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ABSTRACT 

 

We present a method for tracking nuclei of C. elegans cells 

in three dimensional time lapse (4D) data during 

embryogenesis. It is based on spherical model fitting with 

multiple target tracking. The algorithm tracks nuclei in a 

local search space, detects cell division, and searches for 

newborn sister cells locally. It tracks multiple candidates 

and postpones the decision to select the newborn sister cell 

until it becomes bright. This approach results in low error 

rates. We evaluate the accuracy of the algorithm by 

comparing to an existing approach on 4D data sets acquired 

from laser scanning confocal microscopes.              

 

Index Terms— spherical model fitting, Caenorhabditis 

elegans, embryogenesis, cell tracking, mutiple target 

tracking 

 

1. INTRODUCTION 

 

The nematode Caenorhabditis elegans (C. elegans) is a 

free-living worm that inhabits soil and feeds on bacteria. C. 

elegans is widely used as a model organism in 

developmental and molecular biology. It develops from one 

cell to 588 cells during embryogenesis. The embryonic 

lineage has been determined and is highly invariant, 

describing the fates of cells to the adult stage [1][2]. This 

trait makes C. elegans suitable for studies on cell 

differentiation and related subjects. Rapid advances in 

microscopy technology enable high resolution 3D image 

sequences. Especially, fluorescence microscopy provides 

sufficient spatial and temporal resolution to facilitate 

analysis of embryonic cell lineages in living embryos [2]. 

In recent years, various segmentation and tracking 

methods have been developed for fluorescence microscopy 

[3][4][5][6]. In this paper, we propose a new algorithm to 

track nuclei in fluorescently labeled C. elegans embryos. It 

is based on spherical model fitting [2] and the algorithm 

consists of nuclei tracking and cell division detection. The 

nuclear position is tracked from the position at a previous 

time point in a narrow search space without considering cell 

division events, making the tracking algorithm simple. This 

approach shows robust tracking results even in low SNR. In 

the cell division detection algorithm, we apply a multiple 

target tracking framework. The detection of newborn cells is 

made not at the frame when cell division happens, but at a 

later frame when the cell is more recognizable. Multiple 

target tracking and postponed detection of newborn cells 

reduces incorrect detection of nuclei.   

 

2. MATERIALS AND METHODS 

 

2.1. Image acquisition 

Fluorescently-labeled C. elegans embryos were recorded 

with Zeiss LSM510 or LSM700 laser scanning confocal 

microscopes. We followed previously published approaches 

to acquire 4D data sets [7]. 3D stacks of 512×275×35 voxels 

with a resolution of 0.125×0.125×0.90µm³ were acquired 

every minute. The imaging starts from the 4 to 8 cell stage 

which indicates the number of cells in the frame and 

continues until 480 minutes of development. Each stack is 

rendered isometric by replicating missing z-slices due to the 

low resolution along the z-axis. After replicating z-slices, 

each stack has 512×275×280 voxels.  

 

2.2. Nuclei tracking algorithm 
Tracking of nuclei consists of several steps. The spatial 

positions of nuclei are identified manually in the first frame 

with a visualization tool. The number of nuclei could be 

from 4 to 8 in the first frame depending on the time when 

the image is recorded. The radii of the cells are pre-defined. 

In our images, the radius of the AB cell is 26 pixels and 

those of EMS and P2 cells are 24 pixels. Whenever cell 

division happens, the radius is assumed to decrease by 2 

pixels. This pre-defined radius is off by 33% at the 28 cell 

stage in the worst case.  

Second, we use a local search to track the identified 

nuclei. Nuclei are spherical except during mitosis. This 

allows us to use a simple spherical mask to track nuclei [2].  

Given an identified nucleus position at time t-1, we define a 

search space which is a cube centered at the nucleus location 

at time t-1 with edges of length 2.5R, where R is the pre-  
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Figure. 1. Projection image during mitosis (a) Nucleus is spherical, (b), (c), (d) Nucleus becomes progressively more ellipsoidal, (e), (f) 

Cell has divided into two sister cells. 
 

defined nucleus radius. We use a uniform spherical mask of 

radius 0.75R to capture the core of the nucleus that is less 

affected by image noise. We convolve the search space with 

the spherical mask and find the new position where the 

convolved signal is maximum. Convmax is defined as the 

maximum value of the convolved signal. If there is more 

than one position at a time t which achieves the same global 

maximum value, we choose the one closest to the position at 

t-1. All identified nuclei at time t-1 are linked to nuclei at 

time t. 

 

2.3. Cell division detection algorithm 
 In the tracking, we track only one nucleus in each local 

search space. After tracking all identified nuclei from time t-

1 to time t, we apply the cell division algorithm. 

First, we look for a mitotic nucleus and estimate the cell 

division time. From observation of 20 embryo data sets, the 

minimum cell division cycle is about 16 minutes, and 

mitosis typically takes 4 minutes. During mitosis, the 

nucleus shape changes from a sphere to an ellipsoid, and we 

can observe condensed mitotic chromosomes [2] (Fig. 1). 

We use three conditions to detect cell division. First, we set 

the minimum cell division cycle as 10 minutes. If nuclei last 

more than 10 minutes, they are candidates for cell division. 

Second, bright pixels are aggregated in a small area during 

cell division, and Convmax decreases. We measure the 

variation of Convmax using Convmax Rate, defined as:  
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where the range of T is from time t-4 to time t. Because 

mitosis typically takes 4 minutes, we use Convmax values 

from time t-4 to time t to measure the decrease in Convmax 

values. A threshold of 0.15 is applied to detect the decrease 

in Convmax. Third, we use the change of nucleus shape 

during mitosis. We apply 4³ ellipsoidal matched filters, and 

the standard deviation of filter outputs is used to detect the 

change of cell shape. We generate the ellipsoidal filters by 

decreasing the minor axis length by half of the cell diameter 

and the filter is rotated by 45 degrees along the X, Y and Z 

axes. The tracked nucleus location is used as the center of 

the matched filters. The output values are normalized by the 

maximum value of the filter output and the standard 

deviation is calculated. When the cell becomes ellipsoidal, 

the variance of the matched filters output increases. The 

threshold value of 0.035 is applied. If the identified nucleus 

satisfies the three conditions of nucleus age, Convmax rate 

and standard deviation of ellipsoidal filters, the algorithm 

declares a possible cell division frame.  

After such declaration, we search for candidate sister 

cells of the nucleus. First, we set two cube search spaces, 

which are SS (small space) and SL (large space). The edge 

length of SS is 4R and the edge length of SL is 8R. SL is 

used to find a newborn sister cell that moves far from the 

center nucleus and SS is used to select candidates near the 

identified cell. After setting search spaces, all previously 

tracked and identified nuclei are removed in the search 

spaces. Since the pre-defined cell radius could be smaller 

than the actual cell radius, we use a sphere with 2.5R radius 

to remove bright pixels around the edge of the identified 

nuclei. For the center nucleus, the pre-defined radius R is 

used to keep pixel information around the center cell (Fig. 2 

– (a), (b), and (c)). 

Next, we pick the top 3 candidate sister nuclei in each 

search space. After convolving search spaces with a 

spherical mask of radius 0.75R, 3 candidate sister nuclei are 

selected in SS and 3 more candidate nuclei are selected in SL. 

In each space, we select convolution maximum points that 

have distance more than 2R from other maximum points to 

avoid overlap. If candidate sister nuclei overlap in the two 

search spaces, we keep the brighter candidate and remove 

the other candidate cell (Fig. 2 – (d), (e), and (f)). This set of 

candidate sister cells which are found at time t is denoted Ft. 

All candidate sister nuclei are tracked from time t-1 to 

time t with the nuclei tracking algorithm. Let Ct denote the 

set of candidate sister cells in existence at time t. The 

construction of Ct is determined recursively from Ct-1 and Ft. 

First, we run the nucleus tracking algorithm on all the 

candidate sister cells in Ct-1 to determine a set Tt of tracked 

candidate sister cells at time t. Next, we check overlap 

between Tt and all identified nuclei to remove candidates 

that were the perimeters of identified nuclei. Next, Ft and Tt 

are combined to construct Ct. If candidates in Ft overlap 

with candidates in Tt, the candidates that have higher 

Convmax are included in Ct. When more than 2 candidates 

at time t-1 are merged into one candidate at time t, the 

candidate that has less movement is included in Ct. If there 

are candidates in Ft not corresponding to candidates in Tt, 

they are also included in Ct for further tracking. 

After tracking candidate sister nuclei continuously, the
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Figure. 2. Search for candidate sister cells (a) projection image of cube search space with edge of length 8R - center cell divides into two 

sister cells, (b) projection image after identified center cell is removed by using radius R, (c) projection image after identified neighbor 

cells are removed by using radius 2.5R, (d) three candidates in SS, (e) three candidates in SL, (f) candidates in SS and SL; even if some 

candidates look overlapped on projection images, candidates do not overlap in 3D search space. 

 

algorithm looks for the true sister nucleus among the 

candidates. The decision is based on the fact that two sister 

nuclei are located closely when the cell division happens. 

The detection of the sister cell is made when any candidates 

reach age 10 minutes. In this case we wlll declare a true 

sister cell among the candidates whose ages are more than 5 

minutes and whose Convmax values are greater than 30% of 

the Convmax of the identified sister nucleus at time t. If the 

estimation of the possible cell division time is correct, 5 

minutes is long enough to find a true sister nucleus. 

However, we postpone the decision point until one of 

candidates reaches age 10 minutes to include more possible 

candidates. After selecting possible candidates that satisfy 

the age and brightness conditions, we look for the candidate 

sister nucleus that has the minimum distance from the 

identified sister nucleus when the candidate sister nuclei are 

first found. After deciding the true sister cell at time t, the 

selected sister cell is added to the identified nuclei from the 

time when it started to the current time t. The radius and 

lineage name of the cell are also updated. We repeat the 

nuclei tracking algorithm and cell division algorithm at 

every time point.   

 

3. RESULTS AND CONDITIONS 

 

We tested our algorithm on 8 embryos (6 of LSM 510 and 2 

of LSM 700) covering until the 180 cell stage. Using a 2.8 

GHz Intel Xeon desktop computer, processing time takes 

less than 1 minute for each frame until 100 minutes and less 

than 3 minutes for each frame from 100 minutes to 200 

minutes due to the increase in the number of cells. 

We compare the results of our algorithm to manually 

identified nuclei of 8 embryos until the 180 cell stage and 

evaluate the errors by counting the false positives 

(incorrectly detected nuclei) and false negatives (incorrectly 

undetected nuclei). We measure FNR (false negative rate) 

and FPR (false positive rate) in three stages which are 4-51, 

51-102 and 102-180 cell stages. We compute FNR = 

FN/(TP+FN) and FPR = FP/(TP+FN) where FN, TP, and FP 

are the total numbers of false negatives, true positives, and 

false positives in each stage [6]. TPR (True positive rate) = 

1-FNR. The result is shown in Fig. 3. At the 4-51 stage the 

error rates are under 2% and the error rates increase to 

4%~10% at the 102-180 cell stage. The majority of errors 

found in our experiment are from incorrectly estimated cell 

division frames. When the algorithm misses a cell division 

frame, there is no search for a newborn sister cell and it 

produces a false negative. Also, false detection of a cell 

division frame produces a false positive. Additionally, when 

multiple nuclei are located closely, multiple nuclei can be 

tracked to a single bright nucleus in our tracking algorithm. 

If the distances between two tracked nuclei are less than the 

sum of nuclear radii, we define this event as a cell collision 

even if nuclei in the image stack don’t collide.   

We compared our algorithm to the Starrynite algorithm 

[2] on LSM 510, LSM 700, and the Bao et al. data set in [2]. 

The Bao et al. data set is the one used to report results for 

Starrynite in [2]. The comparison result is shown in Fig. 4. 

Our algorithm shows that TPR exceeds 97% and FPR is less 

than 2.54% for three data sets (Fig. 4-A). Starrynite 

produces 99.64% TPR and 0.03% FPR on the Bao et al. data 

set using the parameters provided with the software (Fig. 4-

B). For the other data sets, we optimized the parameters to 

minimize Error over the first 50 minutes. Error is defined as: 

TP TP
Error = 1-

TP+ FN TP+ FP


 
TPR = TP/(TP+FN) represents the fraction of actual    
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Figure .3. FNR and FPR for 8 data sets.  
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Figure. 4. Comparison to Starrynite [2]. We tracked nuclei in three 

data sets (original Bao et al. dataset, LSM510, and LSM700)  

(A) The cumulative performance of our algorithm until 99 minutes. 

(B) Performance of Starrynite. We report the cumulative 

performance using original parameters from Bao et al. on the 

original Bao et al. dataset; for other data sets, we optimize 

parameters over the first 50 minutes (optim) and report TPR and 

FPR. Then, we report the performance until 99 minutes using these 

parameters.  

 

positives which are declared by the algorithm to be positives.  

PPV (positive predictive value) = TP/(TP+FP) represents 

the fraction of cases declared by the algorithm to be 

positives which actually are positive. Ideally, we want TPR 

to equal 1 (no false negatives) and we also want PPV to 

equal 1 (no false positives). So we define 1-TPR PPV as 

Error to be minimized. The LSM 510 data set has 71% TPR 

with 1.5% FPR over the first 50 minutes. As we use these 

parameters until 99 minutes, FPR increases to 78%. The 

FPR of the LSM 700 data set also increases to 51% until 99 

minutes. The result shows that parameters of Starrynite are 

dependent on time. Even if the FPR of our algorithm is 

slightly higher than the FPR of STARRYNITE on the Bao 

et al. data set, our algorithm shows robust performance over 

multiple data sets and the parameters of our algorithm are 

less dependent on time.      

 

4. DISCUSSION 

 

We combine nuclei tracking and cell division based on 

spherical and ellipsoidal model fitting [2]. We use a local 

search based on the prior temporal information for each 

nucleus. This approach improves tracking performance in 

cluttered environments by reducing the influence of 

neighboring nuclei. In the cell division algorithm, we search 

for newborn sister cells locally when the algorithm estimates 

a cell division frame for an identified nucleus. We track 

multiple targets and look for one newborn sister nucleus 

when the nucleus is bright enough to be identified to avoid 

false positives.  
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