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ABSTRACT

Quantifying gaze is important in various realms, such as

evaluating atypical social looking behavior in autism spec-

trum disorder. This paper reports on a system that uses eye-

tracking glasses and object/face detection to quantify looks.

The algorithms use Viola-Jones face detection with feature

point tracking and Faster-RCNN object detection trained for

three objects, followed by a runlength algorithm to declare

the start and end of looks. Results are presented in terms of

bounding box overlap and accuracy of looks compared to a

manual ground truth. The system can be useful for quantify-

ing gaze behavior during dynamic social interactions.

Index Terms— Eye-tracking, gaze behavior, face detec-

tion, object detection

1. INTRODUCTION

Gaze behavior is important during development. Adults name

objects in a child’s field of view, so joint attention helps in

learning words [1, 2, 3]. Gaze behavior in children with

autism spectrum disorder (ASD) is atypical in terms of social

looking behavior, joint attention to objects, and the timing

and accuracy of gaze shifts [4, 5]. Objective assessments

of real-world gaze behavior would be useful to determine

efficacy of social communication therapies. The success of

such therapy is typically measured by questionnaire or ob-

servation, both of which are subjective and susceptible to

responder bias and placebo effect. Other outcome measures

such as pencil and paper or computer assessments of face or

emotion recognition are objective, but measure only a subset

of the skills required for real-world social communication.

Glasses-based eye trackers can facilitate the study of gaze

behavior during dynamic social interactions. The glasses fuse

a calibrated point of gaze (measured by a camera below the

eye), with the world view (from a camera above the eye).

Quantification of this videorecorded interaction by manual la-

beling of events is time-consuming. Here, we report on a sys-
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tem that uses eye-tracking glasses with automated quantifi-

cation of looks during real-world social interactions. Defin-

ing a “look” is challenging. Human gaze behavior is com-

posed of steady intervals of fixation interposed with fast re-

orienting movements called saccades. At a coarse granular-

ity (e.g., 2 degrees of visual angle for the viewer), the peri-

ods of steady fixation can last between approximately 200ms

and several seconds depending on the task. A similar pattern

of steady fixations and interposed micro-saccades emerges

at a finer scale. The usual terms of fixations, saccades, and

micro-saccades associated with gaze physiology do not well

describe the more cognitive concept of an extended inspection

of an object or region, which typically involves an aggregated

series of fixations and small re-orienting saccades or micro-

saccades. We call each extended inspection a “look”.

Some past work [6, 7] has also focused on gaze quan-

tification and social orienting in naturalistic settings, making

use of software for automatic tracking of areas of interest [8]

but in those works the goal was not development of tools for

automating gaze analysis, and all output was reviewed by hu-

man coders to ensure high detection accuracy. The closest

past work to ours is [9, 10], which aims at developing auto-

matic methods for detecting faces and specifically eye con-

tact events, but in a scenario where the investigator wears the

eye-tracking glasses rather than the subject, thereby allowing

steady gaze orientation (the child’s face does not go in and out

of the field of view) and maintenance of distance and avoid-

ance of motion blur.

2. SYSTEM OPERATION

A test session begins with calibration, involving having the

subject wear the glasses and look steadily at a bullseye target

(in several positions) that is recognized by the Pupil Cap-

ture software routine. The Pupil Labs eye-tracking glasses

(Pupil Pro) produces video frames (24-bit color, 720 × 1280,
60Hz) from the world-view camera and raw gaze position

data at 120Hz from the eye camera. After calibration, data

were recorded. Data were collected to simulate a structured

social conversation in a small room. Each approximately 2.5
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Fig. 1. Algorithm overview. B-box is a bounding box.

minute interaction began with three undergraduate women

(two seated and one standing) across from the participant

wearing the gaze glasses (also an undergraduate woman, and

a different one in each of the 5 videos). After about 15 sec-

onds, the standing person leaves the room (returning during

the last 30 seconds). The remaining students play a card

game and talk, intermixed with looking at objects and people.

The glasses wearer is instructed to avoid large, abrupt move-

ments, to remain seated, and to look at the person leaving and

returning, but the interaction proceeds naturally otherwise.

In subsequent (non-real-time) processing, the system de-

tects objects and faces, and determines the presence and du-

ration of looks to these objects and faces. Figure 1 presents

an overview of the system operation. The world-view video

frames are input separately to object and face detection mod-

ules, whose outputs are sets of bounding boxes. The hitscan

algorithm takes as input a bounding box and a gaze posi-

tion (downsampled to 60Hz), and puts out a binary result of

whether the gaze position is inside the bounding box; this bi-

nary sequence is runlength processed to determine the pres-

ence and duration of a look to an object or face.

2.1. Object Detection

The object detection module is based on the Faster R-CNN

deep neural network [11] which classifies and localizes mul-

tiple objects in a single image. The objects to be detected

are a photo, a top, and a toy shark (see Fig. 2). For training

the neural network, images were collected using world-view

video frames. At distances of 40cm and 80cm, and elevation

angles of 0, 30, and 60 degrees above the table, images were

taken of the object on a turntable at 10 degree rotations. Dur-

ing testing, the photo hangs on the wall and is not occluded,

but the top and shark might have occlusions, so top and shark

images with occlusions were included in the training set, as

were images of the shark being squeezed. In total, there were

15,000 training images.

Fig. 2. Objects: photo, top, shark (shown on turntable).

In each training image, a minimum enclosing rectangle

was manually placed around the object. The object class and

box coordinates serve as the ground truth during training.

We exploit transfer learning [12] making use of pre-trained

weights from VGG-16 [13]. We used end-to-end training

on each object individually. Tuning the model [14] to adapt

to our custom dataset consisted of modifying the outputs of

the last fully-connected layers. We trained each model with

50,000 iterations with a base learning rate of 0.001 and mo-

mentum of 0.9. After this initial training, we fine-tuned the

models using additional data consisting of frames from the

world-view camera where some of the objects are present.

Ground truth bounding boxes were drawn for the objects, and

the model performance was gauged by the intersection over

union (IoU) of the bounding boxes from the human labelers

and those from the Faster R-CNN outputs. If IoU < 75%, we
tuned the hyperparameters, such as the learning rate and the

mini-batch size, and re-trained that object model.

2.2. Face Detection

For each frame extracted from the input video, the Viola Jones

[15] algorithm extracts Haar features and searches each sub-

region for possible matches. The output is a set of bound-

ing boxes that may contain faces. At the start of the video

(and again upon a tracking failure) the Viola-Jones output re-

quires human intervention to select a bounding box contain-

ing a face. After box selection, the corner detection module is

triggered, and the tracking loop is engaged. The Shi-Tomasi

corner detector extracts features and scores them [16]. The

optical flow of each extracted eigenfeature is calculated to

track it in subsequent frames using the Lucas-Kanade method

[17]. The average position of all the trackers is calculated and

checked against the face detection boxes output from Viola-

Jones for the next frame. If at least 30% of the tracked points

are not lost, and if the average position of the tracked points is

inside one of the detected face boxes, that is a tracking success

and the face bounding box is output; the algorithm then con-

tinues the tracking loop to the next frame (or moves to a differ-

ent face if there is another face being tracked). Trackers will

continue to function even without a valid detected area and

will select the first detected area when available. If 70% of the

feature points are lost, or if the average tracker position is not

inside any of the detected face boxes, that is a tracking failure

and human intervention is needed to re-locate the face. The

algorithm then automatically re-initializes the trackers. In a

3-minute video consisting of approximately 10,000 frames,

there are typically 20-30 face re-initializations required (per-

son has to click on the correct face box). The re-initialization

typically happens because the subject turns her head and the

face exits the field of view, needing re-initialization when it

comes back into view, or because the face in the view gets

temporarily occluded (e.g., by a hand or object).
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2.3. Determination of Looks

For any single object (or face), if the object detection module

produces a bounding box in frame i for that object and the
gaze position is in that bounding box, the hitscan algorithm

considers this frame a “hit” for that object. Otherwise, it is

a “miss”. The runlength algorithm processes this binary se-

quence; a runlength of at least T1 hits is considered a look,

and the first hit position is the start of the look. Due to eye

blinks and system noise, a small runlength of misses does not

end the look. A runlength of T2 misses ends the look, and the

last hit position is the end frame of the look. The parameters

T1 and T2 were set equal to 6. At 60 fps, 6 frames represents

100 msec, a reasonable value for declaring a gaze fixation

[18, 19, 5] which begins a “look.”

2.4. Ground Truth

Ground truth (GT) represents a determination of the true

presence of faces and objects and the number and length of

looks. GT for face and object bounding boxes was established

by manually placing tight axis-aligned enclosing rectangles

around each face and object in the image. Face boxes were

drawn to include the ears if visible, while the upper limit is at

the person’s hairline and the lower limit is at the bottom of the

chin. A face is not boxed if the face is turned more than 90

degrees away from the camera. A small number of faces were

not boxed in the manual GT because the subject turned his

or her head rapidly, so the world-view frames had excessive

motion blur. Boxes for the top and photo objects were drawn

to contain all of the object in the picture, and were drawn

only if 50% or more of the object is judged to be present. For

the shark object, a box was drawn if 50% or more is present

and also both eyes are present in the picture. An example

of manual GT bounding boxes is in Fig. 3. Bounding boxes

which touch the outer edge of the frame (meaning the object

is at the edge of the field of view) are ignored both for the al-

gorithm and the GT. This is because the subject’s eyes rarely

do an extreme sidelong look, and the glasses have lower gaze

position accuracy when they do. GT for looks is established

by putting the gaze position and GT bounding boxes for

objects/faces through the same hitscan and runlength algo-

rithms that are applied to the automatically-derived bounding

boxes. An expert neuroscientist viewed a subset of videos

with gaze position superimposed as a means of verifying the

reasonableness of the GT looks.

3. RESULTS

First, the face and object detection modules are evaluated by

comparing their bounding boxes against the manually derived

ones. For each frame in each video, we compute the area

of intersection divided by the area of union (IoU) of the al-

gorithm and manual bounding boxes for a given face or ob-

Fig. 3. Image with manual ground truth bounding boxes

Acc. FPR FNR Den IoU

face1 85.66 8.5 6.94 2741 79.55

face2 77.07 8.64 16.88 2128 64.72

face3 83.81 7.4 10.18 3317 80.77

photo 66.81 33.08 0.23 4568 77.16

shark 80.36 9.67 12.08 3416 78.27

top 71.16 17.52 16.16 1283 69.32

total 77.22 16.13 9.31 17453 76.04

Table 1. Comparison of the algorithm and ground truth, av-
erage results across five videos. Den is the number of frames

in the denominator of Equation (1) entering into the Accuracy

computation for each face and object.

ject. The IoU values are averaged over frames, and over five

videos, and reported in the last column of Table 1.

We next evaluate the algorithm at the level of frames

within looks. A sample of the results for one video appears

in Figure 4, which is intended to give a qualitative feel for

how a subject’s eyes move around between the various faces

and objects in the scene. Frame i represents a true positive
event for a look to face 1 if frame i is part of a look to that
face according to GT and also part of a look to that face in

the algorithm output. Recall that for frame i to be part of a
look to a face does not require that the gaze is within the face

bounding box for frame i, or even that the face was detected
in frame i. From the runlength algoritm, if the face was de-

tected and the gaze was inside its bounding box for at least 6

earlier frames and at least one later frame, and if frame i is
part of a sufficiently short gap, then frame i is still considered
part of the look.

Let TP = total number of true positive events for a video

and object. A false positive event occurs when frame i is not
part of a look to that object according to GT but is part of a

look to that object for the algorithm. FP and FN denote the

number of false positive and false negative events. We define

Accuracy = TP/(TP + FP + FN). Table 1 shows the
values, averaged across videos, for Accuracy as well as False

Positive Rate (FPR = FP/(FP +TP )) and False Negative
Rate (FNR = FN/(TP + FN)).
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Fig. 4. Example of algorithm results and GT for looks for one video. The x-axis shows the frame number. The y-axis shows,
from top to bottom, GT looks to faces, algorithm looks to faces, GT looks to objects, and algorithm looks to objects.

3.1. Discussion

The average IoU values for faces 1 and 3 are very similar

(79.55 and 80.77) but they are worse for face2 (the standing

person, usually farther back in the scene). Among the ob-

jects, IoU values are similar for the shark and photo (78.27

and 77.16) and lower for the top (69.32) likely because it is

a much smaller object. Accuracy results for looks to faces 1

and 3 are again better than those for face 2. Of the objects, the

photo has a high FPR. This is driven by the fact that the photo

framing colors (red, black, white) are common clothing col-

ors worn by the participants, and the photo itself shows faces,

causing non-photo items to be detected as photos, or causing

the algorithm’s photo bounding box to be drawn too large.

With the exception of the photo, the Accuracy rates for looks

are all higher than the IoU measures of bounding box accu-

racy, suggesting that lack of precision in the bounding boxes

can to some degree be compensated for by the runlength al-

gorithm that declares looks.

Counting FP and FN events at the level of entire looks,

rather than, as we do, at the level of frames within looks,

would change the numeric results. For example, in Figure 4,

the photo has 5 entire “looks” in the GT but 6 in the algo-

rithm, leading to a FPR of 0.17 if one counts entire looks.

However the FPR is different if one counts at the frame level,

since several of the looks have extra FP frames at the leading

edge of the event. Whether or not it is desirable to count FP

and FN events at the level of entire looks or at the level of

frames, or indeed whether some completely different metrics

are needed, will depend on the application. There are many

different research, educational, and clinical applications for

which it would be useful to have a system that can automati-

cally identify looks to faces and objects in real-world interac-

tions, and these applications vary in their spatial and temporal

demands in terms of what constitutes a look.

For a child reading a science textbook, one might want

to identify when the student is reading the columns of text,

where in that text the student jumps to a figure box, how long

the student spends in the figure and where the student’s gaze

goes after it. Spatial accuracy of looks within the book would

be important, but temporal precision less so. In another appli-

cation, one might want to identify all looks to faces and cal-

culate the proportion of time an ASD child spent looking at

faces during a whole interaction, a potentially useful measure

in a social evaluation. One might want to know the latency

between a knock on the door and a look to the door. Tempo-

ral precision in the onset of the gaze would be important.

These applications with various requirements suggest that

the algorithm parameters, (including T1 and T2 or the padding

around an object in a bounding box) can be tailored for dif-

ferent scenarios. We believe that the current system is al-

ready sufficiently accurate for some of these applications but

not others. In particular, the system already can be useful for

cases where overall time spent looking at an object is impor-

tant but the precise onset of looks is not.

Conclusions: The open source model offered by Pupil
Labs has made glasses-based eye-tracking affordable and cus-

tomizable. Our algorithms provide fully automatic detection

of looks to objects, and semi-automatic detection of looks to

faces, allowing us to study gaze behavior in real-world situa-

tions. Evaluation of the usefulness of this type of system will

require further development of accuracy metrics that are tai-

lored to particular scenarios, and the algorithms themselves

can be tailored to the scenario. Because of the prevalence of

ASD and its social interaction challenges, and the difficulty

with current methods for assessing therapeutic efforts, objec-

tive and quantitative social outcome measures can benefit all

social therapies that demonstrate real-world efficacy.
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