑗th packet is 𝑟BL

𝑐 (𝑗) = 𝐾𝑗/𝑛,
where 𝑛 is the packet length in bits. The total transmission
time for a given image is 𝑀 × 𝑛 × 𝑇𝑠1 . In this time, the
total number of source bits generated is ℛ𝑠𝑟𝑠𝑀𝑛𝑇𝑠1 which
is assumed to be equal to

∑𝑀
𝑗=1𝐾𝑗 = 𝑛

∑𝑀
𝑗=1 𝑟

BL
𝑐 (𝑗). That

is, we have the rate constraint

𝑛

𝑀∑
𝑗=1

𝑟BL
𝑐 (𝑗) = ℛ𝑠𝑟𝑠𝑀𝑛𝑇𝑠1 = 𝑁ℛ𝑠𝑟𝑠𝑀𝑛

1 + 𝛽

𝑊
≤𝑀𝑛.

(2)
If 𝑇BL

𝑏 (𝑗) denotes the information bit duration, and 𝑅BL
𝑏 (𝑗) =

1/𝑇BL
𝑏 (𝑗) denotes the corresponding bit rate for the 𝑗th

packet, then, using the relation 𝑛𝑇𝑠1 = 𝐾𝑗𝑇
BL
𝑏 (𝑗), we have

𝑅BL
𝑏 (𝑗) =

𝐾𝑗

𝑛

1

𝑇𝑠1
=
𝑟BL
𝑐 (𝑗)

𝑁𝑇𝑠
= 𝑟BL

𝑐 (𝑗)
𝑊

𝑁
, (3)

where 𝑟BL
𝑐 (𝑗) = 𝑟BL

𝑐 (𝑗)/(1 + 𝛽).
Let 𝛼𝑗,𝑙 denote the channel fading amplitude experienced

by the 𝑗th packet on the 𝑙th sub-channel. We assume that the
𝛼𝑗,𝑙, for 𝑗 = 1, . . . ,𝑀 and 𝑙 = 1, . . . , 𝑁 , are independent and
identically distributed (i.i.d) Rayleigh random variables, with
second moment 𝐸[𝛼2

𝑗,𝑙] = Ω1. The total average transmission
power budget at the source is 𝑃𝑇 . Therefore, the average
power per sub-channel is 𝑃1 = 𝑃𝑇 /𝑁 .
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Fig. 1. (a) Baseline system and (b) half-duplex relay system, where S𝑖 and
R𝑖 are the 𝑖th packet transmission at the source and the relay, respectively.

B. Half-duplex Relay System

We assume 𝑁 relay nodes, each of them and the source
occupying a bandwidth of 𝑊/𝑁 , as presented in Fig. 1. The
source transmits each packet sequentially through one of 𝑁
sub-channels. Each packet is received by the destination as
well as by all the 𝑁 relays. The packets are assumed to be
further protected by suitable cyclic redundancy check (CRC)
codes to aid verification of their integrity. With this, only those
relay nodes that successfully decode the source packets re-
encode and forward them to the destination. For simplicity, we
assume that the probability of undetected error is very low, and
can be ignored. The destination combines all the packets that it
receives from the source and the relay nodes in an appropriate
manner before proceeding with channel decoding. For the 𝑙th
packet, we denote by 𝛼𝑠𝑑,𝑙 the fading amplitude on the path
from the source to the destination, 𝛼𝑗𝑠𝑟,𝑙 the fading amplitude
on the path from the source to the 𝑗th relay node, and 𝛼𝑗𝑟𝑑,𝑙
the fading amplitude on the path from the 𝑗th relay node to
the destination. Similar to the baseline system, we assume that
𝛼𝑠𝑑,𝑙, 𝛼

𝑗
𝑠𝑟,𝑙 and 𝛼𝑗𝑟𝑑,𝑙, for 𝑗 = 1, . . . , 𝑁 and 𝑙 = 1, . . . ,𝑀 , are

independent and Rayleigh distributed, with second moments
𝐸[𝛼2

𝑠𝑑,𝑙] = Ω𝑠𝑑, 𝐸[(𝛼
𝑗
𝑠𝑟,𝑙)

2] = Ω𝑗
𝑠𝑟 and 𝐸[(𝛼𝑗𝑟𝑑,𝑙)

2] = Ω𝑗
𝑟𝑑.

If we denote by 𝐿𝑗 the number of information bits in the 𝑗th
packet, then the code rate of the 𝑗th packet with cooperation
is 𝑟CoOp

𝑐 (𝑗) = 𝐿𝑗/𝑛, 𝑗 = 1, . . . ,𝑀 . In the half duplex relay
system, where the relays transmit and receive in different
time slots, 2𝑀 time slots are required to transmit 𝑀 packets.
Since the bit duration of the half duplex relay system, 𝑇𝑠2 ,
is equal to that of the baseline system, the length of each
time slot is (𝑛/2)𝑇𝑠2 = (𝑛/2)𝑁𝑇𝑠, which is half of a packet

transmission time. This leads to the following rate constraint
with cooperation :

𝑀∑
𝑗=1

𝐿𝑗 = ℛ𝑠𝑟𝑠𝑀𝑇𝑠2𝑛/2 ≤𝑀𝑛/2

⇒ 1

𝑀

𝑀∑
𝑗=1

𝑟CoOp
𝑐 (𝑗) =

1

2
𝑁ℛ𝑠𝑟𝑠𝑇𝑠 ≤ 1

2
, (4)

where the effective channel code rate of the 𝑗th packet,
𝑟CoOp
𝑐 (𝑗) = 𝐿𝑗/𝑛. If we denote by 𝑃𝑠 the average transmit

power of the source, and by 𝑃𝑗 the average transmit power
of the 𝑗th relay node, then we have the following energy
constraint :

𝑃𝑠(𝑛/2)𝑇𝑠2 +

𝑁∑
𝑗=1

𝑃𝑗(𝑛/2)𝑇𝑠2 = 𝑃𝑇𝑛𝑇𝑠1

⇒ 𝑃𝑠 +
𝑁∑
𝑗=1

𝑃𝑗 = 2𝑃𝑇 , (5)

where 𝑃𝑇 is the average transmission power of the source
without cooperation.

III. THROUGHPUT PERFORMANCE ANALYSIS

In this section, by assuming large block lengths and block
fading of the channel over the packet duration 𝑛𝑇𝑠1 , we lower
bound the actual PER by the channel mutual information
(MI) outage probability [22], which is defined [23] as the
probability that the instantaneous MI observed by a packet,
which is a random variable (r.v.), is below the attempted
information bit rate. Then, we derive the average throughput
expression for each system using the MI outage probability.

A. Gaussian Inputs

1) Baseline System: Let 𝜋BL
𝑗 denote the MI outage proba-

bility for the 𝑗th packet, which is a lower bound of the PER,
at the destination. For the 𝑗th packet, the MI (in bits/sec) is

MIBL(𝑗) =
𝑊

𝑁
log2

(
1 +

𝑁∑
𝑙=1

𝑃1

𝑁0
𝑊
𝑁

𝛼2
𝑗,𝑙

)
. (6)

The corresponding MI outage probability is

𝜋BL
𝑗 = Prob

(
MIBL(𝑗) < 𝑅BL

𝑏,𝑗

)

= Prob

(
𝑊

𝑁
log2

(
1 +

𝑁∑
𝑙=1

𝑃1

𝑁0
𝑊
𝑁

𝛼2
𝑗,𝑙

)
≤ 𝑊𝑟BL

𝑐 (𝑗)

𝑁

)

= Prob

(
𝑁∑
𝑙=1

𝛼2
𝑗,𝑙

Ω1
≤ 2𝑟

BL
𝑐 (𝑗) − 1

Γ

)

= 𝛾inc

(
2𝑟

BL
𝑐 (𝑗) − 1

Γ
, 𝑁

)
, (7)

where we have used the fact that 𝜁 ≜
∑𝑁

𝑙=1 𝛼
2
𝑗,𝑙/Ω1 is

a Gamma-distributed r.v. with probability density function
(PDF)

𝑓𝜁(𝑥) =
𝑒−𝑥𝑥𝑁−1

Γ(𝑁)
𝑥 ≥ 0, (8)



1634 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 6, JUNE 2010

and where Γ(𝑛) =
∞∫

𝑢=0

𝑒−𝑢𝑢𝑛−1𝑑𝑢 is the standard Gamma

function [26], and 𝛾inc(𝑥, 𝑛) in (7) is the incomplete Gamma
function, which is defined as [26]

𝛾inc(𝑥, 𝑛) ≜
1

Γ(𝑛)

𝑥∫
𝑢=0

𝑒−𝑢𝑢𝑛−1𝑑𝑢. (9)

In (7) Γ = 𝑃1Ω1𝑁/(𝑁0𝑊 ) = 𝑃𝑇Ω1/(𝑁0𝑊 ) is the average
received signal-to-noise ratio (SNR) per sub-channel.

Due to the progressive nature of the source, only the packets
decoded successfully until the first decoding failure are used
by the source decoder for reconstructing the source. Let us
denote by SBL

𝑘 the probability of successfully receiving 𝑘
source packets at the input of the source decoder. Then, we
have

SBL
0 = 𝜋BL

1

SBL
𝑘 = 𝜋BL

𝑘+1

𝑘∏
𝑖=1

(1− 𝜋BL
𝑖 ) 𝑘 = 1, . . . ,𝑀 − 1 (10)

SBL
𝑀 =

𝑀∏
𝑖=1

(1− 𝜋BL
𝑖 ).

The average number of source bits successfully decoded by
the source decoder in the baseline system is

𝒯 BL(𝑟
BL
𝑐 ) =

𝑀∑
𝑗=1

(
𝑗∑

𝑖=1

𝐾𝑖

)
SBL
𝑗

= 𝑛(1 + 𝛽)

𝑀∑
𝑗=1

(
𝑗∑

𝑖=1

𝑟BL
𝑐 (𝑖)

)
SBL
𝑗 , (11)

where 𝑟BL
𝑐 =

(
𝑟BL
𝑐 (1), . . . , 𝑟BL

𝑐 (𝑀)
)
. The source-channel rate

allocation problem for the baseline system can then be stated
as

maximize 𝒯 BL(𝑟
BL
𝑐 ) (12)

subject to
𝑀∑
𝑗=1

𝑟BL
𝑐 (𝑗) ≤ 𝑀

1 + 𝛽
. (13)

2) Half-duplex Relay System: We denote by 𝑞(𝑖, 𝑗) the
probability of decoding error of the 𝑗th packet at the 𝑖th relay
node, which is computed as follows: Let MI(𝑖, 𝑗) denote the
MI of the 𝑗th packet at the 𝑖th relay, then

MI(𝑖, 𝑗) =
𝑊

𝑁
log2

(
1 +

𝑃𝑠

𝑁0
𝑊
𝑁

(𝛼𝑖𝑠𝑟,𝑗)
2

)

=
𝑊

𝑁
log2

(
1 + 𝛾𝑖𝑠𝑟𝑁

(
𝛼𝑖𝑠𝑟,𝑗

)2
Ω𝑖
𝑠𝑟

)
, (14)

where 𝛾𝑖𝑠𝑟 = 𝑃𝑠

𝑁0𝑊
Ω𝑖
𝑠𝑟, 𝑖 = 1, . . . , 𝑁 . The transmission

rate of the 𝑗th packet with cooperation is 𝑅CoOp
𝑏 (𝑗) =

2𝑟CoOp
𝑐 (𝑗)𝑊/𝑁 , where 𝑟CoOp

𝑐 (𝑗) = 𝑟CoOp
𝑐 (𝑗)/(1+𝛽). Then,

𝑞(𝑖, 𝑗) = Prob
(
MI(𝑖, 𝑗) < 𝑅CoOp

𝑏 (𝑗)
)

= Prob

((
𝛼𝑖𝑠𝑟,𝑗

)2
Ω𝑖
𝑠𝑟

<
22𝑟

CoOp
𝑐 (𝑗) − 1

𝛾𝑖𝑠𝑟𝑁

)

= 𝛾inc

(
22𝑟

CoOp
𝑐 (𝑗) − 1

𝛾𝑖𝑠𝑟𝑁
, 1

)
, (15)

which follows from the fact that (𝛼𝑖𝑠𝑟,𝑗)
2/Ω𝑖

𝑠𝑟 is exponentially-
distributed with unit mean.

Let 𝒟𝑗 denote the set of relay nodes that successfully
decode the 𝑗th source packet. Then the probability that relays
in the set 𝒟𝑗 are only able to decode the 𝑗th source packet is

Prob(𝒟𝑗) =

⎧⎨
⎩
∏
𝑖∈𝒟𝑗

(1− 𝑞(𝑖, 𝑗))

⎫⎬
⎭×

⎧⎨
⎩
∏
𝑘 ∕∈𝒟𝑗

𝑞(𝑘, 𝑗)

⎫⎬
⎭ (16)

owing to the independence of the decoding errors at the relays,
which is attributed to the spatial independence of the channel
fading.

At the destination, we assume that each source packet is
maximal-ratio combined. Then, the MI of the 𝑗th packet at
the destination, conditioned on 𝒟𝑗 , is

MI(𝒟𝑗) =
𝑊

𝑁
log2

(
1 +

𝑃𝑠

𝑁0
𝑊
𝑁

𝛼2
𝑠𝑑,𝑗 +

∑
𝑙∈𝒟𝑗

𝑃𝑙

𝑁0
𝑊
𝑁

(𝛼𝑙𝑟𝑑,𝑗)
2

)

=
𝑊

𝑁
log2

(
1 +𝑁𝛾𝑠𝑑(𝛼𝑠𝑑,𝑗)

2/Ω𝑠𝑑 +

𝑁
∑
𝑙∈𝒟𝑗

𝛾𝑙𝑟𝑑(𝛼
𝑙
𝑟𝑑,𝑗)

2/Ω𝑙
𝑟𝑑

)
, (17)

where 𝛾𝑙𝑟𝑑 =
𝑃𝑙

𝑁0𝑊
Ω𝑙
𝑟𝑑, 𝑙 = 1, . . . , 𝑁 . Conditioned on 𝒟𝑗 , the

probability of 𝑗th packet error at the destination is

𝜋CoOp
𝑗 (𝒟𝑗) = Prob

(
MI(𝒟𝑗) <

2𝑟CoOp
𝑐 (𝑗)𝑊

𝑁

)

= Prob

(
𝛾𝑠𝑑(𝛼𝑠𝑑,𝑗)

2/Ω𝑠𝑑 +

∑
𝑙∈𝒟𝑗

𝛾𝑙𝑟𝑑(𝛼
𝑙
𝑟𝑑,𝑗)

2/Ω𝑙
𝑟𝑑 <

22𝑟
CoOp
𝑐 (𝑗) − 1

𝑁

)
.

(18)

To simplify (18) further, define

𝑍(𝒟𝑗) ≜ 𝛾𝑠𝑑(𝛼𝑠𝑑,𝑗)
2/Ω𝑠𝑑 +

∑
𝑙∈𝒟𝑗

𝛾𝑙𝑟𝑑(𝛼
𝑙
𝑟𝑑,𝑗)

2/Ω𝑙
𝑟𝑑. (19)

Assuming 𝛾𝑠𝑑, 𝛾
𝑙
𝑟𝑑, ∀ 𝑙 ∈ 𝒟𝑗 , are all distinct, and using the

moment generating function approach, it is easy to show that
the PDF of 𝑍(𝒟𝑗) is given by

𝑓𝑍(𝒟𝑗)(𝑧) = 𝜆0(𝒟𝑗)
1

𝛾𝑠𝑑
exp

(
− 𝑧

𝛾𝑠𝑑

)
+

∑
𝑙∈𝒟𝑗

𝜆𝑙(𝒟𝑗)
1

𝛾𝑙𝑟𝑑
exp

(
− 𝑧

𝛾𝑙𝑟𝑑

)
, (20)

where

𝜆0(𝒟𝑗) =
∏
𝑙∈𝒟𝑗

𝛾𝑠𝑑
𝛾𝑠𝑑 − 𝛾𝑙𝑟𝑑

(21)

and 𝜆𝑙(𝒟𝑗) =
𝛾𝑙𝑟𝑑

𝛾𝑙𝑟𝑑 − 𝛾𝑠𝑑
×

∏
𝑚∈𝒟𝑗,𝑚 ∕=𝑙

𝛾𝑙𝑟𝑑
𝛾𝑙𝑟𝑑 − 𝛾𝑚𝑟𝑑

.

(22)
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Upon using (20) in (18), we arrive at

𝜋CoOp
𝑗 (𝒟𝑗) = 𝜆0(𝒟𝑗)𝛾inc

(
22𝑟

CoOp
𝑐 (𝑗) − 1

𝛾𝑠𝑑𝑁
, 1

)
+

∑
𝑙∈𝒟𝑗

𝜆𝑙(𝒟𝑗)𝛾inc

(
22𝑟

CoOp
𝑐 (𝑗) − 1

𝛾𝑙𝑟𝑑𝑁
, 1

)
.

(23)

Finally, upon averaging (23) over all possible decoding sets,
the average probability of error for the 𝑗th packet is

𝜋CoOp
𝑗 =

∑
𝒟𝑗

Prob(𝒟𝑗)𝜋
CoOp
𝑗 (𝒟𝑗). (24)

Once 𝜋CoOp
𝑗 is found, the probability of successfully receiving

𝑘 packets at the input of the source decoder with cooperation,
PCoOp
𝑘 , can be expressed in a form similar to (10), where the
𝜋BL
𝑗 in (10) is replaced by 𝜋CoOp

𝑗 of (24).
The average number of source bits successfully decoded by

the source decoder with cooperation is

𝒯 CoOp(𝑟
CoOp
𝑐 ) =

𝑀∑
𝑗=1

(
𝑗∑

𝑖=1

𝐿𝑖

)
PCoOp
𝑗

= 𝑛(1 + 𝛽)

𝑀∑
𝑗=1

(
𝑗∑

𝑖=1

𝑟CoOp
𝑐 (𝑖)

)
PCoOp
𝑗 ,

(25)

where 𝑟CoOp
𝑐 =

(
𝑟CoOp
𝑐 (1), . . . , 𝑟CoOp

𝑐 (𝑀)
)
. The source-

channel rate allocation problem with half-duplex relayed trans-
mission can then be stated as follows :

maximize 𝒯 CoOp(𝑟
CoOp
𝑐 ) (26)

subject to
𝑀∑
𝑗=1

𝑟CoOp
𝑐 (𝑗) ≤ 𝑀

2(1 + 𝛽)
. (27)

B. BPSK Inputs

In order to apply the results of an information-theoretic
analysis to practical system design, BPSK inputs are consid-
ered. Although a closed-form expression for the symmetric
capacity with respect to BPSK inputs is not known, it is
possible to compute the symmetric capacity numerically. How-
ever, in this paper, we use both bounds and an approximation
for symmetric capacity instead of numerical computation.
Both upper and lower bounds for the symmetric capacity
were derived by Baccarelli in [17], and approximations were
proposed in [18], [19], and [20]. In this paper, the upper
bound of [17] and the approximation in [18] of the symmetric
capacity for BPSK inputs are used to find an upper bound on
the average throughput of the rate-optimal UEP for the system.
From (10) in [17], an upper bound for the MI of the baseline
system is

MIBL
𝐵𝑃𝑆𝐾(𝑗) <

𝑊

𝑁

(
1− log2

(
1 +

exp

(
−2

𝑁∑
𝑙=1

𝑃1

𝑁0
𝑊
𝑁

𝛼2
𝑗,𝑙

)))
, (28)

and the upper bounds of MIs for the relay system are

MI𝐵𝑃𝑆𝐾(𝑖, 𝑗) <
𝑊

𝑁

(
1− log2

(
1 +

exp

(
−2 𝑃𝑠

𝑁0
𝑊
𝑁

(𝛼𝑖𝑠𝑟,𝑗)
2

)))
, (29)

and

MI𝐵𝑃𝑆𝐾(𝒟𝑗) <
𝑊

𝑁

(
1− log2

(
1 + exp

(
− 2

𝑃𝑠

𝑁0
𝑊
𝑁

𝛼2
𝑠𝑑,𝑗 −

2
∑
𝑙∈𝒟𝑗

𝑃𝑙

𝑁0
𝑊
𝑁

(𝛼𝑙
𝑟𝑑,𝑗)

2
)))

. (30)

From (9) in [18], the approximation of the MI for the baseline
system is

MIBL
𝐵𝑃𝑆𝐾(𝑗) ≈

𝑊

𝑁

(
1− exp

(
−2𝑏

𝑁∑
𝑙=1

𝑃1

𝑁0
𝑊
𝑁

𝛼2
𝑗,𝑙

))
, (31)

and the approximations of MIs for the relay system are

MI𝐵𝑃𝑆𝐾(𝑖, 𝑗) ≈ 𝑊

𝑁

(
1− exp

(
−2𝑏 𝑃𝑠

𝑁0
𝑊
𝑁

(𝛼𝑖𝑠𝑟,𝑗)
2

))
,

(32)
and

MI𝐵𝑃𝑆𝐾(𝒟𝑗) ≈ 𝑊

𝑁

(
1− exp

(
− 2𝑏

𝑃𝑠

𝑁0
𝑊
𝑁

𝛼2
𝑠𝑑,𝑗 −

2𝑏
∑
𝑙∈𝒟𝑗

𝑃𝑙

𝑁0
𝑊
𝑁

(𝛼𝑙𝑟𝑑,𝑗)
2

))
, (33)

where 𝑏 is a parameter that equals 0.6573 for BPSK inputs
[18]. The approximated average throughput expressions of
each system with respect to BPSK inputs can be derived in
the same manner as those with Gaussian inputs, so details are
not presented here.

IV. OPTIMUM SOURCE-CHANNEL RATE ALLOCATION

In this section, we discuss an algorithm to find the opti-
mal source-channel rate allocation to maximize the average
throughput of each system. In [8], a recursive algorithm to
find the throughput-optimal solution was proposed. We show
that the same algorithm can find the throughput-optimal so-
lution for our information-theoretic framework. All objective
functions for the baseline as well as the relay systems are
concave over 𝑟BL

𝑐 or 𝑟CoOp
𝑐 at high SNR, which can be proved

by showing that the Hessian matrix of the objective function
is negative definite. A detailed concavity proof is presented in
the appendices. Then, the optimal UEP can be found by 𝑀
partial differentiations as follows :

∂𝒯 𝑀 ((𝑟𝑐))

∂𝑟𝑐(𝑖)
= 0 𝑖 = 1, . . . ,𝑀. (34)

If there is no solution for the 𝑖th equation, then the 𝑖th element
of the optimal UEP is min{𝑅} or max{𝑅}, where 𝑅 is the
set of possible code rates. In particular,

∂𝒯 𝑀 ((𝑟𝑐))

∂𝑟𝑐(𝑀)
= (1− 𝜋𝑀 )− 𝑟𝑐(𝑀)

∂𝜋𝑀
∂𝑟𝑐(𝑀)

= 0, (35)
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where 𝜋𝑀 is the MI outage probability of the 𝑀 th packet,
presented in (7) and (23). That is, we can find the optimum
rate of the last packet first, and then find the rate of the
(𝑀 −1)th packet recursively. Therefore, we can find the rate-
optimal UEP policy, 𝑟∗𝑐 = (𝑟∗𝑐 (1), 𝑟∗𝑐 (2), ⋅ ⋅ ⋅ , 𝑟∗𝑐 (𝑀)), using
the algorithm of [8]:

1) Set 𝑖 = 1 and 𝑟∗𝑐 (𝑀) = argmax𝑟𝑐(𝑀)∈ℛ 𝒯 1((𝑟𝑐(𝑀)))
for all 𝑟𝑐(𝑀) ∈ (0, 1]

2) If 𝑖 =𝑀 , then 𝑟∗𝑐 = (𝑟∗𝑐 (1), 𝑟∗𝑐 (2), ⋅ ⋅ ⋅ , 𝑟∗𝑐 (𝑀)) and stop.
3) Set 𝑖 = 𝑖 + 1 and 𝑟∗𝑐 (𝑀 − 𝑖 + 1) =

argmax𝑟𝑐(𝑀−𝑖+1)∈(0,𝑟𝑐(𝑀−𝑖)] 𝒯 𝑖((𝑟𝑐(𝑀 − 𝑖 +
1), 𝑟∗𝑐 (𝑀 − 𝑖), ⋅ ⋅ ⋅ , 𝑟∗𝑐 (𝑀))). Go to step 2),

where 𝒯 𝑖((𝑟𝑐)) is the average throughput expression of the last
𝑖 packets. Note that, at low SNR, this algorithm might find a
sub-optimal UEP policy, since the convexity of the average
throughput was not proved.

V. A PRACTICAL SYSTEM DESIGN EXAMPLE AND

SIMULATION RESULTS

In this section, we consider a BPSK-based practical embed-
ded image transmission system with and without cooperative
relays and then present the results of joint source-channel rate
allocation based on the analysis as well as simulations. Since
we find the information-theoretic rate-optimal solution, any
embedded source coders and channel coding schemes can be
considered. If the PER of a specific channel coding scheme
is known, the rate-optimal UEP policy can be found [7] [8].
Instead, the MI outage probability can provide an approximate
bound on the average throughput for high SNR, since the PER
is lower bounded by MI outage probability.

A. Simulation Setup

In our simulations, we use the SPIHT algorithm to encode
the Lena image with a source rate of 0.4 bpp. For channel
encoding, RCPC and RCPT codes are considered. The RCPC
codes have constraint length 3 and generator polynomial (23,
35) in octal. The rate of the mother code is 1/4, and the
length of the codeword is fixed to 1000 bits, which is also
the length of a packet, 𝐿. We consider 13 punctured code
rates, 𝑅𝑅𝐶𝑃𝐶={8/32, 8/30, 8/28, 8/26, 8/24, 8/22, 8/20, 8/18,
8/16, 8/14, 8/12, 8/10, 8/9}. Since we assumed fixed packet
length, there are 13 different source block sizes corresponding
to code rates. For RCPT codes, the encoder consists of two
identical recursive systematic convolutional (RSC) coders with
memory of 2 and generator polynomial (7,5) in octal. The rate
of the mother code is 1/3 and the codeword length is 1000
bits. We also consider 9 punctured code rates, 𝑅𝑅𝐶𝑃𝑇={8/24,
8/22, 8/20, 8/18, 8/16, 8/14, 8/12, 8/10, 8/9}. We use soft
output Viterbi decoding with 10 iterations. Regarding the bit
budget, we assume the total number of packets, 𝑀 , is fixed
at 100, so the optimization must find the code rates of 100
different packets which maximize average throughput. The
channel is assumed to be block fading, so the channel gain is
constant within a packet, but independent packet by packet.
For a comparison of two systems, we assume they have the
same bandwidth, transmission time and energy. In the baseline
system, the total transmit power is equally allocated to the
subchannel, but in the half-duplex relay system, twice the total
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Fig. 2. EEP channel code rate profile of the baseline system at SNR of 4
dB, where three independent sub-channels are assumed.

transmit power of the baseline system is equally allocated to
the source as well as to the relay to make them have the same
transmit energy, as shown in (5). For the half duplex relay
system, we assume a single relay is located halfway between
the source and destination, and the path loss exponent is set
to 4.

B. Simulation Results

In this subsection, we provide simulation results and com-
pare them with the analytical results. Although any real
number between 0 and 1 can be a code rate theoretically, we
restrict the possible code rate for the analysis to be bounded
by the minimum and maximum code rates of the RCPC
or RCPT codes in order to get comparable results. In Fig.
2, the average throughputs of the rate-optimal EEP for the
baseline system are presented, where RCPC and RCPT codes
are considered. As explained in [29], the iterative decoding
performance of the RCPT code approaches the maximum-
likelihood (ML) bound as the number of iterations increases.
Therefore, Fig. 2 shows that the rate-optimal EEP channel
code rate approaches the analytical bound as better channel
coding schemes are used. In the figure, the three solid curves
represent the analytically-derived average throughputs, which
are computed by using the MI outage probability of the
Gaussian and BPSK inputs. For Gaussian inputs, the rate-
optimal EEP code rate is approximately 0.9. However, for
BPSK inputs, the rate is reduced to 0.65. On the other hand,
the rate-optimal EEP channel code rate for the RCPC codes
is 8/16 and the channel code rate for the RCPT codes is
8/14 with 5 iterations, 8/14 with 10 iterations, and 8/13 with
100 iterations, so the optimal code rate is approaching 0.65
asymptotically.

The average throughputs and PSNRs of rate-optimal UEP
policies for the baseline and the half-duplex relay systems are
presented in Fig. 3 and 4, respectively. Due to the path loss
reduction, as well as the cooperative diversity gain, the half du-
plex relay system is better than the baseline system, especially
at SNR around 12 dB. However, the average throughput of the
half-duplex relay system saturates at intermediate SNRs. In
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Fig. 3. Average Throughput of baseline system and half duplex relay system.
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contrast, the throughput of the baseline system is significantly
enhanced as SNR increases and the crossover of the two curves
appears at around 20 dB, which is caused by the loss in the
spectral efficiency of the half-duplex relay system. A same
trend is observed for average PSNR.

In Figs. 5 and 6, average code rates of UEP policies for the
two systems are presented. Fig. 5 shows the effective code rate,
𝑟𝑐, where the effective code rate is defined as the ratio of the
number of information bits per packet to the packet length. In
the half-duplex relay system, the packet consists of two time
slots, where the second time slot is the repetition of the first
slot if relay decodes the first time slot successfully. Therefore,
even though the two systems have the same channel code rates,
the number of information bits per packet in the half-duplex
relay system is half of that in the baseline system, and the
effective code rate of the half duplex relay system cannot be
greater than (1/2)max{𝑅}, as shown in Fig. 5. Interestingly,
the average code rates for the half-duplex relay system is fixed
at 4/9 after 12 dB of channel SNR. This is mainly caused by
the high diversity gain of the relay system, which allows for
a higher code rate. Fig. 6 presents the average RCPC and
RCPT code rates, where the code rate of the half-duplex relay
system represents the code rate per time slot, not per packet.
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Fig. 5. Average channel code rate of baseline system and half duplex relay
system. Effective code rate is presented, where effective code rate is defined
as the ratio of the number of information bits and the length of packet.
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Fig. 6. Average RCPC and RCPT channel code rate of baseline system and
half duplex relay system. For the half duplex relay system, code rate per time
slot is presented.

As shown in this figure, the average code rates corresponding
to the half duplex relay system converge to max{𝑅} at an
SNR around 14 dB. That is, when channel SNR is greater
than 14 dB, half duplex relay system can choose the highest
code rate for all packets and then rate-optimal UEP becomes
EEP.

Finally, the rate-optimal UEP profiles of the baseline system
at an SNR of 18 dB are presented in Fig. 7. The UEP profiles
of the RCPC and RCPT codes are found using the correspond-
ing PER and the algorithm of [8], while two above curves
represent UEP profiles computed by using approximated MI
outage probability and its lower bound. The stepwise UEP
profiles are also presented by rounding the UEP profiles of the
MI outage probability to the nearest RCPC and RCPT code
rates. As can be seen, in most packets, the analytically-derived
UEP channel code rates are higher than the UEP channel code
rates of the RCPC and RCPT codes, since the MI outage
probability lower bounds the PER. This can help in finding
the rate-optimal UEP for a specific channel coding scheme by
reducing the possible code-rate set.
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Fig. 7. Channel code rate profile of the baseline system at 18 dB.

VI. CONCLUSION

We studied source channel rate allocation for a general
progressive image transmission system over a block fading
relay channel. In particular, we derived the outage prob-
ability for the baseline and the half-duplex relay systems
with Gaussian as well as BPSK inputs. We then derived the
average throughput expressions using the channel MI outage
probability, which is a lower bound on the PER. To solve
the optimization problem, we proved the concavity of the
objective functions at high SNR and then found the solution
using the recursive algorithm from [8]. We compared the
average throughput and the rate-optimal UEP code rates found
from the analysis with those obtained from simulations of
a BPSK-based system. Numerical results indicated that our
information-theoretic system model yielded an approximate
upper bound at high SNR on the system performance for the
actual BPSK-based system with capacity-achieving channel
coding.

APPENDIX A
CONCAVITY OF AVERAGE THROUGHPUT EXPRESSION FOR

THE BASELINE SYSTEM

In this appendix, we demonstrate the concavity of the
average throughput for the baseline system when the SNR
>> 1. Ignoring constants, the average throughput expression
of the baseline system is

𝒯 (𝑟𝑐) =
𝑀∑
𝑙=1

(

𝑙∑
𝑘=1

𝑟𝑐(𝑘))S𝑙 =
𝑀∑
𝑙=1

𝑟𝑐(𝑙)

𝑙∏
𝑘=1

(1− 𝜋𝑘). (36)

As can be seen in [8], for the rate-optimal UEP solution of
a progressive image, the following nondecreasing condition
holds : 𝑟𝑐(1) ≤ 𝑟𝑐(2) ≤ ⋅ ⋅ ⋅ ≤ 𝑟𝑐(𝑀). Therefore, we can
focus on the region of 𝑟𝑐 which satisfies the nondecreasing
condition for the concavity proof. To generate comparable
results, we also restrict the range of 𝑟𝑐 to be between min{𝑅}
and max{𝑅}, where {𝑅} is the set of possible rates for the
RCPC and RCPT codes. For simplicity of notation, we replace
𝒯 (𝑟𝑐), 𝑟𝑐(𝑖), 𝑑𝜋𝑖

𝑑𝑟𝑖
, and 𝑑2𝜋𝑖

𝑑𝑟2𝑖
by 𝒯 , 𝑟𝑖, 𝜋′𝑖 and 𝜋′′𝑖 . From (36), we

can derive the second and cross partial derivatives of 𝒯 (𝑟𝑐).

TABLE I
MI OUTAGE PROBABILITIES OF BASELINE SYSTEM

General Form 𝜋𝑖 = 𝛾inc(
1
Γ
𝑓(𝑟𝑖), 𝑁)

Gaussian Inputs 𝑓(𝑟𝑖) = 2𝑟𝑖 − 1

BPSK Approx. 𝑓(𝑟𝑖) = − ln(1−𝑟𝑖)
2𝑏

BPSK Upper Bound (UB) 𝑓(𝑟𝑖) = − ln(21−𝑟𝑖−1)
2

Since 𝜋𝑖 is a function of 𝑟𝑖, the second order and cross partial
derivatives of 𝒯 are

∂2𝒯
∂𝑟𝑖2

= −2𝜋′𝑖
𝑖−1∏
𝑘=1

(1− 𝜋𝑘)−
𝑀∑
𝑙=𝑖

𝑟𝑙𝜋
′′
𝑖

𝑙∏
𝑘=1
𝑘 ∕=𝑖

(1− 𝜋𝑘) (37)

and

∂2𝒯
∂𝑟𝑖∂𝑟𝑗

= −𝜋′𝑖
𝑗∏

𝑘=1
𝑘 ∕=𝑖

(1− 𝜋𝑘) +

𝑀∑
𝑙=𝑗

𝑟𝑙𝜋
′
𝑖𝜋

′
𝑗

𝑙∏
𝑘=1
𝑘 ∕=𝑖,𝑗

(1 − 𝜋𝑘) (38)

respectively, where 𝑖 < 𝑗. The MI outage probability, 𝜋𝑖,
for both Gaussian and BPSK inputs, are presented in Table
I. Note that the MI outage probability for a BPSK input is
approximated to get a closed-form expression. The first and
second order derivatives of 𝜋𝑖, where

𝜋𝑖 =
1

(𝑁 − 1)!

1
Γ
𝑓(𝑟𝑖)∫
0

𝑒−𝑢𝑢𝑁−1𝑑𝑢, (39)

are given by

𝜋′𝑖 =
(
1

Γ

)𝑁

𝑒−
1
Γ
𝑓(𝑟𝑖) (𝑓(𝑟𝑖))

𝑁−1
𝑓 ′(𝑟𝑖)

1

(𝑁 − 1)!
(40)

and (41) on the next page, respectively.
Since 𝑓(𝑟𝑖) and 𝑓 ′(𝑟𝑖) are positive for all inputs, 𝜋𝑖 and 𝜋′𝑖

are positive, too. Moreover, 𝜋′′𝑖 is also positive if

Γ >

⎧⎨
⎩

2𝑟𝑖(2𝑟𝑖 − 1)

𝑁2𝑟𝑖 − 1
, for Gaussian inputs

ln(1− 𝑟𝑖)

2𝑏 (ln(1− 𝑟𝑖)−𝑁 + 1)
, for BPSK approx.

ln(21−𝑟𝑖 − 1)

2 (2𝑟𝑖−1 ln(21−𝑟𝑖 − 1)−𝑁 + 1)
, for BPSK UB.

From (38), the cross derivative of the average throughput is
given by (42) on the next page. Note that 𝑓(𝑟𝑖) and 𝑓 ′(𝑟𝑖)
are limited by 𝑓(max{𝑅}) and 𝑓 ′(max{𝑅}). Therefore, if Γ
is large enough, (38) will be negative, since its first term will
become dominant. Next, we prove the following inequalities :

−1

2

∂2𝒯
∂𝑟𝑖2

+
∂2𝒯
∂𝑟𝑖∂𝑟𝑗

> 0 (43)

−1

2

∂2𝒯
∂𝑟𝑗2

+
∂2𝒯
∂𝑟𝑖∂𝑟𝑗

> 0. (44)

Eqs. (43) and (44) can be shown by (45) and (46), where 𝜋𝑗
and 𝜋′𝑗 are monotonic increasing functions of 𝑟𝑖 and

𝜋′𝑗(1 − 𝜋𝑖)− 𝜋′𝑖(1 − 𝜋𝑗) > (𝜋′𝑗 − 𝜋′𝑖) + 𝜋𝑗(𝜋
′
𝑖 − 𝜋′𝑗)

= (1− 𝜋𝑗)(𝜋
′
𝑗 − 𝜋′𝑖) > 0.
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𝜋′′𝑖 =

(
1

Γ

)𝑁

𝑒−
1
Γ
𝑓(𝑟𝑖) (𝑓(𝑟𝑖))

𝑁−2 1

(𝑁 − 1)!

(
− 1

Γ
𝑓(𝑟𝑖) (𝑓

′(𝑟𝑖))
2
+ (𝑁 − 1) (𝑓 ′(𝑟𝑖))

2
+ 𝑓(𝑟𝑖)𝑓

′′(𝑟𝑖)

)
(41)

∂2𝒯
∂𝑟𝑖∂𝑟𝑗

= −
(
1

Γ

)𝑁
1

(𝑁 − 1)!
𝑒−

1
Γ
𝑓(𝑟𝑖) (𝑓(𝑟𝑖))

𝑁−1 𝑓 ′(𝑟𝑖)
𝑗∏

𝑘=1
𝑘 ∕=𝑖

(1 − 𝜋𝑘) +

(
1

Γ

)2𝑁 (
1

(𝑁 − 1)!

)2

⋅

𝑒−
1
Γ
(𝑓(𝑟𝑖)+𝑓(𝑟𝑗)) (𝑓(𝑟𝑖)𝑓(𝑟𝑗))

𝑁−1
𝑓 ′(𝑟𝑖)𝑓 ′(𝑟𝑗)

𝑀∑
𝑙=𝑗

𝑟𝑙

𝑙∏
𝑘=1
𝑘 ∕=𝑖,𝑗

(1− 𝜋𝑘) (42)

−1

2

∂2𝒯
∂𝑟𝑖2

+
∂2𝒯
∂𝑟𝑖∂𝑟𝑗

= 𝜋′𝑖
𝑖−1∏
𝑘=1

(1− 𝜋𝑘)

(
1−

𝑗∏
𝑘=𝑖+1

(1− 𝜋𝑘)

)
+

1

2

𝑀∑
𝑙=𝑖

𝑟𝑙𝜋
′′
𝑖

𝑙∏
𝑘=1
𝑘 ∕=𝑖

(1− 𝜋𝑘) +

𝑀∑
𝑙=𝑗

𝑟𝑙𝜋
′
𝑖𝜋

′
𝑗

𝑙∏
𝑘=1
𝑘 ∕=𝑖,𝑗

(1− 𝜋𝑘) > 0 (45)

−1

2

∂2𝒯
∂𝑟𝑗2

+
∂2𝒯
∂𝑟𝑖∂𝑟𝑗

=
(
𝜋′𝑗(1− 𝜋𝑖)− 𝜋′𝑖(1− 𝜋𝑗)

) 𝑗−1∏
𝑘=1
𝑘 ∕=𝑖

(1− 𝜋𝑘) + 1

2

𝑀∑
𝑙=𝑗

𝑟𝑙𝜋
′′
𝑗

𝑙∏
𝑘=1
𝑘 ∕=𝑗

(1− 𝜋𝑘) +
𝑀∑
𝑙=𝑗

𝑟𝑙𝜋
′
𝑖𝜋

′
𝑗

𝑙∏
𝑘=1
𝑘 ∕=𝑖,𝑗

(1− 𝜋𝑘) > 0 (46)

−𝐻𝑚 =

⎛
⎜⎜⎜⎜⎜⎝

2𝑎1 𝑎1 − 𝛿12 𝑎1 − 𝛿13 . . . 𝑎1 − 𝛿1𝑚
𝑎1 − 𝛿21 2𝑎2 𝑎2 − 𝛿23 . . . 𝑎2 − 𝛿2𝑚
𝑎1 − 𝛿31 𝑎2 − 𝛿32 2𝑎3 . . . 𝑎3 − 𝛿3𝑚

...
...

...
. . .

...
𝑎1 − 𝛿𝑚1 𝑎2 − 𝛿𝑚2 𝑎3 − 𝛿𝑚3 . . . 2𝑎𝑚

⎞
⎟⎟⎟⎟⎟⎠ (47)

−𝐺𝑚 =

⎛
⎜⎜⎜⎜⎜⎝

2𝑎𝑚 𝑎𝑚 − 𝜂12 𝑎𝑚 − 𝜂13 . . . 𝑎𝑚 − 𝜂1𝑚
𝑎𝑚 − 𝜂21 2𝑎𝑚 𝑎𝑚 − 𝜂23 . . . 𝑎𝑚 − 𝜂2𝑚
𝑎𝑚 − 𝜂31 𝑎𝑚 − 𝜂32 2𝑎𝑚 . . . 𝑎𝑚 − 𝜂3𝑚

...
...

...
. . .

...
𝑎𝑚 − 𝜂𝑚1 𝑎𝑚 − 𝜂𝑚2 𝑎𝑚 − 𝜂𝑚3 . . . 2𝑎𝑚

⎞
⎟⎟⎟⎟⎟⎠ (48)

Now consider the Hessian matrix of the objective function.
Note that negative definiteness of the Hessian matrix implies
the strict concavity of the objective function. Let 𝐻𝑚 denote
the 𝑚th principal submatrix of the Hessian matix, which is
computed from the objective function, 𝒯 . We have shown that
all elements of the Hessian matrix, (37) and (38), are negative,
and (43) and (44) are hold. Therefore, for any positive integer
𝑖 and 𝑗 less than or equal to 𝑀 , we can represent − ∂2𝒯

∂𝑟𝑖2
=

2𝑎𝑖 > 0 and − ∂2𝒯
∂𝑟𝑖∂𝑟𝑗

= 𝑎𝑖 − 𝛿𝑖𝑗 > 0, where 𝑎𝑖 > 0 and
0 < 𝛿𝑖𝑗 < 𝑎𝑖. Then, 𝐻𝑚 can be simplified, as in (47). If we
define −𝐺𝑚 as in (48), where 𝜂𝑖𝑗 = 𝑎𝑚− 𝑎𝑚

𝑎𝑗
(𝑎𝑖 − 𝛿𝑖𝑗) > 0,

then

det(−𝐻𝑚) =
𝑎1
𝑎𝑚

𝑎2
𝑎𝑚

. . .
𝑎𝑚−1

𝑎𝑚
det(−𝐺𝑚) (49)

and the sign of det(−𝐻𝑚) is equivalent to that of det(−𝐺𝑚).
To evaluate the sign of det(−𝐺𝑚), we use the following
theorem, introduced in [24], and the following two lemmas.

Theorem 1: If all the principal minors of a matrix are
positive and all the elements off its main diagonal are negative,

then all the elements of its inverse are positive [24].
Lemma 1: If 𝐴 is a positive-definite matrix whose elements

are all positive, and 𝑍 is an all-zero matrix except it has an
off-diagonal positive element in the 𝑖th row and 𝑗th column
which is less than the (𝑖, 𝑗)th element of 𝐴, then 𝐴 − 𝑍 is
also a positive-definite matrix.

Proof: Let’s consider all principal submatrices of 𝐴−𝑍 .
Since only the (𝑖, 𝑗)th element differs between (𝐴 − 𝑍) and
𝐴, up to the max(𝑖 − 1, 𝑗 − 1)th principal submatrix, their
determinants are unchanged. If we assume 𝑖 < 𝑗, then the
𝑗th and subsequent principal submatrices will have different
determinants. Denote the 𝑗th principal submatrix of 𝐴 as 𝐴𝑗

and that of 𝑍 as 𝑍𝑗 . Then, we can define a matrix, 𝑋𝑗 , where
𝑋𝑗 is an all-zero matrix except for its 𝑖th row, and satisfies

𝑋𝑗 = 𝑍𝑗𝐴
−1
𝑗 . (50)

From Theorem 1, all elements of 𝐴−1
𝑗 are negative except for

its diagonal element. Since there is only one positive element
in 𝑍𝑗 , the nonzero diagonal element of 𝑋𝑗 , 𝑥𝑖𝑖, is negative.
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Then,
𝐴𝑗 − 𝑍𝑗 = (𝐼 −𝑋𝑗)𝐴𝑗 (51)

and

det(𝐴𝑗−𝑍𝑗) = det(𝐼−𝑋𝑗) det(𝐴𝑗) = (1−𝑥𝑖𝑖) det(𝐴𝑗) > 0.
(52)

Therefore, the determinant of the 𝑗th principal submatrix is
positive. In the same way, we can show the positiveness of all
submatrices’ determinants. Since all submatrices have positive
determinant, the new matrix, 𝐴− 𝑍 , is positive definite.

Lemma 2: The following matrix is positive definite for any
positive number 𝑎𝑚 :

𝐹 =

⎛
⎜⎜⎜⎜⎜⎝

2𝑎𝑚 𝑎𝑚 𝑎𝑚 . . . 𝑎𝑚
𝑎𝑚 2𝑎𝑚 𝑎𝑚 . . . 𝑎𝑚
𝑎𝑚 𝑎𝑚 2𝑎𝑚 . . . 𝑎𝑚
...

...
...

. . .
...

𝑎𝑚 𝑎𝑚 𝑎𝑚 . . . 2𝑎𝑚

⎞
⎟⎟⎟⎟⎟⎠ .

Proof: For the 𝑖th principal submatrix of 𝐹 , 𝐹𝑖,

det(𝐹𝑖) = (𝑎𝑚)
𝑚2

3

2

4

3
. . .

𝑖 + 1

𝑖
> 0 (53)

With Lemmas 1 and 2, −𝐺𝑚 is positive definite, which
implies that both det(−𝐺𝑚) and det(−𝐻𝑚) are positive for
all 𝑚. Therefore, the Hessian matrix is negative definite and
the average throughput is a concave function over 𝑟.

APPENDIX B
CONCAVITY OF THE AVERAGE THROUGHPUT EXPRESSION

FOR THE HALF-DUPLEX RELAY SYSTEM

The average throughput expression for the half-duplex relay
system is equivalent to that for the baseline system except for
its packet error probability. Instead of following all steps in
the previous appendix, we show the following inequalities for
the half duplex relay system :

∂2𝒯
∂𝑟𝑖2

< 0 (54)

∂2𝒯
∂𝑟𝑖∂𝑟𝑗

< 0 (55)

−1

2

∂2𝒯
∂𝑟𝑖∂𝑟𝑗

+
∂2𝒯
∂𝑟𝑖2

> 0 (56)

−1

2

∂2𝒯
∂𝑟𝑖∂𝑟𝑗

+
∂2𝒯
∂𝑟𝑗2

> 0, (57)

where the superscript ′CoOp′ was dropped throughout this
appendix and 𝒯 CoOp(𝑟

CoOp
𝑐 ), 𝑟CoOp

𝑐 (𝑖), and the first and
second partial derivatives of 𝜋𝐶𝑜𝑂𝑝

𝑖 are denoted by 𝒯 , 𝑟𝑖,
𝜋′𝑖, and 𝜋′′𝑖 , respectively. Then, the remainder of the proof is
equivalent to that of the baseline system. As shown in (24),
the average error probability for the 𝑗th packet in the relay
system is given by

𝜋𝑗 =
∑
𝒟𝑗

Prob(𝒟𝑗)𝜋𝑗(𝒟𝑗), (58)

where Prob(𝒟𝑗) is the probability that the relay nodes in a set,
𝒟𝑗 , decode the 𝑗th source packet successfully, and 𝜋𝑗(𝒟𝑗) is

TABLE II
DECODING ERROR PROBABILITY OF HALF-DUPLEX RELAY SYSTEM

General Form 𝑞(𝑖, 𝑗) = 𝛾inc(
1

𝛾𝑖
𝑠𝑟(𝑁)

𝑓(𝑟𝑖), 1)

Gaussian Inputs 𝑓(𝑟𝑖) = 22𝑟𝑖 − 1

BPSK Approx. 𝑓(𝑟𝑖) = − ln(1−2𝑟𝑖)
2𝑏

BPSK Upper Bound (UB) 𝑓(𝑟𝑖) = − ln(21−2𝑟𝑖−1)
2

the probability that the 𝑗th packet is in error at the destination,
conditioned on 𝒟𝑗 . With the high SNR assumption and the fact
that, for small 𝑥, exp(−𝑥) ≈ 1−𝑥, Prob(𝒟𝑗) and 𝜋𝑗(𝒟𝑗) can
be approximated as [25]

Prob(𝒟𝑗) =

⎧⎨
⎩
∏
𝑖∈𝒟𝑗

(
1− 𝛾inc

(
𝑓(𝑟𝑗)

𝛾𝑖𝑠𝑟𝑁
, 1

))⎫⎬
⎭

×
⎧⎨
⎩
∏
𝑘 ∕∈𝒟𝑗

𝛾inc

(
𝑓(𝑟𝑗)

𝛾𝑘𝑠𝑟𝑁
, 1

)⎫⎬
⎭

≈
∏
𝑘/∈𝒟𝑗

𝑓(𝑟𝑗)

𝛾𝑘𝑠𝑟𝑁
(59)

and

𝜋𝑗(𝒟𝑗)

= Prob

⎛
⎝𝛾𝑠𝑑(𝛼𝑠𝑑,𝑗)

2

Ω𝑠𝑑
+
∑
𝑙∈𝒟𝑗

𝛾𝑙
𝑟𝑑(𝛼

𝑙
𝑟𝑑,𝑗)

2

Ω𝑙
𝑟𝑑

<
𝑓(𝑟𝑗)

𝑁

⎞
⎠

≈ 1

(∣𝒟𝑗 ∣+ 1)!

(
𝑓(𝑟𝑗)

𝑁

)∣𝒟𝑗 ∣+1
1

𝛾𝑠𝑑

∏
𝑙∈𝒟𝑗

1

𝛾𝑙
𝑟𝑑

. (60)

With (59) and (60), 𝜋𝑗 and its derivatives are approximated
as in (61), (62), and (63) on the next page. Note that 𝑓 ′(𝑟𝑗)
and 𝑓 ′′(𝑟𝑗) are positive for any inputs. Therefore, the approx-
imations of both 𝜋′𝑗 and 𝜋′′𝑗 are positive, and (54), (56), and
(57) can be proved as shown in the previous appendix. To
prove the remaining inequality, we define

𝐿𝑗 =
∑
𝒟𝑗

1

(∣𝒟𝑗 ∣+ 1)!

1

𝛾𝑠𝑑

∏
𝑘/∈𝒟𝑗

1

𝛾𝑘𝑠𝑟

∏
𝑙∈𝒟𝑗

1

𝛾𝑙𝑟𝑑
.

Then, the approximation of ∂2𝒯
∂𝑟𝑖∂𝑟𝑗

is shown in (64) on the
next page, where 𝐿𝑖 is equivalent to 𝐿𝑗 , since the possible
sets of 𝒟𝑗 are the same as the possible sets of 𝒟𝑖. Since 𝑓(𝑟𝑖)
and 𝑓 ′(𝑟𝑖) are limited by 𝑓(max{𝑅}) and 𝑓 ′(max{𝑅}), the
second term will be relatively small if the SNR is high enough,
and then

∂2𝒯
∂𝑟𝑖∂𝑟𝑗

≈ −𝐿𝑖

(
𝑓(𝑟𝑖)

𝑁

)𝑁−1

𝑓 ′(𝑟𝑖)
𝑗∏

𝑘=1,𝑘 ∕=𝑖

(1 − 𝜋𝑘) < 0.

APPENDIX C
OPTIMIZATION OF SOURCE-CHANNEL RATE ALLOCATION

Due to the concavity of the average throughput expression,
the optimal UEP is the peak of the expression, if it exists. The
peak can be found by 𝑀 partial differentiations as follows :

∂𝒯
∂𝑟𝑖

= 0 𝑖 = 1, . . . ,𝑀. (65)
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𝜋𝑗 ≈
∑
𝒟𝑗

1

(∣𝒟𝑗 ∣+ 1)!

(
𝑓(𝑟𝑗)

𝑁

)𝑁
1

𝛾𝑠𝑑

∏
𝑘/∈𝒟𝑗

1

𝛾𝑘𝑠𝑟

∏
𝑙∈𝒟𝑗

1

𝛾𝑙𝑟𝑑
(61)

𝜋′𝑗 ≈
(
𝑓(𝑟𝑗)

𝑁

)𝑁−1

𝑓 ′(𝑟𝑗)
∑
𝒟𝑗

1

(∣𝒟𝑗 ∣+ 1)!

1

𝛾𝑠𝑑

∏
𝑘/∈𝒟𝑗

1

𝛾𝑘𝑠𝑟

∏
𝑙∈𝒟𝑗

1

𝛾𝑙𝑟𝑑
(62)

𝜋′′𝑗 ≈ (𝑓(𝑟𝑗))
𝑁−2

𝑁𝑁−1

(
(𝑁 − 1) (𝑓 ′(𝑟𝑗))

2
+ 𝑓(𝑟𝑗)𝑓

′′(𝑟𝑗)
)∑

𝒟𝑗

1

(∣𝒟𝑗 ∣+ 1)!

1

𝛾𝑠𝑑

∏
𝑘/∈𝒟𝑗

1

𝛾𝑘𝑠𝑟

∏
𝑙∈𝒟𝑗

1

𝛾𝑙𝑟𝑑
(63)

∂2𝒯
∂𝑟𝑖∂𝑟𝑗

≈ −𝐿𝑖

(
𝑓(𝑟𝑖)

𝑁

)𝑁−1

𝑓 ′(𝑟𝑖)
𝑗∏

𝑘=1,𝑘 ∕=𝑖

(1− 𝜋𝑘) + 𝐿2
𝑖

(
𝑓(𝑟𝑖)

𝑁

)𝑁−1

𝑓 ′(𝑟𝑖)
(
𝑓(𝑟𝑗)

𝑁

)𝑁−1

𝑓 ′(𝑟𝑗)
𝑀∑
𝑙=𝑗

𝑟𝑙

𝑙∏
𝑘=1,𝑘 ∕=𝑖,𝑗

(1− 𝜋𝑘)

(64)

If there is no solution for the 𝑖th equation, then the 𝑖th element
of the optimal UEP is min{𝑅} or max{𝑅}. In particular, ∂𝒯

∂𝑟𝑀
will be

∂𝒯
∂𝑟𝑀

= (1 − 𝜋𝑀 )− 𝑟𝑀𝜋
′
𝑀 = 0. (66)

That is, we can find the optimum rate of the last packet first
and then find the rate of the (𝑀−1)th packet recursively. This
recursive algorithm is equivalent to that introduced in [8].

REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients," IEEE Trans. Signal Process., vol. 41, pp. 3445-3462, Dec.
1993.

[2] A. Said and W. A. Pearlman, “A new, fast and efficient image codec
based on set partitioning in hierarchical trees," IEEE Trans. Circuits
Syst. Video Technol., vol. 6, pp. 243-250, June 1996.

[3] D. Taubman and M. Marcellin, JPEG2000: Image Compression Funda-
mentals, Standards, and Practice. Norwell, MA: Kluwer, 2001

[4] P. G. Sherwood and K. Zeger, “Progressive image coding for noisy
channels," IEEE Signal Process. Lett., vol. 4, no. 7, pp. 189-191, July
1997.

[5] P. G. Sherwood and K. Zeger, “Error protection for progressive im-
age transmission over memoryless and fading channels," IEEE Trans.
Commun., vol. 46, no. 12, pp. 1555-1559, Dec. 1998.

[6] P. G. Sherwood, X. Tian, and K. Zeger, “Channel code blocklength and
rate optimization for progressive image transmission," in Proc. IEEE
Wireless Commun. Netw. Conf., vol. 2, pp. 978-982, Sep. 1999.

[7] V. Chande and N. Farvardin, “Progressive transmission of images over
memoryless noisy channels," IEEE J. Sel. Areas Commun., vol. 18, no.
6, pp. 850-860, June 2000.
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