| $\# 2$ | General Framework for Iterative Modification | ECE 172a | Pamela Cosman | $1 / 12 / 12$ |
| :--- | :--- | :--- | :--- | :--- |

Let $b_{i j}$ be the binary value of a pixel at location $(i, j)$. Let $A$ be a set of neighborhoods (surrounds). We define

$$
a_{i j}= \begin{cases}1 & \text { if the neighborhood of }(i, j) \in A \\ 0 & \text { otherwise }\end{cases}
$$

The output pixel that is in location $(i, j)$ is given a value $c_{i j}$, where $c_{i j}$ is some Boolean function $L$ of $a_{i j}$ and $b_{i j}$. There are 16 different possible Boolean functions of two binary inputs:

| ab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 01 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 10 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 11 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Here each column represents a Boolean function while each row represents one of the possible combinations of values for the two inputs $a$ and $b$. The value at the intersection of a particular row and a particular column is the output produced by the Boolean function when given the input shown on the left.
Some of these 16 functions are not very interesting. Number 0 always produces zeros as output, while Number 15 always produces ones. Numbers 5 and 10 simply reproduce $b$ and its complement $\bar{b}$. So these are an identity operation and a complementing operation on the input image. Another two (numbers 3 and 12) reproduce $a$ and $\bar{a}$. So this is a marking operation: the output pixel simply marks wherever the surrounds in A (or the surrounds not in A) are found.

More interesting are the logical and (Number 1) and the logical or (Number 7). We denote the and operation by $c=a \cdot b$ and note that it will be some kind of erosion or "etching away" operator, since it can only remove ones from the image: $a \cdot b \leq b$
The or operator, denoted $a+b$ will implement dilation or growing of objects, since it can only remove zeros from an image: $a+b \geq b$
Some of the remaining Boolean operations, such as $\bar{a} \cdot b$ and $\bar{a}+b$ are of little interest since the same effect can be achieved by using the complement of the set $A$ and employing $a \cdot b$ or $a+b$ instead.

In addition to $A$ and the function $L$, there remain two things to specify for a general iterative modification scheme:

- The number of iterations, $n$, says how many times we will apply the operator.
- The number of subfields, $f$ specifies how many tesselations (tilings, subfields) the image is subdivided into.

We divide the image pixels into subfields, and operate on all pixels in a subfield in parallel, but consider one subfield sequentially after another one. If a subfield contains a pixel $X$ then it should not contain the neighbors of $X$ (whatever neighborhood is used for making the iterative modification). For example, we could use the following 4 subfields:

| 1 | 2 | 1 | 2 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 3 | 4 | 3 | 4 |
| 1 | 2 | 1 | 2 | 1 | 2 |
| 3 | 4 | 3 | 4 | 3 | 4 |

