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Abstract— The ability of a human to visually detect
whether a packet has been lost during the transport of
compressed video depends heavily on the location of the
packet loss and the content of the video. In this paper, we
explore when humans can visually detect the error caused
by individual packet losses. Using the results of a subjective
test based on 1080 packet losses in 72 minutes of video, we
design a classifier that uses objective factors extracted from
the video to predict the visibility of each error. Our classifier
achieves over 93% accuracy.

I. INTRODUCTION

Since the first papers on video transport over networks
appeared, a long-standing problem has been “What packet
loss rate (PLR)1 can viewers accept?”. Target thresholds on
acceptable PLR have ranged from 10

−9 or lower [1], [2] to
10
−6 [3], with even higher PLR assumed in recent work.

Clearly, the choice of the proper threshold is confounded
by a number of issues.

1) Viewer expectations, involvement, and task. For ex-
ample, viewers may tolerate errors if they can’t get
that video content any other way but not if they
usually receive the same service error-free.

2) Environmental viewing conditions. Background
lighting, monitor characteristics, and viewing dis-
tance all affect the viewing experience.

3) Each loss creates an error with a different visual
impact. Encoding parameters, decoder concealment,
video content (moving or still), packet size, bursti-
ness of losses, and the actual location of the loss;
these all play fundamental roles in whether a partic-
ular loss will be visible or invisible to most viewers.

A number of subjective studies are available regarding
the perceived impact of packet losses [4], [5], [6], [7].
The effect of losses depends heavily on the scene content
and amount of motion [4]. However, to our knowledge,
all attempts to consider the perceptual impact of packet
losses have examined the combined impact of multiple
packet losses. Because not all packet losses create the
same visual impact, different realizations of video content
and packet loss may lead to vastly different visual quality.
Thus, in these studies, many different realizations of both

1We consider here only those packets which are still lost after all error
control (including FEC, retransmission, etc). Thus, we consider the PLR
seen specifically by the compressed video decoder.

packet loss and video content are necessary to reduce the
variability of the observer responses.

In this paper, we take a different approach, by consid-
ering the visual impact of each individual packet loss.
Our eventual goal is to create a network-based video
quality monitor that is real-time, per-stream, and accurate
enough to answer the question: do the specific packet losses
affecting this specific video being transported degrade its
visual quality?

To accomplish this, we take the following steps. First,
we conduct a subjective test in which viewers who are
shown MPEG-2 videos with injected packet losses are
asked to indicate when they see an artifact in the displayed
video. Data is gathered for a total of 1080 individual packet
losses over 72 minutes of MPEG-2 video. We purposely
leave open the question of when a viewer will find a given
frequency of visible packet losses to be objectionable or
annoying. “Ground truth” regarding packet loss visibility
is defined by the results of these subjective tests.

The data gathered from the subjective test could be
correlated with the output of any number of objective
quality metrics (including [8], [9], [10]), to understand
how these can be used for characterizing packet loss errors.
However, because we are interested in monitoring the video
quality within the network [11], we would like a metric
that operates on the compressed bitstream. Most available
video quality metrics require either video information prior
to encoding, or a completely decoded bitstream (or both).

Therefore, our second step is to develop a tree-based
classifier that labels each possible packet loss as either
visible or invisible. The classifier uses objective factors
extracted from the video, including factors that are in-
dependent of the video content (temporal duration, initial
spatial extent, and vertical position) and factors that depend
on the underlying video content (motion and initial error).
We achieve better than 93% classification accuracy.

This paper is organized as follows. Section II gives
an overview of MPEG-2 packet losses and their impact.
We also describe objective factors that are relevant in
predicting packet loss visibility. Section III describes our
subjective test. In Section IV, we describe our tree-based
classifier that predicts the visibility of each packet loss.
Section V concludes.



II. PACKET LOSS IN MPEG-2 VIDEO

MPEG-2 is typically packetized in one of two ways.
First, video can be segmented and packetized into small
fixed-size packets (like ATM cells or MPEG-2 Transport
Stream packets), in which case a single packet loss might
force the decoder to discard either a slice or an entire
frame. Second, a variable-sized packet can contain one or
more entire slices. In both cases, a packet loss corresponds
to the loss of one or more slices.

The initial error caused by a packet loss propagates in
space and time as a result of the video decoding algorithm.
The exact error due to packet loss can be completely
described by (a) the initial error for each macroblock in the
lost packet, and (b) the macroblock type and (c) motion
information for subsequently received macroblocks [11].
The latter two control the temporal duration and spatial
spread of the error.

We expect the visibility of a loss to depend on a complex
interaction of its location, the video encoding parameters,
and the underlying characteristics of the video signal itself.
For example, the texture and motion of the underlying
signal may potentially mask the error. To isolate the
impact of the various parameters, one approach could be to
inject different error amplitudes against an identical signal
background, as was done in [12] for blocky, blurry, and
noisy artifacts. However, for packet losses, the error itself
is highly dependent on the underlying signal. Therefore,
we must take a different approach.

We have independent control over the location, initial
spatial extent, and temporal duration of each loss we inject.
The other factors depend on the signal. Thus, we can
choose whether to lose a single slice, multiple slices, or
an entire frame, and we can choose the loss to be in a B-
frame (which would last a single frame) or in a reference
frame (which would typically last more than one frame).
In choosing the location of the loss, we should distribute
the locations vertically within the frame, and we should
also choose representative samplings from both still and
active regions of the sequence.

III. SUBJECTIVE TEST

We use a single-stimulus test, in which the viewers’
task was to indicate when they saw an artifact, where an
artifact was defined simply as a glitch or abnormality. We
wanted viewers to be immersed in the viewing process
and not scrutinizing the video for any possible impairment.
Thus we chose DVD-quality MPEG-2 video2 from travel
documentaries. Audio was not presented, and the video
decoder used zero-motion concealment.

We chose twelve 6-minute DVD-quality video se-
quences, for a combined length of 72 minutes. We grouped
the sequences into 4 sets, each consisting of three of the
6-minute sequences. This limited a viewing session to 18
minutes so as not to tire or bore the viewers. During each

2720 pixels, 480 lines, and 60 fields per second.

18-minute viewing session, a viewer evaluated a set of
video with a short break between each sequence. Some
viewers participated in more than one viewing session,
although never on the same day. Each set of video (and
hence each packet loss) was evaluated by 12 viewers.

Viewers were told that the videos they were watching
would have impairments caused by packet losses, and that
when they saw something unexpected in the video they
should respond by pressing the space bar. They were asked
to keep their finger on the space bar so they would not be
distracted by that task. The lighting condition was typical
of an office environment and the viewer was positioned
approximately six picture heights from the screen.

A total of 1080 packet losses were randomly injected in
these videos such that every non-overlapping four-second
interval contained one packet loss in the first three seconds.
The one-second guard interval ensured a viewer had suf-
ficient time to respond to each individual error. Inside the
three-second interval available for each loss, we distributed
the losses such that overall, 30% affected an entire frame,
10% affected two adjacent slices, and 60% affected a single
slice. Further, we chose to have 30% of the losses to be
in B-frames (and hence have a temporal duration of one
frame), and the remaining 70% evenly distributed across
the available P- and I-frames in the 3-second interval.
Finally, the video we selected was highly varied, with
many different motion types and amounts of spatial texture.
Therefore, we believe our packet losses occur across a
representative set of diverse signal background types.

We label each of the 1080 packet losses with the
responses from the 12 viewers: seen or not seen. Figure
1 shows the histogram of the number of viewers who
responded to each packet loss. From these responses,
we define the ground truth regarding the visibility of an
error. We define an error to be visible if 75% or more
viewers responded to it. Similarly, an error is invisible
if 25% or fewer viewers responded to it. The remaining
errors are indeterminate. Of the 1080 total errors shown
to viewers, 732 were invisible, 195 were visible, and 153
were indeterminate. We do not concentrate here on the
14% of errors that were indeterminate, but instead focus
on understanding the 927 visible and invisible errors.

IV. OBJECTIVE FACTORS AND CLASSIFIER

In this section, we consider objective factors that can
be extracted from a complete video bitstream. We first
examine the effect of individual factors on the visibility of
packet losses as defined by our human viewers, and then
present several objective classifiers based on these factors.

A. Factors affecting visibility

We consider a total of nine objective factors. We
consider first three content-independent factors: temporal
duration (TMDR), initial spatial extent (SPXNT), and the
vertical position (or height) of the error (HGT). The values
of these three factors were chosen for each packet loss
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Fig. 1. Number of viewers who saw each error.

when we designed the subjective test, as described above.
They do not depend on the underlying video content, and
they can be easily computed or extracted from a partially-
received bitstream using only the information in the video
headers.

Overall, the correlation between TMDR, SPXNT, and
HGT and the number of viewers who saw each error is
low: 0.051, 0.29, and -0.13, respectively. However, some
trends can be observed. Of those errors with TMDR=1
(i.e., B-frame errors), only one error is visible and the
remaining 119 are invisible. Of the full-frame errors, 39%
are visible, while only 13% of the single- and double-slice
errors are visible. A higher percentage of losses in the
bottom third (84.5%) are invisible than those in the top
(73.3%) or middle third (69.8%).

Next, we consider content-specific factors that depend
on the video content at the location of the loss: motion
and the MSE of the initial error (IMSE). For a particular
packet loss, these content-specific factors cannot be exactly
obtained from a bitstream in which the packet is already
lost; however, they are available from the complete bit-
stream. We average these content-specific factors across
all macroblocks initially lost.

Intuitively, motion plays a key role in the visibility of
losses. We use an MPEG-2 encoder to compute motion
vectors for each pair of adjacent frames and summarize
the motion within a slice by the average motion in both
the x- and y-directions, denoted by MOTX and MOTY
respectively. In addition to average motion, we also con-
sider several other motion-related variables to predict the
visibility of packet losses: the variance in MOTX and
MOTY denoted by VARMX and VARMY, respectively,
and the energy in the residual after motion compensation,
RSENGY, for each slice. These additional parameters
help in determining whether the calculated motion vectors
represent the underlying scene motion well or not. For
example, if RSENGY is high, the motion vectors probably
do not represent the actual scene motion well. Similarly,
if the motion variance is high, the motion is inconsistent.

The initial Mean Square Error of a packet loss, IMSE,
has a significant impact on the visibility of a packet loss.
For the frame affected by a packet loss, we compute
the IMSE by evaluating the per-frame MSE between the
decoded images using the complete bitstream and the
bitstream with loss. Assuming zero-motion concealment,
IMSE is easily computed using a decoder that receives the
entire bitstream (without losses).

The correlation coefficients between MOTX, MOTY,
and IMSE and the number of viewers who saw an error are
0.40, 0.26, and 0.44, respectively. Not unexpectedly, visible
errors are much more likely to have large motion and large
IMSE than invisible errors. Most errors with small motion
are invisible to most viewers: only 11 out of 330 packet
losses with both MOTX and MOTY less than 0.5 (half a
pixel) are visible.

B. Objective Classifiers

We compare four objective classifiers that classify each
packet loss to be visible or invisible to an “average” human
observer. Each classifier is a decision tree; the classifier
traverses a tree where the path at each node is based on
a binary decision using one of the nine factors discussed
above. During the training of the tree, a node is split to
minimize the probability of misclassification.

Two of the classifiers start with a sub-tree, denoted root-
tree, that is based on our earlier observations regarding the
impact of short temporal duration, small motion, and spa-
tial extent. Root-tree consists of the following decisions.
First, all packet losses with temporal duration of one frame
(TMDR≤1) are classified as invisible. This introduces
only one misclassification. Second, all packet losses with
small motion, defined by (MOTX≤0.5 & MOTY≤0.5), are
classified as invisible. This results in 11 misclassifications.
At this stage, we have classified 450 of the 927 errors, with
only 12 misclassifications. Next, we split the tree based on
the initial spatial extent (SPXNT<15) without making any
decision. This split is based on the earlier observation that
sub-frame (single- and double-slice) and full-frame losses
have different probabilities of being visible and allows
these two cases to be treated differently.

At this stage, we apply CART [13], a well known
statistics tool for tree-structured data analysis, to classify
the data in each of the two nodes. CART splits the frame-
loss node using (IMSE≤55.947), where losses with smaller
IMSE are classified as invisible and the remaining losses
are classified as visible. For the slice-loss case, CART
produces the tree shown in Figure 2. Seven of the eight
available parameters are used in decisions, but TMDR is
not used. This is the first classifier we consider.

We note that in Figure 2, the initial decision is based
on IMSE. Because CART uses a greedy algorithm to find
the best split, we conclude that after partitioning the data
set using root-tree, the single most important factor at that
stage for predicting visibility is IMSE. Thus, the second
classifier we consider uses only root-tree and IMSE. It



Classifier Misclass. Accuracy
RS CV RS CV

root-tree + 9-factor CART 36 62 96.12% 93.31%
root-tree + IMSE 78 82 91.59% 91.15%
9-factor CART 50 71 94.61% 92.34%
1-sec MSE 122 127 86.84% 86.30%

TABLE I
MISCLASSIFICATIONS AND ACCURACY FOR EACH CLASSIFIER,

DURING RESUBSTITUTION (TRAINING) AND CROSS-VALIDATION.

classifies full-frame errors as described above and classifies
sub-frame errors as invisible if (IMSE≤18.834) and as
visible otherwise.

Our third classifier is designed by applying CART to all
nine factors above. The decision tree for this classifier is
not shown due to space constraints; however, it contains
10 terminal nodes, and the initial split is based on IMSE.

The fourth classifier is designed using linear regression
applied to the one-second MSE for each packet loss. De-
spite its known shortcomings at accurately characterizing
video quality, MSE has traditionally been used to evaluate
the impact of packet loss, since it summarizes the overall
impact of the packet loss. We measure MSE between the
decoded video without loss and the decoded video with
each packet loss, over any one-second interval that contains
the error. With this classifier, errors with one-second MSE
smaller than 3.621 are classified as invisible.

C. Classifier Performance

We use the four classifiers to classify all non-
indeterminate packet losses into visible and invisible
losses. The classifiers are not run on indeterminate losses
for lack of a ground truth for comparison. The performance
of the four classifiers is shown in Table I. Entries under
“RS” correspond to the performance during the resubstitu-
tion phase, which classifies the training data. Entries under
“CV” correspond to the cross-validation phase, where the
data is partitioned into 10 equal partitions and each of the
10 partitions is classified using a tree trained using the
other nine partitions.

The CART-based classifier that begins with root-tree
performs best, achieving over 93% accuracy on the cross-
validation test set. The classifier obtained using CART
alone does not perform as well because CART is a greedy
algorithm; each split is only locally optimal, and may not
be the best split for the overall tree. The split on spatial
extent is such an example, where CART does not see that a
split on spatial extent is advantageous at the global level.
Using root-tree plus IMSE achieves over 91% accuracy
on the cross-validation test set, while using only the one-
second MSE performs the worst.

V. CONCLUSIONS

When evaluating the quality of video in a network, PLR
alone is insufficient because the impact of losses depends
heavily on video content. Our study here is a first step
toward developing accurate perception-based video quality
monitors within the network. Further work is needed to

Fig. 2. Classifier for SPXNT<30, TMDR>1, not-small motion.

incorporate our current classifier into a video quality mon-
itor that uses only information available from bitstreams
that already have losses [11]. Further work is also needed
to generalize our classifier to other environments: non-
isolated errors, or different compression algorithms.

We expect the Visible Packet Loss Rate (VPLR), i.e. the
rate of losses causing visible errors, will be more mean-
ingful than PLR, because a threshold on acceptable VPLR
is likely to be invariant with scene content. Our classifier
could be used to assign to each scene a probability of
visibility for a random loss. Coupled with an understanding
of how people tolerate frequent visible errors, this could
allow better network design for video transport.

REFERENCES
[1] W. Verbiest and L. Pinnoo, “A variable bit rate video codec for

asynchronous transfer mode networks”, IEEE Journal on Selected
Areas in Comm., vol. 7, no. 5, pp. 761–770, June 1989.

[2] W. Verbiest et al. “The impact of the ATM concept on video
coding”, IEEE JSAC, vol. 6, no. 9, pp. 1623–1632, Dec. 1988.

[3] R. Aravind et al. “Packet loss resilience of MPEG-2 scalable video
coding algorithms”, IEEE Trans. on Circuits and Syst. for Video
Tech., vol. 6, no. 5, pp. 426-435, Oct. 1996.

[4] C. J. Hughes et al. “Modeling and subjective assessment of cell
discard in ATM video,” IEEE Trans. Image Processing, vol. 2, no.
2, pp. 212-222, April 1993.

[5] S. Mohamed and G. Rubino, “A study of real-time packet video
quality using random neural networks”, IEEE Trans. Circuits and
Systems for Video Tech., vol. 12, no. 12, pp. 1071-1083, Dec. 2002.

[6] B. Chen and J. Francis, “Multimedia Performance Evaluation”,
AT&T Technical Memorandum, February 28, 2003.

[7] Verizon Laboratories (Gregory W. Cermak), “Videoconferencing
Service Quality as a function of bandwidth, latency, and packet
loss”, T1A1.3/2003-026, May 6, 2003.

[8] S. Hemami and M. Masry, “Perceived quality metrics for low bit
rate compressed video”, Int. Conf. on Image Proc. (ICIP), pp. 721–
724, Sept. 2002.

[9] H. R. Wu et al. “Vision-model-based impairment metric to evaluate
blocking artifacts in digital video”, Proceedings of the IEEE, vol.
90, no. 1, pp. 154 –169, Jan. 2002.

[10] S. Wolf and M. Pinson, “In-service performance metrics for MPEG-
2 video systems”, IAB, Montreux, Switzerland, Nov 12-13, 1998.

[11] A. R. Reibman et al. “Quality monitoring of video over a packet
network”, IEEE Trans. Multimedia, to appear, 2004.

[12] M.S. Moore et al. “Defect visibility and content importance impli-
cations for the design of an objective video fidelity metric ” ICIP
2002, pp. III.45-48, June 2002.

[13] L. Breiman et al. Classification and Regression Trees. Wadsworth,
Belmont, CA, 1984.


