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Kuang-Man Huang a,∗, Pamela Cosman a, William R. Schafer b

a Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, San Diego, CA 92093-0407, USA
b Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK

Received 4 December 2007; received in revised form 31 January 2008; accepted 31 January 2008

bstract

Foraging is a rapid, side-to-side movement of the nose generated by Caenorhabditis elegans as it explores its environment. In this paper, we
resent an automated method to detect and analyze foraging behavior of C. elegans in a video sequence. Several morphological image-processing

ethods are used to locate the precise nose position of the worm in each image. Then foraging events are detected by measuring the bending angle

f the nose and investigating the overall bending curve using periodograms. We measure foraging-related parameters which have not previously
een studied. The algorithm has applications in classifying and characterizing genetic mutations associated with this behavior.
 2008 Elsevier B.V. All rights reserved.
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. Introduction

The nematode Caenorhabditis elegans is widely used in stud-
es of nervous system function and behavior. C. elegans is
articularly useful as a neurobiological model because of its
ompletely sequenced genome and its amenability to classical
nd molecular genetics. In addition, it has a compact and well-
efined nervous system, in which each neuron (of 302 in total)
as been individually identified and characterized at the level of
ynaptic connectivity (White et al., 1986). In principle, it is pos-
ible to identify mutants with specific behavioral abnormalities
nd understand mechanistically how individual gene products
ct within the context of the neural circuitry to produce these
ehavioral phenotypes.

Despite its anatomically simple nervous system, C. elegans
s capable of surprisingly diverse patterns of behaviors. While
ome of these, such as feeding, egg-laying, and defecation, are
echanically simple (Avery and Thomas, 1997; Schafer, 2006),

ther behaviors involve complex motor programs requiring intri-

ate coordination of muscle groups. These include locomotor
ehaviors such as backward and forward crawling, swimming,
nd copulation (Barr and Garcia, 2006). Recently, there has been
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ncreasing interest in quantitatively characterizing and model-
ng these more complex motor programs (Chen et al., 2006;
arbowski et al., 2007); however, significant questions remain

egarding the nature of these behaviors and how they are gener-
ted by the nervous system.

A C. elegans behavior that has received comparatively little
ttention is foraging. Foraging is a term used to describe rapid,
ide-to-side movements of the nose generated by the worm as it
xplores its environment. Several neurons, including the OLQ
nd IL1 sensory neurons and the RMG motorneurons, have been
hown to be required for this behavior (Driscoll and Kaplan,
997; Kaplan and Horvitz, 1993). Various genes conferring a
oraging abnormal (“Fab”) phenotype have also been identi-
ed; for example, the AMPA-type glutamate receptor gene glr-1

s required for foraging (Hart et al., 1995), and the G-protein
lpha-subunit gene goa-1 as well as other genes in the Go/Gq
ignaling pathway affect the rate of foraging (Alkema et al.,
005; Segalat et al., 1995). However, the precise nature of the
oraging movements in wild type and mutant strains has not been
haracterized.

Studies of foraging behavior have relied exclusively on
he time-consuming analysis of video recordings by human

bservers. For this reason, we use an automated system (Baek
t al., 2002; Cronin et al., 2005; Feng et al., 2004; Geng et al.,
004; Hoy et al., 1996, 1997) consisting of a tracking micro-
cope and image-processing software to follow and analyze the
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After a morphological skeleton is obtained, 25 evenly spaced
skeleton points are extracted. The two end points on the skele-
ton represent the head and tail positions (Fig. 2a). Using the
54 K.-M. Huang et al. / Journal of Neu

ovements of individual animals at high magnification. Using
ideo data collected using an automated tracking system, we
ave been able to reliably detect foraging events and provide
he first quantitative description of foraging movements in C.
legans. Fourier analysis of these data identifies characteristic
requencies that can be used to parameterize foraging patterns.
hese analyses provide more precise methods for defining the
ffects of specific genes and neurons on C. elegans behavior.
his paper is organized as follows. In Section 2, we describe

he foraging detection algorithm, including image acquisition
nd pre-processing. In Section 3, we evaluate the algorithm by
esting it on a variety of videos of mutant worms, and verify-
ng the results with manual observations. We also describe how
o extract foraging-related parameters, and we combine these
arameters with Fourier analysis to analyze foraging behavior.
iscussion and conclusions appear in Sections 4 and 5.

. Materials and methods

.1. Strains and culture methods

C. elegans strains were maintained as described (Brenner,
974). For all assays, 4-day-old young adults were used; fourth-
tage larvae were picked the evening before the experiment
nd tracked the following morning. Plates used for tracking
ere prepared by spreading one drop of a saturated LB (Luria
roth) culture of Escherichia coli strain OP50 onto NGM
nematode growth medium) agar plates. Experimental animals
ere allowed to acclimate for 5 min before tracking. We used
ild type worms and the following mutants: dgk-1(nu62); glr-
(n2361); goa-1(n1143); trpa-1(ok999).

.2. Acquisition of image data

C. elegans locomotion was tracked with a Zeiss Stemi 2000-C
icroscope mounted with a Cohu High Performance CCD video

amera essentially as described (Geng et al., 2004). The micro-
cope was outfitted for brightfield illumination from a 12 V 20 W
alogen bulb reflected from a flat mirror positioned at an angle
f approximately 45◦. A tracker controlled by a Dell 1.0 GHz
entium-III desktop computer was used to maintain the worms

n the center of the optical field of the microscope during obser-
ation. To record the locomotion of an animal, image frames
f the animal were captured at a frequency of 30 Hz and then
aved as AVI video files (encoded with mpeg4v2) for at least
min (30 × 60 = 1800 images per video). Next, we binarized the

mage using an adaptive threshold (the average value minus three
imes the standard deviation) and found the connected compo-
ent with the largest area. The original image was then trimmed
o the smallest axis-aligned rectangle that contained this com-
onent, and saved as eight-bit grayscale data. The dimensions
f each image, and the coordinates of the upper left corner of
he rectangle box containing the worm body in the tracker field

ere also recorded simultaneously. The microscope was fixed

o its largest magnification (50×) during observation. The num-
er of pixels per millimeter was fixed at 312.5 pixel/mm for all
orms.

F
o

ig. 1. (a) Gray level image acquired from a video sequence, (b) corresponding
inary image after thresholding, (c) binary image after hole filling and closing
perator and (d) skeleton after skeletonizing and pruning algorithm.

.3. Image pre-processing

To facilitate analysis, the grayscale images were subjected to
reliminary image processing to generate a simplified represen-
ation of the body (Geng et al., 2004). First any images which
ere snapped when the stage was moving (the current coordinate
f the stage was different from the previous coordinate) were
iscarded because these images were usually blurry. Then for
ach good image frame (Fig. 1a), an adaptive local thresholding
lgorithm (Fig. 1b) followed by a morphological closing opera-
or (binary dilation followed by erosion) was used. As described
n (Geng et al., 2004), a corresponding reference binary image
as also generated by filling holes inside the worm body based
n image content information. The difference between these two
inary images provided a good indication of which image areas
re worm body and which are background (Fig. 1c). Following
inarization, a morphological skeleton was obtained (Fig. 1d)
Geng et al., 2004; Gonzalez and Woods, 2002).

.4. Locating the worm nose
ig. 2. (a) Skeleton with 25 sampled skeleton points and (b) the exterior contour
f the worm body.
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ig. 3. (a) Placing a cutoff line at the first skeleton point p1 perpendicular to th
omputing the spatial average from the 10 points furthest from p1.

pproach in (Geng et al., 2004), the head is recognized for
ntire video sequences using the brightness (the head is usu-
lly brighter than the tail) and the distance moved between the
urrent frame and the previous frame (the head usually moves
ore than the tail) for the two end points. However, the head

osition on the skeleton as calculated in (Geng et al., 2004) is
ot precisely the same as the nose position recognized in the
riginal grayscale image. To detect foraging events which are
elated to subtle nose movement, we need to locate the nose
osition more precisely. First we obtain the exterior boundary
f the worm body by eroding it with a 3 × 3 square structur-
ng element and then performing the set difference between the
inary image and its erosion (Fig. 2b). A cutoff line is then
laced which passes through the first skeleton point p1 and is
erpendicular to the skeleton tangent line at p1. The cutoff line
uts the exterior contour into two parts (Fig. 3a). The smaller
art which contains the head point is the nose section of the con-
our and will be isolated from the rest of the body (Fig. 3b). We
ompute the distances between the point p1 and each pixel on
he nose section of the contour. The 10 points having the longest
istances from the point p1 are selected and used to compute the
patial average point pn, which we define to be the position of
he nose (Fig. 3c).

.5. Foraging event detection
In (Kindt et al., 2007), a foraging movement is defined as
complete cycle of movements by the tip of the nose from the
entral side through the dorsal extreme or vice versa during time
ntervals when the animal was moving forward (Fig. 4). Some-

s
e
m
c

ig. 4. Computing the nose bending angle b in every frame: (a) nose bends to the righ
he midline.
gent line at p1, (b) isolating the nose section from the rest of the body and (c)

imes worms can move either forwards or backwards depending
n the direction in which the sinusoidal waveform is propagated
own the body. This backward movement is defined as a rever-
al. Omega bends occur when the worm takes on the shape of
capital omega and curves its head around to touch the middle
art of its body then sharply bends away from its body. Based
n the definition of foraging in (Kindt et al., 2007), any detected
oraging events during reversals or omega bends will not be
ounted as foraging events. We used the method in (Huang et
l., 2006) to detect reversals and omega bends automatically.

To investigate this kind of side by side nose movement in a
ideo, we measure the nose bending angle b between the seg-
ents (pn, p1) and (p1, p2) where p1, p2 are the first and second

keleton points from the head and pn is the nose position (Fig. 4).
he nose bending direction is defined to be left if b > 0 and to be

ight if b < 0. Fig. 5 contains plots of b(t) which show nose bend-
ng angle over time from a video. Here t is the frame index. The
verall curve is in a rough sinusoidal shape because the worm
enerally moves in a sinusoidal wave. We can also notice that
here are some dips and peaks (extrema) marked on the curve in
ig. 5a. Each set of three consecutive extrema (consisting either
f two local maxima and the local minimum between them, or
lse of two local minima and the local maximum between them)
epresents a side-to-side motion of the nose and is therefore con-
idered to be a candidate foraging event. From the beginning of
ach video, we search for and examine each set of three con-

ecutive extrema. We denote the first, second, and third local
xtreme values (in a time-wise order) to be its start point SP,
iddle point MP, and end point EP, respectively. A set of three

onsecutive extrema is considered to be a foraging event if that

t of the midline, (b) nose points straight ahead and (c) nose bends to the left of
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Fig. 5. (a) An example of nose bending angle over time from a video. A detected
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oraging event of definition 1 is shown in white dots and the other event of
efinition 2 (α = 0.5) is shown in black dots and (b) an example of a non-foraging
vent.

egment of the video does not contain any bad frames (frames
iscarded due to stage movement) and if either of the following
wo criteria is satisfied:

1) Sign[SP] = sign[EP] = −sign[MP]: when this criterion is
satisfied, it means that the worm’s nose is waving across the
middle line (b = 0) to reach the other side then waving back
to accomplish a complete foraging movement. An example
of a foraging event of this kind is shown by white dots (SP1,
MP1 and EP1) in Fig. 5a.

2) Sign[SP] = sign[EP] = sign[MP] and

abs[SP−MP] > αabs[SP]: when this criterion is satis-
fied, it means that even though the worm’s nose does not
cross the middle line, the moving angle of the nose is
still larger than some fraction α of its starting bending

(
e
(
i

nce Methods  171 (2008) 153–164

angle which, depending on α, is noticeable enough to be
considered to be a foraging event. An example of a foraging
event of this kind (e.g. α = 0.5) is shown by black dots (SP2,
MP2 and EP2) in Fig. 5a. The angle difference between SP2
and MP2 is 15.9◦ which is larger than 0.5 × SP2 = 11.45◦.
Fig. 5b shows an event that does not satisfy either of the
above two criteria (when α = 0.5).

Once a set of three consecutive extrema is decided to be a
oraging event, the search for additional foraging events will
tart from the end point EP of the previous event to avoid having
oraging events overlapping.

. Results

In this section, first we present verification results assessing
he robustness of our foraging detection algorithm and decide
he best value of α for our algorithm. Then we analyze foraging
ehavior in the following steps: (1) we start by investigating the
reviously obtained nose bending signals by estimating their
ower spectra, (2) some parameters such as waving ampli-
ude and frequency (which will be described in detail later) are
xtracted from detected foraging events and (3) then we com-
ine the obtained parameters with power spectrum analysis and
se t-tests to study the similarities of foraging behavior between
ild type and each of the four mutant types. The experiments
ere implemented in Matlab on a 2.33 GHz Pentium-IV desktop

omputer.

.1. Verification of the foraging detection algorithm by
uman observers

Our algorithm for the detection of foraging events was tested
n 25 (five videos for each strain) 1-min videos (30 Hz). First, a
rained human observer examined all the videos to locate all the
oraging events. By applying the above algorithm with α vary-
ng from 0 to 1, the performance result is shown as a receiver
perating characteristic (ROC) curve (Metz, 1978) in Fig. 6
nd Table 1. There is a sharp bend in the ROC curve when
= 0.5 (at which point the true positive fraction is over 90%
hile the false positive fraction is less than 10%), indicating
= 0.5 is the best for this algorithm. For α = 0.5, the forag-

ng event detection results for individual strains are given in
able 2.

.2. Fourier analysis of foraging events

In another experiment, we used spectral analysis to inves-
igate the foraging behavior of each strain. In particular, we
stimated the power spectrum for each strain from 150 videos
30 videos for each strain) by averaging multiple periodograms
Welch–Bartlett method, Welch, 1967). The periodogram is
n estimator of the power spectrum, introduced by Schuster

Manolakis et al., 2000). To calculate the periodogram for
ach strain, first we subdivided each bending angle signal bp(t)
1 ≤ p ≤ 30 videos for each strain) into small segments in a slid-
ng window and overlapping fashion. The window used in this
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ig. 6. A plot of the receiver operating characteristic (ROC) curve with α varying
rom 0 to 1.

xperiment is a Hamming window of duration L = 30 with val-
es w(m) = 0.54 − 0.46 cos(2πm/29) for m = 0, 1,. . ., 29. We
et D = 20 (D < L) to be an offset distance to make the segments

verlap and create more segments, and let Kp be the number of
egments in the pth video, which changed with different videos
for example, a video glr-1 001 with 1745 frames was divided

W
s
f

able 1
he false positive, true positive, false negative, and true negative values for the ROC

ate of non-foraging events
etected as foraging (false positive)

Rate of foraging events detected
as foraging (true positive)

Rate o
as non

.0000 0.9637 0.036

.7116 0.9609 0.039

.4890 0.9554 0.044

.3176 0.9491 0.050

.1819 0.9442 0.055

.0597 0.9351 0.064

.0435 0.7901 0.209

.0287 0.6820 0.318

.0205 0.5941 0.405

.0153 0.4986 0.501

.0119 0.4010 0.599

he highlighted row is the final α used in the foraging detection.

able 2
erification results of each strain for the foraging detection algorithm (α = 0.5)

orm type dgk1(nu62) glr1(n2361)

otal frames 5513 8105
etected foraging 243 354
oraging not detected 8.8% (21) 7.9% (27)
eal foraging % 90.2% (219) 89.0% (315)

he first row shows the mutant type. The second row shows the number of frames w
lgorithm is listed in row 3. The number of foraging events missed is listed in row 4. T
ience Methods 171 (2008) 153–164 157

nto 1745/D ≈ 87 segments). Then the qth segment of the pth
ideo consists of the following L values:

pq(m) = bp(qD + m)w(m) 0 ≤ m ≤ L − 1,

0 ≤ q ≤ kp − 1

he estimated power spectrum (periodogram)
∧
Bpq(ejω) of the

th segment of the pth video can be calculated using the discrete
ourier transform as follows:

∧
pq(ejω) ≡ 1

L
|Bpq(ejω)|2 = 1

L

∣∣∣∣∣

L−1∑

m=0

bpq(m)e−jωm

∣∣∣∣∣

2

he spectrum estimate of each strain was obtained by aver-
ging the periodograms from all of its

∑30
p=1Kp curves as

ollows:

∧
(ejω) = 1

∑30
p=1Kp

30∑

p=1

Kp∑

q=1

∧
Bpq(ejω)

= 1
∑30

p=1Kp

30∑

p=1

Kp∑

q=1

1

L
|Bpq(ejω)|2

= 1
∑30

30∑ KP∑ 1

L

∣∣∣∣∣

L−1∑
bpq(m)e−jωm

∣∣∣∣∣

2

e also obtained a different averaged spectrum only from
egments where foraging events happened. In this case, after
oraging events were detected, a Hamming window was placed

curve

f foraging events detected
-foraging (false negative)

Rate of non-foraging events detected
as non-foraging (true negative)

α

3 0 0
1 0.2884 0.1
6 0.5110 0.2
9 0.6824 0.3
8 0.8181 0.4
9 0.9403 0.5
9 0.9565 0.6
0 0.9713 0.7
9 0.9795 0.8
4 0.9847 0.9
0 0.9881 1.0

goa1(n1143) trpa1(ok999) wild type

5387 6709 6273
302 268 299

3.7% (11) 4.0% (10) 7.9% (24)
94.0% (284) 90.3% (242) 94.0% (281)

here the worms were moving forward. The number of events detected by the
he number of detected events which are real foraging events is listed in row 5.
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Fig. 7. The estimated overall power spectrum for all strai

t each foraging event (the center of the window points to the
enter of the foraging event) and the periodogram of each event
as computed. For each strain, the foraging spectrum is aver-
ged from all N periodograms where N is the number of detected
oraging events for the strain. The results of Fourier analysis of
oraging behaviors are in Figs. 7 and 8. Fig. 7 includes spectra of
omplete videos and Fig. 8 shows spectra from foraging events

a
o
a
t

) dgk-1, (b) glr-1, (c) goa-1, (d) trpa-1 and (e) wild type.

nly. In Fig. 7, we can see that there is a main frequency for
ach strain which corresponds to the frequency of the approx-
mately sinusoidal worm body wave. These main components

lso exist in Fig. 8. But we can also find subtle bumps on the
uter sides of the main component which are caused by the for-
ging. To observe these bumps more clearly, we take the ratio of
he spectra in Fig. 8 to those in Fig. 7. The results are shown in
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Fig. 8. The estimated power spectrum from detected foraging events

olid curves in Fig. 9. We also computed the ratio of the spec-
rum generated from randomly chosen segments to the spectrum

enerated from the overall video and the results are shown in
ong-dashed curves in Fig. 9. We can see that the curve from
andomly chosen segments is close to 1 and does not have any
bvious peak at any frequency.

e
b
a

l strains: (a) dgk-1, (b) glr-1, (c) goa-1, (d) trpa-1 and (e) wild type.

.3. Statistical analysis of foraging events
After foraging events were detected for each strain, we
xtracted several basic features from all detected events from
ending curves (as shown in Fig. 5). These include: waving
mplitude, initial waving direction, time interval between adja-
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Fig. 9. For each mutant type, we compute the ratio of Fig. 8 to Fig. 7 (solid line) as well as the ratio of the spectrum generated from randomly chosen segments to
the spectrum generated from the overall video (long-dashed line).
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Table 3
Foraging-related features extracted from all events detected by the algorithm

Worm type dgk-1(nu62) glr-1(n2361) goa-1(n1143) trpa-1(ok999) wild type

Total foragings 1669 1604 1820 1480 1789
Left 813 841 911 735 927
Right 856 763 909 745 862
Amplitude AVE 15.13 14.91 19.26 15.71 14.15
Amplitude STD 9.30 8.27 11.14 9.00 8.34
Interval AVE 0.199 0.386 0.171 0.249 0.216
Interval STD 0.245 0.465 0.206 0.325 0.293
Frequency AVE 4.51 4.31 4.00 4.19 4.57
Frequency STD 1.58 1.64 1.57 1.66 1.61

The first row shows the mutant type. The second row shows the total number of foraging events for each strain detected by the algorithm. The third and fourth rows
show the number of foraging events which start respectively from the left and right side of the body. The mean values and standard deviation values of features are
l adjac
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isted in rows 5 and 6 (waving amplitude), rows 7 and 8 (time interval between
vents).

ent foraging events, and the frequency of nose waving during an
ndividual foraging event. These features are described in detail
s follows:

1) Wave amplitude: It is defined to be the depth of nose bending
(in degrees) during a foraging event. Once a foraging event
is found, we compute {abs[SP−MP] + abs[EP−MP]}/2 to
be its amplitude.

2) Initial waving direction: Is the side from which the worm
starts a foraging event (SP > 0 is defined to be left and SP < 0
is defined to be right).

3) Time interval between adjacent foraging events: For adja-
cent events, this parameter is defined to be the time interval
between the end point EP of the first event and the start point
SP of the second event.

4) Frequency of individual foraging event: This parameter rep-
resents the inverse of the period of an individual foraging
event, which can be expressed as 1/T where T is the time
length between the start point SP and the end point EP of
the event.

The mean values and standard deviation values of each fea-
ure were computed for each strain and the results are listed
n Table 3. The first row shows the mutant type. The second
ow shows the number of foraging events detected by the algo-

ithm. The third and fourth rows show the number of foraging
vents which start respectively from the left and right side of
he body. The mean values and standard deviation values of fea-
ures are listed in rows 5 and 6 (waving amplitude), rows 7 and

d
g
m
1

able 4
he average number of foraging events within 10 s

orm type dgk-1(nu62) glr-1(n2361)

otal frames 34,136 43,728
etect foraging 1,669 1,604
o. of foraging in 10 s 14.67 11.00
hi-Square (p-value) 1,067 (≈0) 1,016 (≈0)

he first row lists the mutant type and the second row lists the total number of frame
oraging events detected by the algorithm. The fourth row shows the average number
f the test for periodicity for each strain.
ent events) and rows 9 and 10 (the frequency of nose waving during foraging

(time interval between adjacent events) and rows 9 and 10 (the
requency of nose waving during foraging events).

We compared the results in Table 3 to the previously obtained
ower spectrum ratios for each strain. Among these five mutant
ypes, goa-1 has the largest average amplitude and its curve in
ig. 9 generally has higher values than the other mutant types.
he average foraging frequencies in Table 3 computed from all
etected events for dgk-1 and goa-l are also very close to their
eak values in Fig. 9a and c. glr-1, trpa-1 and wild type have
wo nearly equal maximal peak values in Fig. 9b, d and e, but
heir average foraging frequencies still locate within the main
obes of the spectra in Fig. 9. Their standard deviation values
f foraging frequency are also larger than those for dgk-1 and
oa-1.

In order to study the similarities of foraging behavior between
utants, we generate scatter plots of each parameter (amplitude,

nterval and frequency as in Table 3) for wild type and each of the
our mutants. The mean values of three parameters of each video
re computed. The scatter plot of each parameter is generated
y using each video as a data point (Fig. 10). From these plots,
e make three observations: (1) for mutant types dgk-1 and
oa-1, which are hyperactive for locomotion and foraging, their
ime intervals between adjacent events are almost all within a
ange from 0.1 to 0.3 s. Mutant types glr-1 and trpa-1 which
orage more slowly have much wider distribution with many

ata points having larger values than other mutant types, (2)
oa-1 has generally higher values in the plot of amplitude, while
ost of the data points of other mutant types are within a range of

0–20◦ and (3) dgk-1, glr-1 and wild type have similar ranges of

goa-1(n1143) trpa-1(ok999) wild type

32,379 35,010 36,835
1,820 1,480 1,789
16.86 12.68 14.57
1,203 (≈0) 928 (≈0) 1,190 (≈0)

s in which the worms were moving forward. The third row lists the number of
of foraging events in 10 s. The bottom row shows the Chi-Square and p-values
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ig. 10. The scatter plot of three parameters for all strains: (a) time interval be
he solid lines show the overall mean values.

istribution for frequency of individual foraging event (4–51/s)
nd goa-1 has lower distribution in the plot which matches the
esult in Table 3.

We also computed the foraging rate, which is defined in
Kindt et al., 2007) to be the number of foraging events within
0 s, for each strain and the results are listed in Table 4. The
rst row lists the mutant type and the second row lists the total
umber of frames in which the worms were moving forward in
he 30 videos of that strain. The third row lists the number of
etected events declared by the algorithm to be foraging events.
he fourth row shows the number of foraging events in 10 s

300 frames). In Table 4, we can see that mutant types dgk-1
nd goa-1 which are hyperactive for locomotion and foraging
ave higher foraging rate in 10 s whereas glr-1 and trpa-1 forage
ore slowly than wild type. Furthermore, wild type and dgk-1

ave very close foraging rate in 10 s.

For each strain, we also want to determine whether the forag-

ng behavior is a periodic and continuous oscillation or a process
n which foraging movements occur sporadically. Our hypoth-
sis is that the foraging behavior of each strain is an almost

a
c
e
h

adjacent events, (b) amplitude and (c) frequency of individual foraging event.

eriodic process with a certain T between adjacent foraging
vents. If this is true, we expect all time intervals between adja-
ent events for each strain to be close to each other and at least
ocate within a certain range (in this experiment, we use the
nterval AVE in Table 3, ±0.1 s to be our range). We use a Chi-
quare test (Glantz, 1996) to compare the expected and observed
esults from all videos of each strain and the results are listed
n Table 4. We can see that all p-values are less than 0.05 (≈0)
hich means the difference between the expected and observed

esult is significant and the foraging behavior is more or less a
poradic process rather than periodic.

. Discussion

We have described a new algorithm for the automated detec-
ion and quantitative analysis of foraging in C. elegans. This

lgorithm makes it possible to use videos of crawling nematodes
ollected from an automated tracking system to detect foraging
vents with a reliability comparable to what is achieved by a
uman observer. The ability to automatically count the number
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Table 5
The results of the significance test (p-value <0.05 is considered to be significant)

dgk-1(nu62) against wild type glr-1(n2361) against wild type goa-1(n1143) against wild type trpa-1(ok999) against wild type

p-Value (amplitude) 0.0087 0.0187 0.0000 0.0011
p-Value (interval) 0.1129 0.0000 0.0018 0.0234
p
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-Value (frequency) 0.1556 0.0018

he second to fourth rows show the p-values for comparisons of amplitude, tim

f foraging events in a unit time facilitates the rapid quantifica-
ion of the foraging rate, a key behavioral parameter in a number
f previous C. elegans studies (Alkema et al., 2005; Kindt et al.,
007; Segalat et al., 1995). In the past, this rate has been calcu-
ated by observer analysis of video recordings, a laborious and
ime-consuming process.

In addition to making it possible to count foraging events,
ur algorithm also makes it possible to measure parameters
f foraging behavior that have not previously been measured
uantitatively. For example, we measured foraging amplitude.
revious studies noted anecdotally that abnormalities in spe-
ific neurons and genes can affect the depth of foraging bends.
or example, it was reported that ablation of two classes of
echanosensory neurons, OLQ and IL1, leads to deeper for-

ging bends (Hart and Kaplan, 1995), as do mutations in the
rpa-1 gene which encodes a mechanosensory channel that func-
ions in these neurons (Kindt et al., 2007). However, neither of
hese studies was able to present quantitative data to verify or

easure the differences between normal worms and lesioned or
utant animals. In the current study, we quantified the foraging

mplitude phenotypes of trpa-1 mutants as well as several other
oraging-abnormal mutants. For example, the average amplitude
f trpa-1 was found to be 15.71 compared to 14.15 for wild type,
nd this difference was statistically significant at the 5% signifi-
ance level (p = 0.0011). This parameter should prove useful for
uture analysis of C. elegans behavioral mutants affecting the
eurons controlling foraging bends.

We also derived two other novel foraging-related parameters
n this study. One is foraging frequency. We verified the derived
requencies by using Fourier analysis and the power spectrum of
he foraging traces of individual worms. The second parameter
s the time interval between adjacent foraging events. Combined
ith the significance test (t-test) (O’Mahony, 1986), we showed

hat dgk-1 has the closest relationship to wild type among the
our mutants. It has two categories (interval and frequency) with
-values greater than 0.05 which is considered to be insignificant
hile other mutants have none (Table 5). We also used a Chi-
quare test to examine whether the observed data are periodic.
his result suggests that during periods of active foraging, the

oraging behavior is more or less sporadic rather than a process in
hich foraging movements occur periodically and continuously.

. Conclusion
The main contributions of this paper can be summarized as
ollows: (1) we developed and tested a new algorithm for auto-
atic detection of foraging events. (2) We provided quantitative

nalysis of foraging behavior, which has not previously been

H

H

0.0000 0.0003

rval and frequency, respectively.

chieved, for several mutant types. (3) We verified the exis-
ence and quantified the amount of differences in the depth of
ose bending between normal worms and lesioned or mutant
nimals, which was reported only anecdotally in previous stud-
es. In previous studies, foraging events were scored by human
bservers which is tedious and labor-intensive. The development
f automated methods for the study of foraging behaviors makes
t possible to reliably detect foraging events and quantitatively
arameterize foraging patterns. The algorithms we developed
herefore should have significant utility in future studies of for-
ging behavior.
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