
#2 General Framework for Iterative ModificationECE 172a Pamela Cosman 1/12/12

Let bij be the binary value of a pixel at location(i, j). Let A be a set of neighborhoods (surrounds). We define

aij =

{

1 if the neighborhood of(i, j) ∈ A

0 otherwise

The output pixel that is in location(i, j) is given a valuecij , wherecij is some Boolean functionL of aij andbij.
There are 16 different possible Boolean functions of two binary inputs:

ab 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Here each column represents a Boolean function while each row represents one of the possible combinations of
values for the two inputsa andb. The value at the intersection of a particular row and a particular column is the
output produced by the Boolean function when given the inputshown on the left.

Some of these 16 functions are not very interesting. Number 0always produces zeros as output, while Number
15 always produces ones. Numbers 5 and 10 simply reproduceb and its complementb. So these are an identity
operation and a complementing operation on the input image.Another two (numbers 3 and 12) reproducea anda.
So this is a marking operation: the output pixel simply markswherever the surrounds in A (or the surrounds not in
A) are found.

More interesting are the logicaland (Number 1) and the logicalor (Number 7). We denote theand operation by
c = a · b and note that it will be some kind of erosion or “etching away”operator, since it can only remove ones
from the image:a · b ≤ b

Theor operator, denoteda + b will implement dilation or growing of objects, since it can only remove zeros from
an image:a + b ≥ b

Some of the remaining Boolean operations, such asa · b anda + b are of little interest since the same effect can be
achieved by using the complement of the setA and employinga · b or a + b instead.

In addition toA and the functionL, there remain two things to specify for a general iterative modification scheme:

• Thenumber of iterations, n, says how many times we will apply the operator.

• Thenumber of subfields,f specifies how many tesselations (tilings, subfields) the image is subdivided into.

We divide the image pixels into subfields, and operate on all pixels in a subfield in parallel, but consider one subfield
sequentially after another one. If a subfield contains a pixel X then it should not contain the neighbors of X (whatever
neighborhood is used for making the iterative modification). For example, we could use the following 4 subfields:

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1


